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We study a generalization of a continued fraction of Ramanujan with random, complex-
valued coefficients. A study of the continued fraction is equivalent to an analysis of the
convergence of certain stochastic difference equations and the stability of random dynam-
ical systems. We determine the convergence properties of stochastic difference equations
and so the divergence of their corresponding continued fractions.

1. Introduction

For the sequence of complex-valued random variables a := (an)∞n=1, with nonzero mag-
nitude bounded above and below in probability, and the real parameter b > 1, denote the
continued fraction !1(a,b) by

!1(a,b) :=
1ba2

1

1 +
2ba2

2

1 +
3ba2

3

1 + ···

(1.1)

This is a generalization of a continued fraction studied by Ramanujan. The original con-
tinued fraction, which can be written as !1(a,2), where a= (a1,a2,a1,a2, . . .) for a1 and a2

positive and real, satisfies a remarkable AGM relation, in addition to having applications
to elliptic-function theory. Our interest in !1(a,b) has grown out of investigations into
the extent to which the properties of the original Ramanujan continued fraction can be
generalized [2, 3, 4, 5]. Our present focus is to establish the following sufficient conditions
on sequences of random complex parameters a= (an)∞n=1 for the divergence of !1(a,b).

Theorem 1.1 (sufficient conditions for divergence). For 0 < ε < b and b > 1, let a := (an)
be a random sequence of complex, zero-mean, independent random variables satisfying

0 "=
∞∏

n=1

(
1− 1

(2n)2ba2
2n

)
<∞, 0 "= lim

n→∞
a2

a2n−1
2n a2n−2

2n−1

2n−2∏

j=1

a2
j <∞ a.s.,

∞∑

n

1
n2(b−ε) var

(
1
a2

n∏

j=1

a2
2 j−1

a2
2 j

)
<∞,

∞∑

n

1
n2(b−ε) var

(
a2

a2
2n

n∏

j=1

a2
2 j

a2
2 j−1

)
<∞.

(1.2)
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Then the stochastic Ramanujan continued fraction !1(a,b) defined by (1.1) diverges almost
surely with the even/odd parts of !1(a,b) converging almost surely to separate limits.

For our analysis, !1(a,b), for b > 1, is a straightforward generalization of the special
case !1(a,2), which we will denote by either !1(a) or simply !1 as follows:

!1(a)=
12a2

1

1 +
22a2

2

1 +
32a2

3

1 + ···

. (1.3)

We therefore restrict our attention to this particular continued fraction until the end of
this paper.

To evaluate !1, we study the recurrence for the classical convergents pn/qn to the frac-
tion !1. For a general continued fraction of the form

!η(γ)= η0 +
γ1

η1 +
γ2

η2 +
γ3

η3 + ···

(1.4)

these are defined by the truncated continued fraction: p−1 = 1, p0 = η0, q−1 = 0, q0 = 1,
and

!η(γ)≈ p1

q1
= η1p0 + γ1p1

η1q0
= η0 +

γ1

η1
first order,

≈ p2

q2
= η2p1 + γ2p0

η2q1 + γ2q0
= η0 +

γ1

η1 +
γ1

η2/γ2

second order,

≈ ···

≈ pn
qn
= ηnpn−1 + γnpn−2

ηnqn−1 + γnqn−2
= η0 +

γ1

η1 +
γ1

η2

···+

...

ηn/γn

nth order.

(1.5)

A simple induction argument establishes the general recurrence for the numerator and
denominator pn and qn shown above, namely,

pn = ηnpn−1 + γnpn−2, qn = ηnqn−1 + γnqn−2. (1.6)

For the continued fraction !1(a), we have

qn = qn−1 +n2αnqn−2, αn := a2
n. (1.7)
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We will use αn and a2
n interchangeably throughout. The pn terms of the classical conver-

gents also satisfy (1.7).
Following [2, 5], it is helpful to consider the renormalized sequence (vn), where

vn := qn
Γ(n+ 3/2)an+1

n
. (1.8)

