
MINIMUM CYCLE BASIS ALGORITHMS FOR THE
CHEMISTRY DEVELOPMENT TOOLKIT

ULRICH BAUER

Abstract. The Chemistry Development Toolkit [CDK] is a com-
prehensive library for computational chemistry. It is used in several
projects such as [Jmol] and [JChemPaint].

We present details about the implementation of several algo-
rithms related to minimum cycles bases, also known as SSSR (small-
est set of smallest rings). A minimum cycle basis is a set of min-
imum weight cycles which form a basis for the space of all cy-
cles in a graph. The algorithms are described in [BGdV04a] and
[BGdV04b].

1. Overview

The Smallest Set of Smallest Rings (SSSR), the chemical equivalent
to a minimum cycle basis, plays an important role in computational
chemistry. However, an efficient and exact algorithm for computing an
SSSR was missing from the Chemistry Development Toolkit [CDK];
instead, a heuristic [Fig96] was used which was not efficient for larger
molecules and did not always terminate or give the correct results. A
new algorithm by Franziska Berger, Peter Gritzmann and Sven deVries
[BGdV04a] achieves a time complexity of O(m3), which is the fastest
algorithm currently known for sparse graphs such as molecular graphs.
This algorithm was implemented in the CDK to replace the old heuris-
tic.

Moreover, several other algorithms based on minimum cycle bases,
described in [BGdV04b] by the same authors, have been implemented
to complement the SSSR and to give additional information about the
structure of a molecule: the set of relevant and essential cycles (union
and intersection of all minimum cycle bases of a graph), and inter-
changeability classes of the basis cycles according to the interchange-
ability relation introduced in [GLS00].

[CDK] is a library of classes and algorithms related to computational
chemistry. It provides several features such as data types for atom,
molecules and other chemical objects, supports input/output of various

1



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 2

file formats, rendering of molecules, database access, to name only a
few.

Section 2 lists our most important improvements to the algorithms.
In Section 3 we give a short overview of the algorithms that have been
implemented in this project. Section 4 presents a few implementation-
specific technical details. Section 5 show some results of running time
tests of the algorithms.

2. New results of the project

The following are the most significant new results that have been
found during the project. This list is especially interesting for those
readers that are familiar with the underlying papers [BGdV04a] and
[BGdV04b]1.

• A new algorithm for finding all optimal solutions to the single
pair shortest path problem has been developed. The algorithm
has a running time of O(m+ k · n) for unweighted graphs and
O(m+n log n+k ·n) for weighted graphs, where k is the number
of solutions. This algorithm is described in 3.2.

• The algorithms for essential cycles and relevant cycles have
been modified to use this new shortest-path algorithm instead
of Eppstein’s algorithm for the more general k shortest paths
problem. These algorithms are described in 3.3.

• The theoretical complexity for the implemented algorithms on
unweighted graphs has been improved by using this new algo-
rithm and breadth-first search for finding shortest paths. The
new running time bounds are O(m3) for finding a minimum cy-
cle basis, O(mω + m2n+ for finding the set of essential cycles
(where ω denotes the matrix multiplication constant), O(mω +
m2n + n2m|R|) for finding the set R of relevant cycles, and
O(m3n) for computing the interchangeability classes of a cycle
basis.

• A small optimisation from the minimum cycle basis algorithm
has been applied to the algorithms for essential cycles and rele-
vant cycles which had a dramatic impact on performance of the
algorithm on certain instances. This is described in 3.3 as well.

• In the algorithm for computing interchangeability, to improve
the performance of the computation, only non-essential cycles
are checked, since essential cycles form singleton equivalence
classes. Details can be found in 3.5.

1This is the first implementation of the algorithms presented in [BGdV04b].



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 3

3. The Algorithms

Algorithm 1 Computing a minimum cycle basis

Input: Undirected biconnected simple weighted graph G
Output: Minimum cycle basis B of G
1: Set D0 := ∅, P := ∅
2: while there exists an edge e ∈ E that is not covered by D0 do
3: Compute a shortest cycle C(e) through e
4: D0 := D0 ∪ {C(e)}
5: P := P ∪ {e}
6: end while
7: r := |D0|
8: Construct a fundamental tree basis T0 = {F1, . . . , Fµ−r}

of the graph without the picked edges (V, (E \ P ))
9: B0 := D0 ∪ T0

10: for i = 1 to (µ− r) do
11: Find a shortest cycle Ci that is linearly independent from Bi\{Fi}

with Subroutine 2
12: if ω(Ci) < ω(Fi) then
13: Bi := (Bi−1 \ {Fi}) ∪ {Ci}
14: end if
15: end for
16: Output B := Bµ

3.1. Minimizing a cycle basis. The algorithm used for computing
a minimum cycle basis is described in [Be04], section 5.3.5. This is
basically the algorithm from [BGdV04a] with a preprocessing step.

The input graph is decomposed into its biconnected components us-
ing the algorithm described in 3.4. Then minimum cycle bases are
computed for each biconnected component. The cycle basis of the
whole graph is the union of the cycles in these bases.

