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Abstract—We present a method for parametric reconstruction
of a piecewise defined pipe surface, consisting of cylinder and
torus segments, from an unorganized point set. Our main
contributions are reconstruction of the spine curve of a pipe
surface from surface samples, and approximation of the spine
curve by G' continuous circular arcs and line segments. Our
algorithm accurately outputs the parametric data required for
bending machines to create the reconstructed tube.

Index Terms—Pipe Surfaces, Tubes, Surface Reconstruction,
Curve Approximation, Moving Least Squares.

I. INTRODUCTION

Reconstruction of surfaces from point clouds has attracted
enormous interest in recent years. Numerous algorithms have
been proposed for either interpolation or approximation of
an unorganized, possibly noisy set of points on a surface. A
common approach is to find a triangulation of the point set
as a subset of its Delaunay complex [1]. Another class of
methods describes the surface as the zero level set of a signed
distance function, an example being [2]. Common to all these
approaches is that they aim at reconstructing a general smooth
surface.

We present a method for parametric reconstruction of a
special class of shapes, which we call bent tube surfaces.
These surfaces are pipe surfaces consisting of alternating
cylinder and torus segments joined G continuously (see Fig.
I for an example). A pipe surface is defined as the envelope
of a sphere with constant radius r moving along a curve
(called spine curve); in our case, the spine curve is a piecewise
defined G*' continuous curve consisting of circular arc and line
segments, called arc-line spline.

Bent tube surfaces are of special interest since metal tubes
produced by bending machines have this shape. Often, the
circular arcs of the curves have one common radius due to
the way most tube bending machines work. Reconstructing
the parametric description of the individual segments allows
to derive the data required by bending machines to reproduce
the measured tube.

An important application for our algorithm is comparison
of CAD data of a tube with results after bending, and possible
correction of the data to compensate for errors induced in the
bending process. These errors may stem from spring-back of
the tube. Another application is reverse engineering of tubes
for which no bending data is available.
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Figure 1.
spine) and torus (green spine) segments—automatically reconstructed using
our algorithm from a laser scan (samples in grey).

Surface of a bent tube—a pipe surface consisting of cylinder (red

A. Related work

Reconstruction of pipe surfaces from unorganized points has
been investigated by Lee in [3] and later extended to canal
surfaces in [4]. The approach used here is based on translating
surface samples along the estimated normal direction. This
method is susceptible to deviations from the exact normals and
therefore requires smoothing of the spine curve point cloud
afterwards. See Fig. 2 for a comparison to our new method.

In the same paper, Lee [3] also proposed to use the moving
least squares approximation technique to smooth a noisy
point cloud of a curve. This method has later gained much
attention in the context of computing surfaces approximating
a point cloud, and several variants are proposed in [5], [2]
and references therein. We will adapt this method to find an
approximate point cloud of the spine curve.

Several methods have been proposed for computing an ap-
proximate medial axis [1] or a curve skeleton [6] derived from
the medial axis. Assuming a dense, noise-free sampling of the
tube, one of these methods could be used to obtain the spine
curve of a pipe surface. There are however several serious
drawback to these approaches. Most important, the mentioned
methods are not robust to noise and outliers in the input data.
Moreover, they are computationally quite expensive. Third, we
want a method that works with partial scans that cover only
one side of the tube. All of the mentioned algorithms would
require input samples around the tube surface.

An algorithm for reconstruction of planar curves from
unorganized point sets has been presented in the seminal paper
by Amenta et al. [7] based on Voronoi diagrams and Delaunay
triangulations. Another simple but provably correct method,
which also works for curves in higher dimensions, is the



Figure 2.  Spine point cloud obtained using (a) Lee’s method (before
smoothing) and (b) our method. While in (a) the noise is considerable, in
(b) the result is sharp and does not require smoothing.

NN-Crust algorithm, proposed by Dey and Kumar [8]. This is
the algorithm we used in our implementation.

The problem of approximating curves by a simpler de-
scription has a long history. Commonly considered is the
problem of simplification of polygonal chains, where the
distance between input and output is bounded by ¢ in some
distance measure. The heuristic by Douglas and Peucker [9]
is the standard technique for this problem, although it has no
optimality guarantee and a worst-case running time of O(n?).
Optimal algorithms for simplification of space curves, where
the vertices of the output polygon are a subset of the input
vertices, are presented by Eu and Toussaint [10] with a running
time of O(n3). Agarwal et al. [11] gives an efficient greedy
approximation algorithm running in O(nlogn) and requiring
at most as many line segments as the optimal 2¢ approximating
polygonal chain. For the weak simplification problem, where
the output vertices can be chosen freely, Guibas et al. [12]
proposed an exact algorithm for planar curves with a running
time of O(n?); the weak simplification problem for space
curves is still unsolved.