A standard identity [8, equation (1.2.10)] for the separation of the convergents to !1

yields

pn
qn
− pn−1

qn−1
= (−1)n−1n!2

qnqn−1

n∏

j=1

α j . (1.9)

In terms of the renormalized sequence (vn), this is

pn
qn
− pn−1

qn−1
= (−1)n−1

vnvn−1an+1
n ann−1

( n∏

j=1

α j

){
1 +O

(
1
n

)}
. (1.10)

From the above preliminary analysis, it is immediately clear that for |an| = |am| "= 0
for all n,m∈N, the continued fraction !1 diverges—that is, the convergents separate—if

(
vn
)

is bounded. (1.11)

The case of cyclic and arbitrary deterministic sequences of parameters an has been
treated in [5]. To tie the present theory to more classical results, we briefly discuss the
case of complex parameters with constant phase in Section 3. In Section 4, we broaden
our scope to general random sequences. Before proceeding with the analysis, however, we
motivate this study in Section 2 with some numerical experiments of specific examples.

2. Numerical motivation

For different cases of the parameters an in the continued fraction !1, we plot in the com-
plex plane odd and even iterates of the recurrence

vn =
2

an(2n+ 1)

(
an−1

an

)n
vn−1 +

4n2

(2n− 1)(2n+ 1)

(
an−2

an

)n−1

vn−2, (2.1)

which follows directly from the rescaling (1.8). Our examples focus on the case |an| = b
for all n, and, in particular (without loss of generality) |an| = 1. As a point of reference,
we reproduce in Figures 2.1-2.2 the dynamics for periodic (an) with cycle length 1, 2, 3,
and 4, and each an being a root of unity. These cases have been studied at length in [5]. It
appears from these simulations that the sequence (vn) is bounded for even-length cycles,
hence !1 diverges. This has been confirmed in [5] for these parameter values. Odd-length
cycles display a richer variety of behaviors, not all convergent, as shown in Figures 2.2(b)-
2.2(c).
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Figure 2.1. Dynamics for cycles of length c = 1. Shown are the iterates vn given by (2.1) with an =
exp(iπ/2) for all n. Odd iterates are light, even iterates are dark.

A remarkable fact is that, even if the sequences (an) are chosen to have constant magni-
tude and random phase, that is, for an = ceiθn with θn randomly distributed on [0,2∗π],
the odd and even iterates vn demonstrate a surprising amount of structure. This is shown
in Figure 2.3. We explain this remarkable regularity in the following sections.

3. Random modulus/fixed phase

We consider parameters an of !1 of the form

an = cneiθ , cn ∈R∀n, θ fixed. (3.1)

The following result is an appplication of Stieltjes’ convergence theorem for continued
fractions [7, 8], and was pointed out to us by an anonymous referee.

Theorem 3.1 (random modulus, fixed phase). The generalized Ramanujan continued
fraction !1 converges whenever all parameters satisfy an = |an|eiθ , for θ ∈ [−π,π] \ {−π/2,
π/2} fixed, and for 0 <m≤ |an|≤M <∞.
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Figure 2.2. Dynamics for cycles of length c = 2,3, and 4. Shown are the iterates vn given by (2.1)
with (a) (a1,a2) = (exp(iπ/4),exp(iπ/6)), (b) (a1,a2,a3) = (exp(iπ/4),exp(iπ/4),exp(i(π/4 + 1/

√
2)),

(c) (a1,a2,a3)= (exp(iπ/2),exp(iπ/6),exp(−iπ/6)), and (d) a1 = a3 = exp(iπ/4), a2 = exp(iπ/6), a4 =
exp(i(π/6 + 1/2)). Odd iterates are light, even iterates are dark.

Proof. Write !1 as a reduced continued fraction !̂1 with coefficients Ai > 0, that is,

!̂1(a)=
1

A1 +
1

A2 +
1

A3 + ···

(3.2)

where

An =





n!2

(n/2)!4 4−n
n/2∏

j=1

a2
2 j−1

a2
2 j

(n even),

(
(n− 1)/2

)
!4

n!2

4n−1

a2
n

(n−1)/2∏

j=1

a2
2 j

a2
2 j−1

(n odd).