To compute a minimum cycle basis of a biconnected component,
the algorithm starts by computing a set D0 of linearly independent
cycles which are guaranteed to be of minimum weight. To do this, we
repeatedly pick an arbitrary edge e (that is not covered by the cycles
already found) and find a shortest cycle through e. (Such a cycle exists,
since the graph is biconnected). The edges chosen in this loop and the
corresponding cycles are added to the edge and cycle lists, respectively,
in reverse order to ensure that the resulting cycle-edge incidence matrix
ist in upper triangular form (which is needed by the algorithm later).



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 4

After that, the set of chosen cycles is extended to a cycle basis by
computing a fundamental tree basis, T , on the graph without the al-
ready chosen edges edges. A fundamental tree basis is a cycle basis
that is constructed as follows: first, compute a (minimum) spanning
tree T . Then, for every non-tree edge e, create the cycle consisting of
e and edges of T . Such a cycle is called fundamental ; the set of all
fundamental cycles is called fundamental tree basis.

A fundamental basis is generally not of minimum weight, therefore
we minimize the fundamental cycles with the minimum cycle basis al-
gorithm from [BGdV04a]. This algorithm basically replaces each fun-
damental cycle Fi with the shortest possible cycle Ci that is linearly
independent to the other basis cycles. This is done with Subroutine 2
by constructing an auxiliary graph (with Subroutine 3) and generating
shortest paths between certain vertex pairs. These paths correspond,
by construction of the auxiliary graph, to shortest cycles in the main
graph that are linearly independent to B \ Fi, where B is the current
basis.

Subroutine 2 Constructing a shortest feasible cycle C

Input: Index i ≥ 1, Matrix Ai−1

Output: Shortest feasible cycle C

1: Form A
(i)
i−1 by removing row i from Ai−1

2: Construct kernel vector u by setting ui = 1, uj = 0 for j > i and

solving A
(i)
i−1u = 0

3: Form graph Gu as described in Subroutine 3
4: C := ∅
5: for all vertices v incident to an edge e in G with ue = 1 do
6: Find a shortest v–v′ path Pv in Gu with respect to ωu

7: Let W (Pv) denote the closed walk in G obtained by replacing
each vertex x′ of Pv by x

8: C := C ∪W (Pv)
9: end for

10: if minD∈C ω(D) < ω(Fi) then
11: Let C := argminD∈Cω(D)

12: Form Ai by inserting C into row i of A
(i)
i−1 and performing

Gaussian elimination on row i
13: else
14: C := Fi, Ai := Ai−1

15: end if
16: return C



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 5

The auxiliary graph Gu is constructed from the graph G and the
binary vector u as follows: for each vertex v in G, there are two vertices
v and v′ in the Gu. So the vertex set of Gu is partitioned into two sets
V and V ′. For each edge e = (v, w) in G, there are two edges (of
the same weight as e) in Gu: if ue = 1, the edges (v′, w) and (v′, w)
crossing the partition; otherwise, the edges (v, w) and (v′, w′). Now,
each path Pv from a vertex v to v′ crosses the partition an odd number
of times (has odd parity in regard to u). By replacing each vertex x′

of Pv by x, we obtain a closed path in G. This might not be a cycle;
however, it always contains an odd parity simple cycle as a subpath
(see [BGdV04a]).

If u is a kernel vector of A(i) (the cycle-edge incidence matrix of
B \ {Fi}) and not a kernel vector of A, a shortest v–v′ path in Gu

corresponds to a shortest closed path in G with weight ω(Fi) containing
v that is linearly independent to B \ {Fi}. Iterating over all vertices
incident to an edge e in G with ue = 1 yields the shortest linearly
independent closed path. Obviously, this path must be a simple cycle:
else it would contain a strictly smaller linearly independent cycle as a
subpath. Hence, the obtained path is the desired minimum basis cycle.

Subroutine 3 Constructing the auxiliary graph Gu

Input: Graph G, kernel vector u
Output: Auxiliary graph Gu

1: for all vertices v of G do
2: Add two vertices v and v′ to Gu

3: end for
4: for all edges e = (x, y) of G do
5: if ue = 1 then
6: Add the two edges (x, y′), (x′, y) to Gu

7: else
8: Add the two edges (x, y), (x′, y′) to Gu

9: end if
10: end for

Since molecular graphs are unweighted, we can use breadth-first
search to find the shortest paths. This leads to an improvement in
asymptotic running time, therefore we provide a short reanalysis of the
time complexity.

Theorem 1. A minimum cycle basis of an unweighted, biconnected
graph G = (V,E) can be computed using Algorithm 1 in time O(m3).



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 6

Proof. Computing the set D0 takes O(m2) (see [Be04]). The funda-
mental tree basis can be constructed in time O(m + n). The loop is
executed O(m) times, and each execution takes O(m2) time:

The kernel vector u can be constructed in time O(m2); construction
of Gu takes linear time. Finding at most n shortest paths takes time
O(n(m + n)). Updating Ai requires linear time; gaussian elimination
takes time O(m2). �

3.2. Finding all shortest paths between two vertices. In the al-
gorithms described later in 3.3 for computing relevant and essential
cycles, the authors propose to use Eppstein’s k-shortest-paths algo-
rithm on an auxiliary graph to enumerate all relevant cycles. For our
implementation, a new algorithm for enumerating only the optimal
paths was developed within the present project instead.