Segmentation and approximation of planar and space curves
by G° and G continuous circular arcs and line segments has
been investigated by several authors, in most cases without any
guarantees about the optimality of the solution. Hoschek [13]
finds a G* planar approximation; Rossignac [14] approximates
a space curve by G° continuous circular arcs. Sturm et al. [15]
computes a minimum segment count G planar approximation
with junction point chosen from the input vertices. [16], [17],
[18] compute G planar approximations using biarcs. Biarcs,
first introduced in [19], are easier to handle than regular arcs,
because both endpoint tangents of a biarc can be chosen
independently. The problem of approximating a polygonal
chain with a G! smooth arc spline using a minimum number
of segments is still open. Moreover, all of the previously
published algorithms are either not suited for certain problem
instances such as arc segments with an apex angle greater
than 7, or only produce arc splines consisting of biarcs.

B. Contributions

We propose a complete scheme for parametric reconstruc-
tion of bent tube surfaces. Our main contributions are:

Spine curve reconstruction: We present a novel technique
to reconstruct the spine curve of a pipe surface. We use a
moving least squares based technique to find locally best

fitting cylinders approximating the input samples, and define
a projection of the surface samples onto the estimated spine
curve. Compared to a previous approach, our method produces
high-quality, thin and smooth point clouds of the spine curve
without additional post-processing. Moreover, the method only
requires a partial scan of the pipe surface, e.g. from a single
view scan.

Curve approximation by arc-line splines: We propose an
algorithm to compute an approximation of a polygonal curve
by an arc-line spline with distance < e. It uses estimated
tangent lines of the input curve and computes a minimum
segment number approximation for these estimates. In contrast
to many other curve approximation algorithms using circular
arc segments, it can also cope with arc segments having an
apex angle equal or greater than 7.

C. Algorithm overview

Our algorithm for parametric reconstruction of bent tube
surfaces performs the following steps, depicted in Fig. 3.

« First, the samples of the surface, shown in Fig. 3 (b),
are projected onto the spine curve. This procedure is
described in Section III. The result of this step is shown
in Fig. 3 (¢).

o Next, we reconstruct a polygonal curve from the spine
point cloud using the NN-Crust algorithm of Dey and
Kumar [8], as shown in Fig. 3 (d).

e The polygonal curve is optionally simplified using Eu
and Toussaint’s algorithm [10] to reduce the problem
complexity for further computations.

o This polygonal curve is then approximated using an arc-
line spline as described in Section IV, see Fig. 3 (e).

« Finally, the parametric description of the bent tube sur-
face (see Section V) is modified to optimize the least
squares distance of the surface to the input samples using
the Levenberg-Marquardt nonlinear optimization method
(Section VI). The final output of our reconstruction is
shown in Fig. 3 (f).

II. REVIEW OF ESTIMATED DIFFERENTIAL QUANTITIES ON
POINT CLOUDS

A. Local polynomial surface approximation

To obtain robust local information about the surface de-
scribed by a point cloud, we use an approximation by a
(weighted) best-fitting polynomial over an estimated tangent
plane of the surface. This technique is commonly used for es-
timating normals and curvatures; Pouget [20] gives a detailed
analysis of this popular technique, and Lukacz [21] compares
it to other methods for estimating curvature in point clouds.
Local fitting of polynomials is also used for defining a distance
function to the various definitions of moving least squares
surfaces, see [5], [2].