(3.3)
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Figure 2.3. Dynamics for random cycles. Shown are the iterates vn given by (2.1) with (a) an =
exp(iθn), θn ∼ U[0,2π] (b) one random strand mod2, a2n+1 = exp(iπ/6), a2n = exp(iθn), θn ∼
U[0,2π], (c) one random strand mod3, a3n+1 = a3n+2 = exp(iπ/6), a3n = exp(iθn), θn ∼ U[0,2π], and
(d) one random strand mod4, a4n+1 = a4n+2 = a4n+3 = exp(iπ/6), a4n = exp(iθn), θn ∼ U[0,2π]. Odd
iterates are light, even iterates are dark.

The reduced continued fraction is of the form studied by Stieltjes

!̂1 =
1
d1z

+
1
d2

+
1
d3z

+
1
d4

+ ··· (3.4)

with z = e−2iθ and

dn =





n!2

(n/2)!4 4−n
n/2∏

j=1

a2
2 j−1

a2
2 j

=
(

2
nπ

+O
(

1
n2

)) n/2∏

j=1

a2
2 j−1

a2
2 j

(n even),

(
(n− 1)/2

)
!4

n!2 4n−1
(n−1)2∏

j=1

a2
2 j

a2
2 j−1

=
(

2
nπ

+O
(

1
n2

)) (n−1)/2∏

j=1

a2
2 j

a2
2 j−1

(n odd).

(3.5)

Note that for an = |an|eiθ with 0 < m ≤ |an| ≤M <∞, the sum of the coefficients dn is
unbounded. Convergence then follows from the Stieltjes convergence theorem for con-
tinued fractions [8], which asserts that !̂1 converges at the point z ∈ {w ∈ C||argw| < π}
if and only if

∑
dn =∞. !
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Remark 3.2. The Stieltjes convergence theorem actually says much more, namely, that
the continued fraction converges locally uniformly in " := {z ∈ C||argz| < π} to a holo-
morphic function f (e−2iθ). But even, this is a special case of the more general parabola
theorem [7].

4. General random parameters

In this section, we pursue a general theory for complex random parameters an bounded
above and below almost surely. Our principal tools draw from a matrix analysis of !1

based on the renormalized sequence (vn) defined by (2.1). Though the phases of the pa-
rameters are entirely random, the sequence (vn) exhibits an odd/even behavior as the
figures illustrate. To see why this might be, note that the recurrence is a 2-step backward
difference equation. Reformulating (1.7) in terms of 2× 2 matrices yields

qn =Qnqn−1, Qn :=
[

1 n2αn
1 0

]
, qn :=

(
qn
qn−1

)
. (4.1)

The analogous sequence of vectors corresponding to the rescaling vn is

vn :=
(

vn
vn−1

)
. (4.2)

To show the odd/even behavior inherent in the difference equation, we examine the
sequence

vn = Ynvn−1, Yn :=G−1
n QnGn−1 (4.3)

for

Gn :=Diag
(
Γ
(
n+

3
2

)
an+1
n ,Γ

(
n+

1
2

)
ann−1

)
. (4.4)

Define the matrix Ŷn by

Ŷn := Y2nY2n−1. (4.5)

This has the explicit representation

Ŷn =



ŷ(n)

1,1 ŷ(n)
1,2

ŷ(n)
2,1 ŷ(n)

2,2


 , (4.6)
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where

ŷ(n)
1,1 :=

(
α2n−2

α2n

)n( 1
α2n−2α2n

)1/2(1 + 4n2α2n

4n2− 1/4

)
,

ŷ(n)
1,2 :=

(
α2n−3

α2n

)n( α2n−1

α2n−3α
1/2
2n

)(
(2n− 1)2

(2n− 3/2)
(
4n2− 1/4

)
)

,

ŷ(n)
2,1 :=

(
α2n−2

α2n−1

)n 1
α1/2

2n−2

1
(2n− 1/2)

,

ŷ(n)
2,2 :=

(
α2n−3

α2n−1

)n−1( (2n− 1)2

(2n− 1)2− 1/4

)
.