Eppstein’s algorithm lists all paths between two vertices, ordered
by their weight. This algorithm requires a quite complicated heap
construction to run in optimal time2 O(m + n log n + k), and in fact
all available implementations are based on a simpler variant, running
in O(m + n log n + k log k). However, even the “basic” variant of the
algorithm is still quite tricky and deals with a number of auxiliary
graphs, and only gives an implicit representation of the paths; this is
something one might not want to mess with if it is not really necessary.3

So back to the actual problem: enumerating all relevant cycles in the
graph G. This is done by enumerating k shortest (v, v′)-paths in the
auxiliary graph Gu, until the first path with greater weight is encoun-
tered. In fact, we are searching only for the minimum weight paths
between two vertices, and no other paths. Since the main difficulty for
the k-shortest-paths problem lies in enumerating the paths in order of
their weight, which is not needed in our case, we can construct a much
simpler algorithm which produces all minimum weight paths between a
pair of vertices. Basically, we modify Dijkstra’s algorithm (or breadth
first search for unweighted graphs) to produce a shortest path digraph
instead of a shortest path tree. The shortest path digraph is the union
of all possible shortest path trees (directed).

Let v denote the vertex that is visited in the current iteration. In-
stead of adding only one of several possible edges coming out of v to
the shortest path tree, we add all possible edges to the shortest path

2In fact, the total running time is O(m+n log n+k2n), since the algorithm gives
only an implicit representation of the paths, and computing the paths explicitly
takes O(k2n).

3[JM99] shows that Eppstein’s algorithm has a significant overhead and is im-
practical even for quite large graphs.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 7

5

4

4

3

2

3

1

2

2

1

5

4

4

3

2

3

1

2

2

1

Figure 1. Shortest path tree and shortest path digraph

digraph, i.e. those edges (v, u) for which d(v, t) = w(v, u)+d(u, t) holds.
We can stop after we have reached the vertex s. This is quite impor-
tant for our application, since we will often search for relatively short
paths in large graphs.

Now we simply have to enumerate all possible s–t paths in this di-
graph. This can be achieved by starting from s, traversing each out-
going edge until t is reached, and returning the edges in the order of
traversal (like a depth first search, only with the difference that each
vertex can be visited several times). Assuming there are only posi-
tive edge weights in the input graph, this algorithm terminates and
enumerates all optimal solutions of the shortest-path problem.

Theorem 2. Algorithm 4 finds all k solutions of the single-pair-shortest-
path problem in time O(m + n log n + k · n) for graphs with strictly
positive edge weights, and O(m+ k · n) for unweighted graphs.

Proof. To show that the algorithm correctly finds all shortest paths, we
observe that the shortest path digraph is the union of all shortest v–t
paths for all v ∈ V . This is done by induction over the vertices: when
a new vertex v is visited, we add not only one arc to the digraph, but
all arcs v–w that create a shortest path to t. Since the edge weights
are strictly positive, any w has already been visited: if there exists a
shortest v–t path containing w, then d(w, t) < d(v, t), and so w must
already have been visited. That means that any shortest v–t in G is
present in the digraph.

On the other hand, every v–t path in the digraph is optimal, which
can easily be seen from the fact that all arcs from v to another vertex
are added in the iteration in which the v is marked as visited. Since
only arcs that create a shortest path to t are added, by induction every
v–t path is optimal.

The running time of the algorithm is O(m + n log n) (creating the
shortest path digraph using Fibonacci heaps) + O(k · n) (enumerating



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 8

Algorithm 4 Enumerating all shortest s–t paths in a graph

Input: Graph G with strictly positive-weighted cycles, vertices u, v
Output: Enumeration of all shortest s–t paths in G

{Generate the shortest path digraph}
1: Mark t as visited
2: while vertex s is not marked as visited do
3: Choose nearest unvisited vertex v (using Dijkstra or BFS)
4: Mark v as visited
5: for all vertices u adjacent to v do
6: if vertex u is already visited and d(v, t) = w(v, u) + d(u, t)

then
7: add arc (v, u) to digraph
8: end if
9: end for

10: end while
{Output all (s, t)-paths in the digraph}

11: Push the vertex s on the empty stack S
12: while S is not empty do
13: Set vertex v := top(S) to the vertex on top of the stack
14: if there is an unvisited arc e = (v, w) then
15: Mark (v, w) as visited
16: Push w on the stack S
17: Set vertex v := w
18: else
19: if v = t then
20: Output the path defined by following the vertices on the

stack S (from bottom to top)
21: end if
22: Pop the vertex on top of the stack S
23: end if
24: end while

all s–t paths) = O(m+n log n+k ·n), where k is the number of shortest
paths4. For unweighted graphs, the running time is O(m+ n) +O(k ·
n) = O(m+ k · n) �

The algorithm described finds all solutions to the single pair short-
est path problem in a directed or undirected, weighted (with strictly

4This appears to be better than Eppstein’s O(m+n log n+k2n), but this is only
due to the fact that, in the k shortest path problem, non-optimal paths can visit
a vertex more than once. If we use Eppstein’s algorithm to find only all optimal
paths, the running time is O(m + n log n + k · n) as well.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 9

positive edge weights) or unweighted graph. Since the shortest path
digraph is rooted at only one vertex (see Fig. 1), the same technique
can also be used for the single source shortest path problem.