To obtain an estimate of the tangent plane, let § : Rt — RT
be a monotonically decreasing distance weighting function
with support [0, €]. We consider the local neighborhood N,, =
{p1,...,pn} of a point p consisting of all sample points
inside a ball of radius € centered at p. A principal component
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Figure 3. Reconstruction of a tube. (a) A photograph of the original tube. (b)
A single-view, irregular scan of the tube surface. (c) Projection of the point
cloud onto the MLS spine approximation. (d) Reconstruction of the spine
curve. (e) Approximation of the spine curve by a G! continuous arc-line
spline. (f) The reconstructed tube surface.

analysis of this set of points provides a first order estimate
of the tangential plane at p and the reference domain for the
polynomial fitting [2]: the estimated normal v of this tangent
plane to a point p is the solution of the optimization problem

”Iul'hiill Z (v, (p— ) 0(llp — pr])
3

which is the eigenvector with the smallest corresponding
eigenvalue of the weighted covariance matrix W (p) = (w;;)
with

wiy =y (ei, (0= k) {eg, (0 = pr)) O(Ip = pill) -

k
This estimated tangent plane is only used as the reference

domain to compute a bivariate polynomial approximation to
the neighborhood N, with the estimated tangent plane as
reference domain. Let I13 denote the bivariate polynomials
of degree 2. Using weights 0, = 0(||p — px||), the paraboloid
7(z,y) = ax?® + by? + cxy + dr + ey + f minimizing
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can be found by solving the linear equation system
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In the presence of noise, the normal to the graph of the
polynomial at the origin (z,y) = (0,0) also provides a
substantially better approximation of the surface normal than
our previously computed first order estimate of the tangent
plane.

B. Shape operator estimation

Consider the paraboloid embedded in R?® parameterized by

w(z,y) = (,y, (az® + by® + cxy + dx + ey + )

at the point (x,y) = (0,0). The matrix representations of
the first and second fundamental forms at this point for the
9 9

canonical basis 7, 5y are
d?+1 de
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- 1 < 2a ¢ )
VIrZre\ ¢ 2
The shape operator S has the matrix representation G~ H.
The eigenvectors of this matrix represent the principal curva-
ture directions in the basis %, 8% (note that this is generally
not an orthogonal basis). The eigenvalues are the correspond-
ing principal curvatures Ky, and Fmax -

and

ITI. SPINE CURVE RECONSTRUCTION FROM SAMPLES OF A
PIPE SURFACE

We present a method to reconstruct the spine curve of a
pipe surface from an unorganized, noisy set of points on
the pipe surface. We use a moving least squares technique
to project each point on the surface to its closest point on
the spine curve. This spine curve point cloud can then be
smoothed and reconstructed as a polygonal chain using any
curve reconstruction algorithm.

Our MLS projection is based on the procedure described
in [5]. This method consists of finding a local polynomial



approximation to the neighborhood of a point p as described in
Section II-A, and projecting the point p onto this polynomial.

We extend this concept by fitting other geometric primitives
than bivariate polynomials to the local neighborhood. We
reconstruct the spine curve of a pipe surface by weighted
least-squares distance fitting of a cylinder [22] to points in
the neighborhood of a point p. close to the spine curve, and
then projecting this point onto the axis of the fitting cylinder.

We first define a distance function of a point p to its locally
best-fitting cylinder. For each point p € R3, we can find the
cylinder C' € Cyl, minimizing the weighted least-squares
distance to the samples using a locally supported distance
weighting function 6:

22 d(Cp)*0(| Pz, ac) — pil))
cecyl, 3 0(|P(z,ac) = pil))

where d(C, p) is the (signed or unsigned) distance function of
a point p to the cylinder C, ac is the axis of the cylinder C,
and P(z,ac¢) is the projection of x onto the axis. Note that
this is the center of the weighting function, which is therefore
not fixed, but dependent on the cylinder C' to be optimized.

Let ayi, be the axis of the optimal cylinder C\,;,. The spine
MLS distance function is now defined as

ds(p) = d(@min,p) -

Our MLS spine is defined as the zero level set of this distance
function. We can now use a simple projection procedure to
generate a point cloud of the spine curve from a point cloud
of the surface.

1) Find an initial estimate for a point x and a tangent
direction t of the spine curve.

2) Find the best-fitting cylinder Cly;, with radial weights
centered at P(x, amin), using (z, t) as initial estimates.

3) Let a2’ be the projection of x onto the axis ayiy of Cpyip.

We want to note that, just as for MLS surfaces, it is
important to avoid running into a local but not global minimum
of the error function for cylinder fitting. Proper initial values
for z and ¢ are therefore crucial for obtaining good results.
How to find these is described in the following subsections.

A. Estimating the pipe radius

Cylinder fitting can be done using either a fixed or a variable
cylinder radius. Depending on the quality of the input sample,
the one or the other option may be more desirable.