(4.7)

The determinant of this general Ŷn is

det
(
Ŷn
)
=
(
α2n−2

α2n

)n−1/2(α2n−3

α2n−1

)n−1 64n2(2n− 1)2

(4n− 3)(4n− 1)2(4n+ 1)
. (4.8)

The identity

∞∏

n=2

64n2(2n− 1)2

(4n− 3)(4n− 1)2(4n+ 1)
= π

2
(4.9)

follows readily from the Wallis/Stirling formula [1]. Hence,

lim
n→∞

det
(
#n
)
= π

2
β, #n =

n∏

j=1

Ŷn, (4.10)

which, of course, depends on the existence of the limit

β :=
∞∏

n=2

(
α2n−2

α2n

)n−1/2(α2n−3

α2n−1

)n−1

= lim
n→∞

α1/2
2

αn−1/2
2n αn−1

2n−1

2n−2∏

j=1

α j . (4.11)

Convergence of the determinant, however, is no guarantee of the same for the matrices
#n. Proving that the matrices converge is the object of the analysis that follows.

For the moment, assume that limn→∞#n =#∞, where #∞ is a finite complex random
matrix. We then have the following generalization of [2, Theorem 4.1] concerning the
convergence of odd and even parts of !1(a).

Theorem 4.1 (odd and even convergents of random continued fractions). Let the seque-
nce of complex random variables (an)∞n=1 satisfy

0 "= β := lim
n→∞

a2

a2n−1
2n a2n−2

2n−1

2n−2∏

j=1

a2
j a.s. (4.12)

For the corresponding continued fraction !1(a) defined by (1.3), let (un) be the analog to
(vn) in (1.8) with qn replaced by pn. If the matrix #n defined by (4.10) converges almost
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surely to the finite random matrix #∞, then for the standard initial conditions

(
u−1,u0,v−1,v0

)
=
(

1√
π

,0,0,
2

a0
√
π

)
, (4.13)

the even and odd parts of !1(a) are given by

!(even)
1 (a)= a0y∞1,2

2y∞1,1
, !(odd)

1 (a)= a0y∞2,2

2y∞2,1
, (4.14)

where y∞i, j is the i, jth element of #∞. These limits are almost surely not equal, thus !1 di-
verges almost surely. Indeed, the separation of odd and even limits is given explicitly by

!(even)
1 (a)−!(odd)

1 (a)=− a2
0π

4a2y∞1,1y
∞
2,1

β. (4.15)

Proof. The first relation (4.14) is immediate from the definition of the classical conver-
gents. The limits cannot be equal since otherwise we would have

a0y∞1,2

2y∞1,1
= a0y∞2,2

2y∞2,1
=⇒ y∞1,1y

∞
2,2− y∞1,2y

∞
2,1 = 0 (4.16)

whence, from (4.10), β = 0. But this contradicts the assumption that β "= 0 almost surely.
To see (4.15), note that by (1.10) and the initial condition (v−1,v0)= (0,2/(a0

√
π)),

!(even)
1 (a)−!(odd)

1 (a)= lim
n→∞

−
(∏2n

j=1 α j
)

v2nv2n−1α
n+1/2
2n αn2n−1

= lim
n→∞

− a2
0π

4y(n)
1,1 y

(n)
2,1

(∏2n
j=1 α j

)

αn+1/2
2n αn2n−1

,

(4.17)

where y(n)
i, j is the i, jth element of the matrix #n defined by (4.10). The limit above, to-

gether with (4.11), yields

!(even)
1 (a)−!(odd)

1 (a)=− a2
0π

4a2y∞1,1y
∞
2,1

β. (4.18)
!