3.3. Finding relevant and essential cycles. The algorithms for
finding relevant and essential cycles (union and intersection of all min-
imum cycle bases of a graph) are based on the algorithms described in
[BGdV04b]. The main idea of the algorithm is to remove a cycle from
the basis and then to enumerate all cycles that complete the remaining
cycles to a basis, i.e. that are linearly independent to the remaining
cycles. This yields all relevant cycles. If no other cycle can replace a
certain basis cycle, this cycle is essential.

Algorithm 5 Compute the set of relevant cycles R
Input: Undirected edge-weighted graph G
Output: The set of relevant cycles R
1: Compute a minimum cycle basis, B, of G.
2: Let A be the cycle-edge incidence matrix of B, ordered such that

the last m− µ columns correspond to the edges of a spanning tree
3: Compute the µ kernel vectors ui of A(i), i = 1, . . . , µ.
4: for i = 1 to µ do
5: for all vertices v incident to an edge e in G with (ui)e = 1 do
6: Find all v–v′ paths Pv inGui

with weight ω(ai) using Algorithm
4, and add the corresponding cycles in G to R

7: end for
8: end for
9: Output R

One important modification to both algorithms has been proposed
in the present project: similarly to the algorithm for constructing a
minimum cycle basis, we only need to check for shortest cycles in the
auxiliary graph that are guaranteed to replace a basis cycle (i.e., only
for vertices v incident to an edge e with ue = 1, find a shortest v–v′

path). If we do not check for ue = 1, searching for a shortest v–v′

path in the auxiliary graph might take much more time, because we
might do much more shortest path searches than actually necessary. If
the graph has very small cycles and many vertices, this can lead to a
dramatic increase of running time.

Since we know in advance the weight ωi of the desired shortest paths,
we can interrupt the construction of the shortest path digraph in Al-
gorithm 4 when we reach a vertex v with d(v, t) > ωi. In this case, no
shortest path exists.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 10

Algorithm 6 Compute the set of essential cycles E
Input: Undirected edge-weighted graph G
Output: The set of essential cycles E
1: Compute a minimum cycle basis, B, of G.
2: Let A be the cycle-edge incidence matrix of B, ordered such that

the last m− µ columns correspond to the edges of a spanning tree
3: Compute the µ kernel vectors ui of A(i), i = 1, . . . , µ.
4: for i = 1 to µ do
5: Set E := ∅.
6: for all vertices v incident to an edge e in G with (ui)e = 1 do
7: Find at most 3 v–v′ paths Pv in Gui

with weight ω(ai) using
Algorithm 4

8: if each path Pv corresponds to ai then
9: Add ai to E

10: end if
11: end for
12: end for
13: Output E

We now provide a reanalysis of the time complexity of both algo-
rithms on unweighted graphs.

Theorem 3. Given a minimum cycle basis of an unweighted, bicon-
nected graph G, Algorithm 5 takes time O(mω + m2n + mn2|R|) to
compute the set R of relevant cycles, where ω denotes the matrix mul-
tiplication constant. Algorithm 6 needs time O(mω +m2n) to compute
the set of essential cycles.

Proof. Computing the kernel vectors ui takes O(mω) (invert the first
µ × µ part of A). The outer loop is executed O(m) times, and each
iteration takes timeO(mn+n2|R|): at most 2·|R| paths of weight ω(ai)
are found for each vertex v, taking time O(m+n|R|); O(n) vertices are
examined. Thus, the total time complexity is O(mω +m2n+mn2|R|).

For finding the essential cycles, we only need to compute at most 3
instead of O(|R|) shortest paths for each v. Therefore, the complexity
is O(mω +m2n+mn2) = O(mω +m2n).

�

3.4. Finding the biconnected components of a graph. The al-
gorithm used to compute the biconnected components of a graph is
taken from [GT02]. It is listed here as Algorithm 7. For a detailed



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 11

description and proof of correctness of the algorithm we refer to this
book; we only provide a short explanation of the idea of the algorithm.