Under the general assumption that the bend radius r 5 of the
pipe is always more than twice as large as the pipe radius rp,
the larger principal curvature k,,q, corresponds to the pipe
radius of the surface: rp = ﬁ The principal curvatures are
obtained using polynomial fitting as described in Section II-B.
This assumption also implies that smoothness of the surface
is the same as of the spine curve.

For cylinder fitting with fixed radius, we compute the global
pipe radius as the median of the larger principal curvature
values kpyax for a sufficient number of samples of the point
cloud.

B. Choosing a neighborhood size

We now discuss appropriate choices for the neighborhood
size, i.e. the support of the weighting function 6. Similar
to MLS curves, a large support for 6 has a smoothing and
shrinking effect on curved parts of the spine curve, while small
neighborhoods can cause instability in the cylinder fitting step.
We found that a neighborhood of 1.2 5 (where 7 p is the bend
radius) provides a good trade-off, ensuring a stable projection
while keeping shrinkage at a low level. For a cylindrical point
set, this neighborhood is a cylinder with a height of about
1.3 rp (where rp is the pipe radius). Under the mentioned
assumption rp > 27p, numerical evaluation using random
sampling of a torus shows that the deviation of the spine curve
approximation found by cylinder fitting from the real spine
curve is still less than 0.038 rp in the worst case.

C. Tangent direction estimation

An estimation for the tangent direction of the spine curve is
required as an initial guess for cylinder fitting. A good initial
guess is crucial for obtaining the correct solution, as a bad
initial guess can cause the optimization algorithm to run into
a local (but not the global) minimum of the cylinder distance
function.

We can estimate a tangent direction of the spine curve at
the projection of p onto the curve from the shape operator
estimation at a point p. It is easy to observe that the tangent
direction of the spine curve can be determined on the pipe
surface itself using its principal curvature directions. Since
we know that the curvature of the spine curve is less than
ﬁ, the maximal directional curvature kpax 1S always less
than %, and the corresponding principal curvature direction is
perpendicular to the spine curve. Consequently, the principal
curvature direction corresponding to ki, iS parallel to the
tangential vector of the spine curve.

D. A starting point for cylinder fitting

Estimates of the surface normal v (Section II-A) and the
pipe radius rp (Section III-A) provide an initial point on
the cylinder axis for cylinder fitting. We translate the surface
sample p by the pipe radius in normal direction: pg = p—rp-v.
For exact estimates of the normal and pipe radius, pg is a point
on the spine curve. Together with the tangent direction, this
provides a complete initial guess for cylinder fitting.

IV. CURVE APPROXIMATION BY ARC-LINE SPLINES

In this section, we propose an algorithm for the problem of
approximating a polygonal curve in R? with a G' continuous
curve consisting of circular arcs and line segments. Our goal is
to minimize the number of arc segments of the approximating
curve, while guaranteeing a distance of at most € to each of
the vertices of the input polygon.

A. Algorithmic framework

The algorithm is based on a general framework used in
several polygon simplification algorithms [10], [23]. The main
idea is to construct a shortcut graph G = (V, E) over the



Figure 4. A circular arc and two line segments approximating a set of points.

vertices of the input curve, with an edge e;; € E if and only
if the chain [p;, pi+1,...,p;,pj+1] can be approximated by a
circular arc and two line segments, as shown in Fig. 4. To
ensure tangential continuity of the segments, we fix estimated
tangent lines on which the line segments should lie. For the
vertex ¢ in the graph, we simply choose the line I; = p;p;+1
as the estimated tangent line.

An approximating arc-line with minimum number of seg-
ments can then simply be found using breadth first search
on this graph. The graph does not have to be constructed
explicitly, therefore our algorithm only requires O(n) space,
see [23].

For the computation of an edge e;; of the shortcut graph,
the estimated tangent lines ¢; and ¢; are generally not coplanar.
Therefore, we project the tangent line of the second segment
t; onto the plane P spanned by p;, p;11, and p; and use
this modified tangent line t; to decide whether there should
be an edge e;; in the graph (see Subsection IV-B).

Note that we get a different modified tangent line t;- for
each edge e;;. To ensure a complete G' smooth solution,
the modified tangent line ¢; according to the shortest path
in the graph from vertex 1 to vertex j is used for subsequent
computations of outgoing edges of j.