Remark 4.2. If β = 0 with probability > 0, then the analysis is indeterminate. Formally,
from the definition of the classical convergents, we have

2
a0
√
π
y∞1,1!(even)

1 = 1√
π
y∞1,2,

2
a0
√
π
y∞2,1!(odd)

1 = 1√
π
y∞2,2. (4.19)

Multiplying the equation on the left by y∞2,1 and the right by y∞1,1 and then subtracting
yield

1√
π

(
y∞1,1y

∞
2,2− y∞1,2y

∞
2,1
)
= 2

a0
√
π
y∞2,1y

∞
1,1
(
!(even)

1 −!(odd)
1

)
. (4.20)
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But if β = 0, by (4.10) we have y∞1,1y
∞
2,2 − y∞1,2y

∞
2,1 = 0, and so y∞2,1y

∞
1,1(!(even)

1 −!(odd)
1 ) =

0. We cannot determine from this analysis whether the separation of the odd and even
convergents is zero as would be the case if !1 were to converge.

What remains, then, is to determine the conditions under which #n converges as n→
∞. To begin, we extract the leading-order behavior. Since the coefficients an are nonzero
with magnitude bounded above and below in probability, for each n, the elements ŷ(n)

i j of

Ŷn are almost surely bounded, so we can expand Ŷn in powers of n−1 to get

Ŷn = Kn +
1

2n
Wn +O

(
n−2), (4.21)

where

Kn =




(
α2n−2

α2n

)n−1/2

0

0
(
α2n−3

α2n−1

)n−1


 , (4.22)

Wn =




0
1

α1/2
2n

(
α2n−3

α2n

)n(α2n−1

α2n−3

)

1
α1/2

2n−2

(
α2n−1

α2n−2

)−n
0


 . (4.23)

Hence,

#n =
n∏

j=2

(
Kj +

1
2 j

Wj +O
(
j−2)

)
=$n +O

(
n−2), (4.24)

where

$n :=
n∏

j=2

Kj +
1
2 j

Wj. (4.25)

By induction on n, this factors as

$n =
( n∏

j=2

Kj

) n∏

j=2

(
I +

1
2 j

Ŵ j

)
, (4.26)

where

Ŵn :=
( n∏

j=2

Kj

)−1(n−1∏

j=2

K̂ j

)
Wn (4.27)

for

K̂ j =
[

0 1
1 0

]
Kj

[
0 1
1 0

]
. (4.28)
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As it turns out, Ŵn has a simple explicit representation

Ŵn =
1
a2n


 0 ωn

ω−1
n 0


 , ωn =

a2n

a2

n∏

j=1

α2 j−1

α2 j
. (4.29)

To ease the computations, we focus our attention on the rotated product

Ûn :=
( n∏

j=2

Kj

)−1

$n =
n∏

j=2

(
I +

1
2 j

Ŵ j

)
. (4.30)

The justification for this follows next.

Theorem 4.3. If Ûn
a.s.→ Û∞ and

∏n
j=2Kj

a.s.→ %∞, where both Û∞ and %∞ are nonsingular,

then $n
a.s.→%−1

∞ Û∞ and #n
a.s.→#∞, a finite random matrix.

Proof. This follows from (4.24) and [5, Theorem 5.3]. !
Theorem 4.3, together with Theorem 4.1, yields particularly clean sufficient condi-

tions for the divergence of !1, but note that we have pushed the question of convergence
of #n onto the convergence of Ûn. We focus next on Ûn.

Remark 4.4 (parameter qualifications). We briefly summarize our strategy and the ac-
companying restrictions. The leading-order behavior of the matrix expansions in powers
of n−1 is guaranteed by the boundedness assumptions, above and below, on the param-
eters an with which we began this work. Subsequent restrictions on the parameters have
been added as we extract the critical behavior of the matrix products describing the dy-
namics of the related difference equation. The most severe restrictions on the sequences
(an) come from the invertibility assumption in Theorem 4.1 and that of Û∞ and %∞ in
Theorem 4.3. The first of these, that β "= 0 where β is defined by (4.11), was discussed in
Remark 4.2. The assumption that

∏n
j=1Kj

a.s.→%∞ invertible is equivalent to the condition

0 "= lim
n→∞

det

( n∏

j=2

Kj

)
<∞ a.s., (4.31)

which amounts to

0 "= lim
n→∞

α1/2
2

αn−1/2
2n αn−1

2n−1

2n−2∏

j=1

α j <∞ a.s. (4.32)