Algorithm 7 Computing biconnected components

Input: Undirected connected graph G
Output: Biconnected components of G
1: H empty graph
2: DFS traversal of G starting at an arbitrary vertex
3: insert each tree edge f of G as a vertex in H and mark f als

“isolated”
4: for all v ∈ V (G) do
5: let p(v) be the parent of v in the DFS
6: end for
7: for all v ∈ V (G) in order of the DFS do
8: for all back edges e = (u, v) do
9: insert e as vertex in H

10: while u 6= v do
11: let f = (u, p(u))
12: insert (e, f) as edge in H
13: if f is isolated then
14: mark f als connected
15: u := p(u)
16: else
17: u := v
18: end if
19: end while
20: end for
21: end for
22: return connected components of H

The basic idea of the algorithm is to consider an auxiliary graph H
over the edges of the input graph G as vertices, where connected com-
ponents correspond to biconnected components in G. This is achieved
by doing a depth first search (DFS) on G and creating edges (e, fi) in
H between a back edge e in G and the tree edges f1, . . . , fk that form
a cycle with e in G. Since two edges lie in the same biconnected com-
ponent iff there is a cycle containing both edges, two vertices in the
same connected component in H are edges in the same biconnected
component in G (a detailed proof is given in [GT02]).

It suffices to only create a spanning forest of the graph H to find its
connected components, thus the algorithm achieves a running time of
O(n+m) instead of O(n ·m).



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 12

3.5. Computing the interchangeability relation. The interchange-
ability equivalence relation introduced in [GLS00] can be roughly ex-
plained as follows: two cycles C,C ′ are interchangeable iff they are of
the same weight and C ′ can be expressed as a sum of C and some other
(smaller or same size, linearly independent) relevant cycles.

The algorithm for computing the interchangeability equivalence re-
lation consists of two steps: first, we check for all pairs of basis cycles
ai, aj of same weight ψ if there is a cycle C that can replace both
basis cycles ai, aj while maintaining a minimum cycle basis. This is
done again with an auxiliary graph Gui,uj

similar to the one presented
in 1. For every edge e = (v, w) ∈ G, there are four edges in Gui,uj

:
((v;x), (w;x ⊕ (uie, uje)), for every x ∈ {0, 1}2. Now if we can find
a (v; (0, 0))–(v; (1, 1)) path with weight ψ, then these two cycles are
interchangeable.

Unfortunately, this is not a necessary condition for interchangeability
(a counterexample is given in [BGdV04b]). We also have to check if for
some strictly smaller basis cycle ak there are two cycles Ci and Cj of
weight ψ, such that Ci can replace both ai, ak and Cj can replace both
aj, ak in a cycle basis. If this is the case, ai and aj are interchangeable
as well.

Since the second step is much more time-consuming than the first,
we first partition the basis into pre-classes that fulfil the first condition.
We start with singleton classes and merge two classes if their represen-
tants fulfil the first condition. Since both conditions define equivalence
relations and therefore are transitive, we only need to check single rep-
resentants of each class. To save as much time as possible, we only
check non-essential cycles for equivalence; since essential cycles are not
interchangeable with any other cycle, we can omit these cycles. After
that, we check the second condition only on representatives of each
pre-class. The resulting partition of the basis cycles represents the
equivalence classes.

The partition of the basis cycles is represented by an auxiliary graph
H over the basis cycles where two cycles are connected by an edge if
they are found to be in the same equivalence class. By transitivity,
connected components of this graph correspond to equivalence classes.

4. Remarks on the Implementation

4.1. General remarks. One common problem in the implementation
of graph algorithms is to define and access functions on graph vertices
or graph edges. Basically, there are two options to implement these
functions: either to save the function values internally together with



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 13

Algorithm 8 Computing interchangeability classes

Input: Undirected edge-weighted graph G, minimum cycle basis B
Output: Partition of B into equivalence classes Wi, i = 1, . . . , r.
1: Obtain set of essential cycles, E with Algorithm 6, and kernel vec-

tors, ui, i = 1, . . . , µ
2: Define a graph, H, that contains one vertex for each cycle ai ∈ B
3: for all pairs (i, j), 1 ≤ i < j ≤ µ with ω(ai) = ω(aj), ai and aj

not connected in H do
4: if there is a shortest v–v′ path Pv in Gui,uj

with ω(Pv) = ω(ai)
then

5: add an edge (ai, aj) to H
6: end if
7: end for
8: for all pairs (i, j), 1 ≤ i < j ≤ µ with
ψ := ω(ai) = ω(aj), ai and aj not connected in H do

9: for all basis cycles, ak, of weight ω(ak) < ψ do
10: if there is a shortest v–v′ paths Pv in Gui,uk

with ω(Pv) = ψ
and a shortest w–w′ paths Pw in Guj ,uk

with ω(Pw) = ψ then
11: add an edge (ai, aj) to H
12: end if
13: end for
14: end for
15: Return the connected components of H, Wi, i = 1, . . . , r.

the edges or vertices (by subclassing and adding instance variables
representing the function values), or to map edges or vertices externally
to function values by dictionaries such as search trees or hash tables.

The internal approach has the advantage that it has better perfor-
mance since accessing the function values can be done in constant time.
However, it is not as flexible as the external approach since it requires
the additional fields in the edge and vertex data classes, while the
external approach has no additional requirements on the graph data
structure. In this implementation, we always use hash tables for func-
tions on edges or vertices, since this allows us to use the same graph in
several algorithms without copying it into appropriate data structures
first.

4.2. Used libraries. For graph data structures and simple algorithms,
the open source library [JGraphT] has been used. It provides data
structures for several types of graphs (directed and undirected, weighted



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 14

and unweighted, etc.) and algorithms (connected components, short-
est path). Algorithms for finding biconnected components and finding
all shortest s–t paths, as well as the cycle basis algorithms, have been
implemented using this library.