It is important to note that optimality can not be guaranteed
for our algorithm, because we only consider a subset of all
possible solutions, defined by the estimated tangent lines.
This is similar to the polygon simplification problem, where
algorithms using a shortcut graph only find simplified curves
with vertices from the input curve. An approximating polygon
with fewer vertices may exist if the vertices are not restricted
to this set.

In the case of polygon simplification, the set of allowed
solutions 1is restricted to a canonical subset of all possible
solutions. Because of the G' continuity constraints in our
problem, the endpoints of the segments can, in general, not
be chosen from the vertex set of the input curve.

Algorithm 1 Computing an approximating arc-line spline

Require: A polygonal chain C' = [p1,pa,...,p,] and a
tolerance value €
Ensure: A G arc-line spline {l,a1,l2,as,...,l,} approx-

imating P with distance at most ¢ to each vertex p; € P

forall 1 <i<(n—1)do
for all j > ¢ do
let P be the plane spanned by {p;, pit1,pj+1}
for all p;, € {p;,pit1,...,pj+1} do
let p). be the vertex py projected onto P
€, =
k
end for
h=pipiisle=pipj L=0LNI
for all p). € {p} 1, Pio,...,P}} do
compute all circles tangential to:
l1, I3, and the circle around pj, with radius €},
if there are four solutions then
let Cy, C5 be the circle centers farthest from L
Vi = C1C4
else if there are two solutions then
let C; be the circle center farthest from L
Vi = C1L
else
Vi=10
end if
V=vVnVvg
end for
if V # 0 and d; > d; + 1 then
dj =d; +1
prev(j) = i
choose any C; € V'
let B; and E; be projections of C; onto /; and [y

2
€ — [lpr — pl

pj =D
end if
end for
end for
{i1,i2,...vim} = {1,...,prev(prev(n — 1)),prev(n —
1),n—1}

forall 1 <k<mdo
let I, be the line segment E;, , B;,
(with Eig = p; and Bim = pn)
let ay, be the arc starting at B;, and ending at F;,
with center C;,
end for

return {ly,a1,l2,a9,...,0ln}




B. Building the graph

We will now describe how to compute the edges e;; of
the shortcut graph. Given two coplanar lines on a com-
mon plane P, we have to decide if a polygonal chain
[Di, Pit1s -+, Pj,Pj+1] can be approximated by two line seg-
ments on these lines and a circular arc touching both lines
and smoothly joining the line segments (see Fig. 4). The error
criterion is that all vertices of the chain must have distance
less or equal than € to one of the line segments or to the arc.
This can be decided as follows:

For any vertex py, let pj, be its projection onto the plane P.
If ||pr — p.|| > €, then the chain cannot be approximated. Else,

let €, = \/€2—|pr — p§€||2. This is the maximum allowed
distance for the vertex pj; to the curve in the plane, since
e + ok — Pl = €.

Next, we calculate for each pj the set of approximating
arcs. We assume that the first line segment starts at p; and
the second line segment ends at p;11. The center of the arc
joining the line segments must lie on the bisector of /; and [,
separating p; and p;y.

The locus of the centers of valid circles consists of zero, one,
or two line segments. The endpoints of these line segments
can be obtained by constructing the classical Apollonius line—
line—circle (LLC) problem (Fig. 5, green and yellow). This
problem asks for the circles touching two lines and one circle,
in our case a circle with radius €} around the vertex pj. It is
easy to see that all circles touching the two lines and having
distance less than €, from p) have their centers between a
pair of centers of Apollonius circles. Note that we are only
interested in one of the possibly two pairs of solutions: the
two circle centers that are furthest away from the intersection
of the two lines /; and [y (green in Fig. 5).

If the eﬁc-disk around p% intersects one of the two lines, say
l1, then there is only one pair of solutions to the LLC problem.
In this case, only the lower solution is of interest for us: an
arc with center beyond the upper solution is is still valid, since
P}, has distance less than € to a line segment on [;.

Intersecting the ranges of valid arc centers for all pj, €
{Pispig1s P} D1} gives the range of valid centers for
the whole chain [p;, pit1,...,P;,pj+1). If this intersection is
non-empty, then we know there exists a curve of two line
segments and a circular arc approximating the chain.