From (4.29), the remaining invertibility assumption, namely that Ûn
a.s.→ Û∞ invertible, is

equivalent to the condition

0 "= det
∞∏

j=2

(
I +

1
2 ja2 j

[
0 ωn

ω−1
n 0

])
<∞ a.s., (4.33)
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or, more simply,

0 "=
∞∏

j=2

(
1− 1

(
2 ja2 j

)2

)
<∞ a.s. (4.34)

Conditions (4.32) and (4.34) are fundamental to our analysis.

4.1. Stochastic matrix analysis. In this section, we will prove the following theorem.

Theorem 4.5 (stochastic matrix products). Let

ε,b > 0, b− ε > 0, b+ ε > 1, (4.35)

and let (ζ j) and (ζ ′j ) be sequences of zero-mean independent random variables that satisfy

∞∑

j=1

1
j2(b−ε) var

(
ζ j
)
<∞,

∞∑

j=1

1
j2(b−ε) var

(
ζ ′j
)
<∞. (4.36)

Then the matrix product

n∏

j=1

(
I +

1
(2 j)b

[
0 ζ j
ζ ′j 0

])
(4.37)

converges almost surely to a finite matrix as n→∞. If, in addition,

0 <

∣∣∣∣∣
∞∏

j=1

(
1−

ζ ′j ζ j
(2 j)2b

)∣∣∣∣∣ <∞ a.s., (4.38)

then the matrix product converges almost surely to an invertible matrix.

To begin, we collect some useful facts about the rate of convergence of sequences. We
denote the limit of the sequence of random variables (an) by a∞, and denote by (an) ≺
(εn) almost sure convergence of (an) when this is provided by |an− a∞| =O(εn) almost
surely.

Lemma 4.6. Let (an) and (bn) be complex sequences, let (εn) be a positive sequence, and let
(zn) with |zn| = z ∈R+ for all n= 1,2, . . . be any complex number. Suppose that

(
an
)
≺
(
εn
)
,

(
bn
)
≺
(
εn
)
, (4.39)

then

(
an + bn

)
≺
(
εn
)
,

(
anbn

)
≺
(
εn
)
,

(
znan

)
≺
(
εn
)
. (4.40)

Proof. The first two relations are clear. The last relation follows immediately from |znan−
zna∞| = z|an− a∞|. !



J. M. Borwein and D. R. Luke 461

We state next a fundamental result which will yield, eventually, the conditions (4.36)
for convergence of infinite products of random variables. Recall that a sequence (Sn) is a
martingale with respect to the random sequence (ζn) if, for all n≥ 1,

(a)

&
(
Sn
)
<∞, (4.41)

(b)

&
(
Sn+1|ζ1, . . . ,ζn

)
= Sn, (4.42)

where & denotes the expectation. For example, the sequence of partial sums of random
complex-valued variables with fixed modulus and random phase uniformly distributed
on [0,2π) is a martingale.

Lemma 4.7 (martingale convergence theorem). Let (ζn) be a sequence of zero-mean ran-
dom variables. Denote the corresponding martingale of partial sums by (Sn) = (

∑n
j=1 ζ j).

If

&
(∣∣Sn

∣∣2)
<∞, (4.43)

then Sn converges almost surely to a finite random variable S∞.

For the proof of Lemma 4.7, see [6, Theorems 7.8.1 and 7.8.2]. We are now ready to
state the main building block for the proof of Theorem 4.5.