An additional utility class, MolecularGraphs, is used to convert
[CDK] Molecules to [JGraphT] graphs; in the class SSSRFinder, sets of
cycles (implemented as subgraphs of [JGraphT] graphs) are converted
back to [CDK] data structures.

4.3. File listing. The following Java classes have been added to the
CDK source tree:

org.openscience.cdk.graph.BiconnectivityInspector

org.openscience.cdk.graph.MinimalPathIterator

org.openscience.cdk.graph.MolecularGraphs

org.openscience.cdk.ringsearch.SSSRFinder

org.openscience.cdk.ringsearch.cyclebasis.CycleBasis

org.openscience.cdk.ringsearch.cyclebasis.SimpleCycle

org.openscience.cdk.ringsearch.cyclebasis.SimpleCycleBasis

Additionally, unit tests for most of the classes have been provided:

org.openscience.cdk.test.graph.BiconnectivityInspectorTest

org.openscience.cdk.test.graph.MinimalPathIteratorTest

org.openscience.cdk.test.ringsearch.RingSearchTest

org.openscience.cdk.test.ringsearch.cyclebasis.CycleBasisTest

org.openscience.cdk.test.ringsearch.cyclebasis.SimpleCycleBasisTest

Details about the classes are presented in the following subsections.

4.4. SimpleCycle. Since we only have to deal with cycles that occur
in a cycle basis, and these cycles are guaranteed to be simple, we do not
need a more general class for cycles and can use some of the properties
of a simple cycle in our methods.

The class SimpleCycle is implemented as a subclass of Subgraph,
corresponding to the definition of a simple cycle: A simple cycle C in a
graph G is a connected subgraph of G in which all vertices have degree
two.

This property, however, is not checked by the class; it is assumed that
the edges passed to the constructor SimpleCycle(edges, g) form a
cycle. The constructor computes the vertices induces by the edges
passed in the argument to form the subgraph.

The method vertexList() gives the vertices of the cycle in the order
of a traversal. Since the cycle is simple, each vertex has degree two,
and we can just at each vertex follow the edge we have not already seen
immediately before.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 15

4.5. CycleBasis. This class represents a cycle basis for a graph. We
can speed up the computation of a cycle basis significantly if we decom-
pose the graph into its biconnected components and perform the search
on these components; this is done by the class SimpleCycleBasis. The
class SimpleCycleBasis only puts together the results of these com-
ponents. The cycle basis constructed by this class is guaranteed to be
of minimum weight.

4.6. SimpleCycleBasis. This class represents a cycle basis for a bi-
connected graph. The actual algorithms are implemented in this class.
The cycle basis constructed by this class is guaranteed to be of mini-
mum weight as well.

The cycle basis is represented by a List of Cycles. Since we need
to operate on a cycle-edge incidence matrix in triangular form in the
algorithms, we also need to remember a certain ordering of the edge
in the graph; therefore the class also contains a List of the edges. A
HashMap maps the edges back to the indices in the ordering.

4.6.1. createMinimumCycleBase(). This method is called by the con-
structor. It computes a minimum cycle basis with Algorithm 1: it
constructs a set of minimum basis cycles D0 and a set of fundamental
cycles. The fundamental cycles are minimized with the private method
minimize().

4.6.2. minimize(). This method implements the second part of Algo-
rithm 1: minimizing an existing cycle basis. Since D0 already contains
a set of minimum basis cycles, this method takes an argument that
indicates at which cycle of the basis the minimization should start. It
is assumed that the cycle-edge incidence matrix is in upper triangular
form when this method is called.

We do not need to create the matrix A
(i)
i−1 (which is Ai−1 without

the ith row) explicitly; since we only look at the first i− 1 rows of the
matrix, we can simply use the matrix Ai−1 instead.

The Gaussian elimination on the newly inserted row in Ai is very
simple, since the matrix has upper triangular form: for each entry
equal to 1 at position (i, j) with j < i, we add the jth row to the
inserted row. After that, the entry at (i, j) is 0, since the entry (j, j)
is always 1.

4.6.3. essentialCycles(). The algorithm implemented in this method is
described in 3.3 as Algorithm 6.

To obtain the kernel vectors ui of the matrices A(i), we invert the
µ × µ matrix consisting of the first µ columns of A. The rows of this



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 16

matrix give the first µ entries of the kernel vectors; the remaining m−µ
entries are set to 0.

Our way to check if a basis cycle ai is essential differs slightly from
the one described in [BGdV04b]. The authors propose to count short-
est v–v′ paths and check if there are three or more; then the cycle is
not essential. We do not count the paths, but instead iterate over all
shortest v–v′ paths until we find out that either the first path—and
consequently all other shortest paths—are longer than the cycle ai, or
that a path corresponds to a different cycle (which means that ai is
not essential). If we do not find any path corresponding to a different
cycle, we know that the cycle ai is essential.