C. Constructions

The Apollonius circles for the LLC problem (Fig. 5) are
constructed as follows: The circles tangential to two lines [1, [2
and a circle c centered at P with radius r have the same centers
as the circles going through P and tangential to two lines [}, 1}
at distance r from the original lines [1, [o (shifted towards P).
Therefore, the LLC problem can be reduced to the line-line—
point (LLP) problem (Fig. 6). The other pair of solutions is
obtained by shifting the lines in the other direction.

To solve the LLP problem for two lines /1, [ and a point P,
construct any circle c¢ tangential to [y and [y, with center M.
The line OP joining the intersection O of [; and [ and the

Figure 5. The Apollonius LLC problem and centers of approximating arcs.
The solid circles (green and yellow) are tangent to the lines {; and l2 and
the circle c. The dotted lines and circle show the auxiliary LLP construction.

Figure 6. The Apollonius LLP problem. The yellow circles touch the two
blue lines /1 and l2 and the point P.

point P intersects c in two points [ and J. The lines through
P parallel to IM and JM intersect the bisector b of /; and
lo in C7 and Cs, the centers of the solution circles.

The centers of these two circles can be calculated by solving
one single quadratic equation. Let L be the point where a
solution circle with center C; touches line /;. Now we have

r=|Ci - Ll = [|Ci - P| -

Let s,t and u,v be points and tangent vectors of [; and the
bisector b of I3 and [y, respectively. With C; = s + At and
L=u+{(C; —u,v)v, we get

At =t v)0) + (s —u = (s —w,0)v)[| = [N +s = P|| .

Setting w := (t — (t,v)v) , y:= (s —u— (s —u,v)v) , and
z := (s — P), we obtain

[Aw + y|| = [|At + 2]



which can be written as
(lw]l® = 1A +2((w, y) — (& 2)A+ (> = [1211*) = 0.

Solving this equation gives us the two possible centers of the
circles solving the LLP problem.

D. Complexity

The worst-case complexity of our algorithm on input poly-
gons of size n is O(n?), because the three nested loops can
each have O(n) iterations. However, on real-world data, the
inner loop often does not have to be executed if the distance
of one of the points {p;, pi+1,...,pj4+1} to the plane P is
larger than e. Therefore, we observed a better running time in
practice, in the order of magnitude of about O(n>?®).

E. Preprocessing

To speed up the computation and to stabilize the estimation
of the tangent lines, we run a polygon simplification algorithm
as a preprocessing step. We implemented the algorithm from
[23], which computes a minimum segment approximation
using a subset of the input vertices with distance less or equal
to € in time O(n3). We observed a real-world running time in
the order of magnitude of about O(n?), using space O(n).

Additionally, we choose from all possible optimal curves
the one with the smallest sum of squared errors. This can
be done in a greedy way without increasing the asymptotic
running time bound of the algorithm.

V. REPRESENTATION OF ARC-LINE SPLINES

We now investigate properties and representations of arc-
line splines, the class of curves that our curve approximation
algorithm should output.

A. Local control of arc-line splines

We show that no parametric representation of arc-line
splines exists which has the local control property, i.e., every
parameter has only influence to a constant number of segments
of the curve. For polygonal chains and other piecewise defined
spline curves such as Bézier splines, the canonical representa-
tions fulfill this property. Local control would be very desirable
as it would simplify construction and local modification of arc-
line splines, especially in the context of least squares fitting
(see Section VI).

Consider the configuration space of an arc-line spline with
point and tangent constraints on both endpoints; we assume
alternating arc and line segments, and line segments at the
beginning and end of the curve. This space can be considered
as an algebraic set in the cartesian product of the configuration
spaces of the line and arc segments

S=LxAx---xL

subject to the condition that the end points and end tangents of
two consecutive segments coincide. The configuration space
L of line segments embedded in R3 has dimension 6; the
space A of arc segments embedded in R? is 8-dimensional.
The continuity constraints can be expressed as 5 equations:

3 for G° continuity—since the junction point between two
consecutive segments is an element of R3>—and 2 for G!
continuity, since the tangent at this point is a unit vector in
R3 and can be identified with a point on the 2-dimensional
unit sphere S?. Therefore, the dimension of the configuration
space of an arc-line spline is

d=6—-5+8-5+---4+6=4n+6

where n is the number of arc segments of the curve.

Now consider the subspace of this configuration space S,
obtained by additionally fixing the endpoints and end tangents
of the curve. This subspace is an algebraic set of dimension
at least d — 10 = 4n — 4 for n > 1. To achieve local control
of the curve, we have to find a parametrization of the curve
that has the form

RY — (R® x §?) x S, x (R® x §?) .