Proposition 4.8. Let ζn be zero-mean independent random variables satisfying

∞∑

j

var
(
ζ j
)

j2(b−ε) <∞ for ε,b > 0, 0 < b− ε. (4.44)

Then,

n∑

j=1

ζ j
jb−ε

a.s.−−→ Σ∞ as n−→∞, (4.45)

where Σ∞ is a finite random variable. Moreover,

( n∑

j=1

ζ j
jb

)
≺
(

1
jε

)
. (4.46)

Proof. Equation (4.45) is a slight modification of [6, Exercise 7.8.2] and follows immedi-
ately from Lemma 4.7. To prove (4.46), note that by (4.45), we have

sup
n

∣∣∣∣∣
n∑

j=1

ζ j
jb−ε

∣∣∣∣∣ <∞ a.s. (4.47)
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This, together with Abel’s transformation [10, equation (I.2.1)]

n∑

j=m

1
jε

ζ j
jb−ε

=
n−1∑

j=m

(( j∑

k=m

ζk
kb−ε

)(
1
jε
− 1

( j + 1)ε

))
+

1
nε

n∑

j=m

ζ j
jb−ε

(m< n), (4.48)

yields
∣∣∣∣∣

n∑

j=m

ζ j
jb

∣∣∣∣∣≤
1
nε

sup
k

∣∣∣∣∣
k∑

j=m

ζ j
jb−ε

∣∣∣∣∣=O
(

1
nε

)
a.s. (4.49)

!
Lemma 4.9 (product convergence). Let ζ j be zero-mean independent random variables
satisfying (4.44). Then for b > 1/2, the product

n∏

j=1

(
1 +

1
jb

ζ j

)
(4.50)

converges almost surely as n→∞.

Proof. Since the elements ζ j have zero mean, by Proposition 4.8, ζ j satisfy

n∑

j=1

ζ j
jb

a.s.−−→ Σ∞ as n−→∞. (4.51)

Also, since ζ j have zero mean and satisfy (4.44), we have

∑

j

∣∣∣∣
ζ j
jb

∣∣∣∣
2

<∞. (4.52)

Thus, by general sufficient criteria for the convergence of infinite complex products [9,
the Coriolis test], the product (4.50) converges almost surely. !

We are now ready to proceed with the proof of the main result of this section.

Proof of Theorem 4.5. Our proof follows the same pattern as that of [2, Theorem 8.1]. We
split the matrices in the infinite product into upper and lower triangular pieces and show
that the resulting submatrices and their products converge. Let

U :=
[

0 1
0 0

]
, L :=

[
0 0
1 0

]
. (4.53)

We write
(
I +

1
(2 j)b

[
0 ζ j
ζ ′j 0

])
=
(
I +

1
(2 j)b

ζ jU
)(

I +
1

(2 j)b
ζ ′j L
)
− 1

(2 j)2b ζ jζ
′
jUL, (4.54)

and define the partial product

Πn
UL =

n∏

j=1

((
I +

1
(2 j)b

ζ jU
)(

I +
1

(2 j)b
ζ ′j L
))

. (4.55)
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For n∈N, let

Πn
U :=

n∏

j=1

(
I +

1
(2 j)b

ζ jU
)

, Πn
L :=

n∏

j=1

(
I +

1
(2 j)b

ζ ′j L
)

, (4.56)

Σn :=
n∑

j=1

1
(2 j)b

ζ j , Σ′n :=
n∑

j=1

1
(2 j)b

ζ ′j . (4.57)

We interpret Σ0 and Σ′0 to be zero. By [2, Lemma 8.6] (replace their “zmjω j” by “(1/
(2 j)bζ j” and “zmjω− j” by “(1/(2 j)b)ζ ′j”), Πn

UL can be rewritten as

Πn
UL =Πn

UΠ
n
L

n∏

j=1

(
I +Rj

)
, (4.58)

where

Rn := 1
(2n)b

ζ ′n

[
−Σn−1−

(
Σn−1

)2
Σ′n−1 −

(
Σn−1

)2

Σn−1Σ′n +Σn−1Σ′n−1 +Σ′n−1Σ
′
n

(
Σn−1

)2
Σn−1 +

(
Σn−1

)2
Σ′n

]
. (4.59)

By the definitions of Σ0 and Σ′0, we have R1 := 0. The partial sums Σn and Σ′n converge
almost surely by Proposition 4.8. By induction, it can be shown that