4.6.4. relevantCycles(). This method implements Algorithm 5 described
in 3.3; the implementation is very similar to essentialCycles().

This method does not return a set, but a HashMap mapping each
relevant cycle to the basis cycle that produced this cycle. Note that
this mapping is not unique, since a relevant cycle can belong to several
basis cycles that are in the same equivalence class.

4.6.5. equivalenceClasses(). This is the implementation of Algorithm
8 described in 3.5 for computing interchangeability of basis cycles.

As explained in 3.5, the equivalence classes of the interchangeability
relation are represented by the connected components of an auxiliary
graph h over the basis cycles.

To quickly access all cycles of the same weight, the cycles are saved
in an array, ordered by their weight. Since essential cycles are not
exchangeable with any other cycle, we first search for the essential
cycles and skip these cycles when iterating over the basis cycles and
testing equivalence. We also skip the test if two cycles are already
known to be in the same class, i.e. if they are in the same connected
components of h.

4.6.6. AuxiliaryGraph, AuxiliaryGraph2. These classes implement the
data structures and the generation of the auxiliary graphsGu andGui,uj

described in 3.3 and 3.5. These graphs take an input graph and one
(two) binary kernel vectors u (ui, uj), each entry of a kernel vector cor-
responding to an edge of the input graph; the edge ordering is defined
by the List edgeList. The vertex set of the input graph is mapped
to two (four) sets of vertices of the auxiliary graph by HashMaps; the
edges of the auxiliary graph are mapped back to edges of the input
graph. The vertices of Gu are generated by appending "-0" and "-1"

to the string representation of each vertex (for Gui,uj
, "-00", "-01",

"-10", and "-11")



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 17

To optimize performance, the auxiliary graph is not constructed as
a whole, but step by step when the graph is traversed. That way, we
can save time if we search for small cycles in large graphs, since only
the relevant part of the auxiliary graph is generated.

4.7. MinimalPathIterator. This class provides an iterator over all
the shortest paths between two vertices, which are specified in the
constructor.

Since an iterator is called again and again and has to return the next
element, the state of the iterator has to be saved between the calls. For
that reason, the hasNext() method performs the next step in the iter-
ation, while two stacks save the state information. One stack contains
the vertices visited on the path from source vertex to target vertex; the
other stack contains the iterators that enumerate the outgoing edges of
a vertex. This provides a simple way to generate all paths from source
to target: at every vertex, every edge is followed until the target is
reached.

Similar to the generation of the auxiliary graph, the vertices of the
shortest path digraph are only created when they are needed, keeping
it only as small as needed.

4.8. BiconnectivityInspector. This class provides the biconnected
components of a graph. Its inspector interface borrows from JGraphT’s
ConnectivityInspector which computes the connected components
of a graph.

The implementation is pretty straightforward. The DFS implemen-
tation from JGraphT DepthFirstIterator could not be used, since it
does not provide the parent of a vertex in the traversal.

4.9. MolecularGraphs. This is an adapter that converts an instance
of a CDK Molecule to a JGraphT SimpleGraph. Multiple bonds
(double bonds, triple bonds) are not represented as multiple edges in
a multigraph as proposed in [BGdV04a], but completely disregarded,
conforming with the former SSSR implementation in the CDK.

4.10. SSSRFinder. This class is the interface to use for CDK de-
velopers. It provides the algorithms for molecules and replaces the
old implementation of Figureas’ heuristic which has been moved to
FigureasSSSRFinder.

Moreover, the old interface, which provided only a static method,
has been replaced with a new interface that caches a cycle basis for a
molecule once it is computed. That way, the cycle basis does not have
to be computed again if the other algorithms which rely on a cycle
basis are performed.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 18

5. Running time tests on the algorithms

Here we provide some results of running time test on the imple-
mented algorithms. The tests have been performed on an Apple Power-
book G4 with 1 GHz processor speed and 1 GB of RAM. The runtime
environment used was Java 1.4.2.

5.1. Small molecular graphs. In this test, we ran the algorithms
for finding a cycle basis and finding the essential cycles on a number
of medium-sized protein graphs. Since in all of these molecules be-
sides Ethanonaphtalene, any cycle is an essential cycle, the algorithms
for relevant cycles and for the equivalence classes have the same run-
ning time as the algorithm for the essential cycles and are not listed
in the table. The running time for these algorithms on Ethanonaphta-
lene (14 ms and 15 ms) do not differ much from the running time for
computing essential cycles (11 ms).

molecule |V | |E| cycle basis ess. cycles (Figueras)
Ethanonaphtalene 12 14 1 ms 11 ms 3 ms
Perhydrophenalene 14 15 1 ms 14 ms 6 ms
Acridanone 24 27 2 ms 16 ms 5 ms
Diazaspirodecane 24 27 2 ms 8 ms 5 ms
Metoxepine 24 27 2 ms 16 ms 5 ms
Gelamine 24 29 3 ms 31 ms 5 ms
Apovincaminic acid 25 29 3 ms 35 ms 6 ms
Strictamine 26 30 3 ms 32 ms 4 ms

We do not see much here besides the fact that the algorithms do not
have a measurable constant time overhead: small molecules give small
running times. The minimum cycle basis algorithm performs roughly
as well as Figueras’ heuristic.