10 parameters should describe the constraints at the endpoints,
and the remaining (d— 10) parameters should be mapped onto
the space S, of all curves with n segments fulfilling these
constraints.

A necessary condition for the existence of such a para-
metrization scheme is that for any choice of constraints, the
subspace S, is a connected (d — 10)-dimensional manifold.
This means that all constraint equations must be independent.
This is however not the case if the two constraints at the
endpoint are collinear, i.e., if the two endpoints can be
connected by a line with the same direction as the two end
tangents.

A geometric explanation for this problem can be given
as follows: since the line connecting the two endpoints has
the same direction as the two end tangents (modulo sign),
the curve between the constraints gains an additional degree
of freedom by rotation around this axis. This shows that no
parametrization of an arc-line spline can exist which achieves
local control of parameters.

It is worth noting that the same singularity also arises for
circular arc splines in R2. In the general case, a biarc with
fixed end points and tangents has only one degree of freedom
for choosing the junction point. Now consider a biarc with
coinciding start and end points and tangents. In this case, every
point in R? is a valid junction point.

B. Control polygon representation

CAD engineers most commonly represent tube geometries
as control polygons, whose vertices are the intersection points
of the lines defined by the straight line segments of the spine
curve (see Fig. 7). For curves with constant arc radius, one
additional parameter defines the arc radius. For general arc-
line splines, there is one arc radius parameter for every vertex
of the control polygon except the first and the last.

This representation, however, has serious drawbacks: first, it
can not express all possible spine curves; in particular, bends
with an apex angle of m or more cannot be described in
this way. Another problem is that not every control polygon
describes a proper tube: if two vertices are too close together,
the two arcs corresponding to these vertices may intersect.



Figure 7. A tube and its control polygon.

C. LRA (length, rotation, angle) representation

A popular format for describing bending data for tubes is
the LRA representation (Fig. 8, see also [24]). This is the
representation used by bending machines, since it naturally
describes the motion sequence of the bending machine. For an
arc-line spline with n arcs, it consists of a sequence of n + 1
triples (1,7, a) denoting the length [ of a straight segment, the
apex angle a of a circular arc, and the rotation r of the normal
(in the Frenet frame) of an arc segment to its predecessor. For
two consecutive arc segments (or arcs at the beginning or end
of the curve), a line segment with length | = 0 is used.

By convention, the first triple has » = 0, because for the
first arc no rotation of the plane normal to the previous arcs
is defined. Moreover, the last triple usually has ¢ = 0 and
r = 0, meaning that it only defines a line segment but no arc
segment. This means that the LRA representation defines arc-
line splines with alternating arc and line segments and starting
and ending with a line segment. This is a natural assumption
in the context of bending tubes.

Again, for constant arc radii one additional parameter is
required, whereas for general arc-line splines, quadruples
(I,7,a, R) with bend radius R are used instead.

This information describes any arc-line spline up to rigid
transformations in R3. The starting point and orientation
of the fist line segment of the curve is given by a point
p = (2,9,2) € R® and a unit quaternion ¢ = (q, + i qy +
JjGc + Kk qq) € H. The rotation represented by the quaternion
is given by qvq’l, where v is the vector to be rotated,
considered as a quaternion with zero real part. Since the
whole configuration space of arc-line splines is covered by the
LRA representation, it is free of the drawbacks of the control
polygon representation.
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Figure 8.
arc radius.

LRA representation of arc-line splines with variable and constant

VI. LEAST-SQUARES DISTANCE FITTING

After computing an arc-line spline approximation of our
spine curve polygon as explained in Section IV, we have de-
termined the combinatorial structure of the spine curve. Using
a nonlinear optimization algorithm (Levenberg-Marquardt), we
now modify the parameters of the spine curve to minimize the
least squares orthogonal distance from the tube surface to the
samples of the input point cloud. The Jacobian of the distance
energy function is approximated using finite differences.

For reasons explained in Section V, we use the LRA
representation of the tube as parameters for the optimization.
An analogous technique was proposed by Hoschek [13] for
least-squares fitting of an R? arc spline.

VII. OUTLIER CLASSIFICATION

During the various processing stages of our pipe surface
reconstruction framework, outliers can occur due to several
reasons. The raw scan data often contains a number of outlier
samples that don’t belong to the surface and are caused by
technical deficiencies or human errors during the scanning
process. Moreover, the scanning data is noisy and can show
distortions significantly above the expected noise level, caused
by unfavorable circumstances such as bad surface reflectance
properties or steep angle of incidence of the laser line. Irregular
and noisy sampling can give rise to bad estimates of normals
and shape operators. Later, it can affect convergence of the
cylinder fitting step due to bad initial guesses as well as errors
in the data.

By imposing a set of constraints to the data in each
processing step, determined by thresholds for several locally
evaluated quantities, we can classify outliers and significantly
improve robustness of our geometry processing pipeline.

Estimation of normals and shape operators is done by
polynomial fitting as described in Section II-A. To obtain
robust estimates for these quantities, a sufficiently large num-
ber of samples is required. We use a ball with radius %rp
as the neighborhood and require the sample count in the
neighborhood to be at least 10.

The maximum curvature k,,,, obtained by polynomial
fitting should be close to the inverse of the pipe radius i
If the value deviates by a factor of more than 0.1 from the
expected curvature, we consider the point to be an outlier.

After MLS projection of the samples onto the spine curve,
we have another criterion to check for outliers in the data.
The distance between the projected sample and its original
position should be close to the pipe radius. If this is not the
case, the sample is discarded as an outlier. This error stems
from both displacement of an individual sample p from the
surface and from the deviation of the best fitting cylinder’s
axis to the actual spine curve. We set our threshold for outlier
classification using this error to 0.1 rp.

VIII. RESULTS

We have tested our algorithm on a benchmark data set
consisting of scans of 30 different tubes, with radii ranging
from 2 mm to 50 mm. Our algorithm was able to determine



the correct segmentation of the tubes in 28 of 30 cases. In
the two cases where the algorithm failed, it produced one and
two additional arc segments, respectively, while still properly
approximating the spine curve. Figure 9 shows the results of
a few interesting examples from our test data set.

After optimization by least-squares distance fitting, the
median distance of input surface samples to the reconstructed
surface was between 50 and 150 pm, which is in the order of
magnitude of the accuracy of the used laser scanners (FARO
Platinum Laser ScanArm and KonicaMinolta VIVID 9i).
Figures 9 (g) and (h) visualize the distances of the input
samples to the reconstructed surface. The measurement is
accurate enough to make the deformation of the tube caused
by the bending visible. It is clearly recognizable that the most
significant deviations of the samples from the model surface
are caused by this deformation.

Running time of the algorithm pipeline is clearly dominated
by the spine curve reconstruction and the least squares mini-
mization. For a typical scan of a tube with 4 mm pipe radius
and 268 mm length, consisting of 6005 samples, shown in
Figures 3 and 9 (g), reconstruction of the spine curve took
about 16 seconds on a 2 GHz PC, while least-squares fitting
took 34 seconds. All other steps of the reconstruction (curve
reconstruction, curve simplification, and arc-line spline ap-
proximation) took less than one second in total. The polygonal
spine curve approximation consisted of 471 vertices before
simplification and 30 vertices after simplification.

Running time for the least-squares optimization is propor-
tional to the number of samples and the number of parameters
of the LRA description. This means that for complex tube
objects, such as the ones shown in Figures 9 (c) and (d),
optimization can take several minutes. This could however be
improved by employing more elaborate optimization strategies
than the one used in our implementation.

IX. CONCLUSION

We present a complete process to parametric reconstruction
of bent tube surfaces. We propose a moving least squares
method to compute the spine curve of a pipe surface from
a point cloud of the surface. We then give a heuristic to the
problem of approximating a polygonal curve by a G contin-
uous spatial arc-line spline. We construct a graph representing
a certain subset of all possible solutions in a greedy way and
then find the optimal solution contained in this subset.

Our algorithm has been implemented in a software product
of our industry partner and is already used in the tubing
process of several car manufacturers.
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Figure 9. Results of our algorithm on difficult real-world data. Our method can reconstruct thick tubes (a) just as well as with thin wires (b). It can reconstruct
fairly complicated tubes (c,d) and special cases such as multiple consecutive bends joined by very short straight segments (a), bends with angles greater than 7

(e), and very small angles (f). Coloring the distances between the samples and the reconstructed surface clearly shows that deviations are mainly caused by
deformation of the tubes at the bends (g,h).
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