5.2. Larger molecular graphs. In the next test, we ran the same
algorithms on a number of medium-sized protein graphs. Since in all of
these graphs, any cycle is an essential cycle, the algorithms for relevant
cycles and for the equivalence classes have the same running time as
the algorithm for the essential cycles.

As we can see, the heuristic by Figueras is completely unusable for
larger, sparse graphs such as molecular graphs of proteins. The imple-
mented algorithm, however, is very fast on these graphs since many of
the biconnected components consist only of a single cycle of weight 5
or 6.



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 19

|V | |E| cycle basis essential cycles cycle basis (Figueras)
1605 1622 0.154 s 0.027 s 159.213 s
2626 2644 0.345 s 0.030 s 810.694 s
3123 3149 0.406 s 0.044 s 1715.041 s
3944 3970 0.540 s 0.040 s 3800.991 s
4570 4626 0.734 s 0.128 s
5020 5086 0.848 s 0.124 s
5961 6034 1.026 s 0.117 s
6290 6373 1.176 s 0.436 s
6675 6760 1.261 s 0.525 s
7422 7538 1.589 s 0.579 s

5.3. Fullerene C60. The C60 fullerene is a molecule composed entirely
of carbon, whose structure resembles a soccerball. This is a very inter-
esting instance for testing our algorithms, since the molecular graph is
quite dense and biconnected.

BGdV Figureas
cycle basis 0.290 s 0.369 s
essential cycles 1.776 s
relevant cycles 1.979 s
interchangeability 11.373 s

6. Conclusion

The goal of the present project was to create an efficient implemen-
tation of the algorithms related to minimum cycle bases presented in
[BGdV04a] and [BGdV04b] for use in other projects. For the algo-
rithms from the latter paper, this is the first implementation, so the
results for these are especially interesting.

We showed that the minimum cycle basis algorithm, especially in
the form presented in [Be04] with the additional preprocessing step,
shows a performance that roughly compares with the previously used
heuristic from [Fig96] for small molecules, while it can also be applied
to larger molecules such as proteins, where the heuristic can not be
applied anymore. So the running time of this algorithm is not only
asymptotically the best currently available, but also very good espe-
cially for molecular graphs.

The other algorithms for essential and relevant cycles and for in-
terchangeability perform very well, especially on the sparse graphs of
proteins, but also on smaller and more dense molecular graphs. Un-
fortunately, another algorithm for comparison was not available. The
good performance of the algorithms for essential and relevant cycles is



MINIMUM CYCLE BASIS ALGORITHMS FOR CDK 20

to a significant amount due to the optimizations developed during the
project, especially the replacement of Eppstein’s algorithm by a much
simpler variant.

For applications in computational chemistry, the minimum cycle ba-
sis algorithm is the most interesting result of the project at the moment.
The algorithm implemented in this project is already in use in several
places, e.g. for layouting molecular graphs in [JChemPaint]. The other
algorithms have not yet found use in other project, mainly due to the
fact that these concepts are relatively new and not that many chemists
are familiar with them.

References

[Be04] Franziska Berger, Minimum Cycle Bases in Graphs, PhD thesis,
2004

[BGdV04a] Franziska Berger, Peter Gritzmann, Sven de Vries, Minimum Cycle
Bases for Network Graphs, to appear in Algorithmica

[BGdV04b] Franziska Berger, Peter Gritzmann, Sven de Vries, Computing Cyclic
Invariants for Molecular Graphs, to be published

[CDK] The Chemistry Development Kit, Java utitility classes for ChemoIn-
formatics and Computational chemistry,
http://cdk.sourceforge.net/

[Fig96] John Figueras, Ring Perception Using Breadth-First Search, J.
Chem. Inf. Comput Sci., 1996, 36, 986-991

[GLS00] P.M. Gleiss, J. Leydold, and P.F. Stadler, Interchangeability of rel-
evant cycles in graphs, Electronic J. Comb., 7:#R16, 2000

[GT02] Michael T. Goodrich, Roberto Tamassia. Algorithm Design: Foun-
dations, Analysis, and Internet Examples, John Wiley & Sons, Inc.,
2002

[JM99] Vı́ctor Jiménez, Andrés Marzal, Computing the K Shortest Paths: a
New Algorithm and an Experimental Comparison, “Algorithm En-
gineering”, J. S. Vitter and C. D. Zaroliagis (eds.), Springer-Verlag,
Lecture Notes in Computer Science series, vol. 1668, pages 15–29,
1999. c© Springer-Verlag. (Proceedings of the 3rd Int. Workshop on
Algorithm Engineering, WAE’99, London, July 1999.)

[Jmol] Jmol, free, open source molecule viewer for students, educators, and
researchers in chemistry and biochemistry,
http://jmol.sourceforge.net/

[JChemPaint] JChemPaint, editor for 2D molecular structures,
http://jchempaint.sourceforge.net/

[JGraphT] JGraphT, free Java graph library,
http://jgrapht.sourceforge.net/