Πn
U =

[
1 Σn

0 1

]
, Πn

L =
[

1 Σ′n
0 1

]
, (4.60)

thus the sequences of matrices (Πn
U) and (Πn

L) converge almost surely. Hence, if
∏n

j=1(I +
Rj) converges almost surely, then the sequence (Πn

UL) converges almost surely. We rewrite
Rn as

Rn =
ζ ′n

(2n)b

[
rn11 rn12

rn21 rn22

]
, (4.61)

where, by Lemma 4.6, (4.46), and (4.57),

(
rnjk
)
≺
(

1
nε

)
∀ j,k. (4.62)

Our strategy is to split Rn into a sequence of absolutely convergent matrices and a con-
vergent scaling of its limit. To this end, let

Rn = Pn +
ζ ′n

(2n)b
T , (4.63)

where

Pn := ζ ′n
(2n)b

[
rn11− r∞11 rn12− r∞12

rn21− r∞21 rn22− r∞22

]
, T :=

[
r∞11 r∞12

r∞21 r∞22

]
. (4.64)
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If

n∏

j=1

(
I +

ζ ′j
(2 j)b

T
)

,
∞∑

j=1

∣∣Pn
∣∣ (4.65)

converge, then by [2, Theorem 6.1], the product
∏n

j=1(I + Rj) converges. Convergence
of the product in (4.65) follows exactly as in the proof of [2, Lemma 8.7] and relies on
Lemma 4.9. An examination of the eigenvalues of Pn shows that, almost surely, |Pn| =
O(1/nb+ε). Thus, since by (4.35) b+ ε > 1, we have that

∑∞
j=1 |Pn| converges almost surely.

Again, by Proposition 4.8, we have

n∑

j=1

∣∣∣∣
ζ jζ ′j
j2b

∣∣∣∣ <∞, (4.66)

whence convergence of the matrix sum

n∑

j=1

∣∣∣∣
ζ jζ ′j
j2b

UL
∣∣∣∣. (4.67)

This proves the convergence of (4.37).
To complete the proof, note that

detÛn = det
n∏

j=1

(
I +

1
(2 j)b

[
0 ζ j
ζ ′j 0

])

=
n∏

j=1

det

(
I +

1
(2 j)b

[
0 ζ j
ζ ′j 0

])

=
n∏

j=1

(
1− 1

(2 j)2b ζ
′
j ζ j

)
.

(4.68)

This product is nonzero if |1− (1/(2 j)2b)ζ ′j ζ j| ≥m > 0 for all j, in which case Ûn con-
verges invertibly. !

4.2. Application to continued fractions. Theorems 4.1, 4.3, and 4.5 together yield suffi-
cient conditions for the divergence of the partial fraction !1. We specialize these results
to the case of continued fractions with parameters (an) distributed uniformly on the unit
circle in the complex plane as shown in Figure 2.3. Following Section 4.1, by (4.29), the
random variables ζn and ζ ′n in this case are given by

ζn := 1
a2n

ωn =
1
a2

( n∏

j=1

α2 j−1

α2 j

)
, (4.69)

ζ ′n := 1
a2n

ω−1
n = a2

α2n

( n∏

j=1

α2 j−1

α2 j

)−1

. (4.70)
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Figure 4.1. Random walks associated with parameter sequences of the form (an) = (exp(iθn)) for
θn a random variable uniformly distributed on [0,2π]. The dark and light lines correspond to the
random walks determined by the respective partial sums Σn and Σ′n defined in (4.72). The figure—an
illustration of the convergence of the partial sums proven in Proposition 4.8—shows the location of
the partial sum at step n in the complex plane with lines connecting successive steps. The difference
equation dynamics of the iterates (vn) defined by (2.1) corresponding to these random walks are
depicted in Figure 2.3a.

These are also random variables, uniformly distributed on the unit circle. By symmetry, it
is immediate that &(ζn)= &(ζ ′n)= 0 and var(ζn) and var(ζ ′n) are bounded for all n. Thus,
for all b− ε > 1/2 with 1 < ε+ b (in particular, for b > 3/4 and ε small),

∑

n

1
n2(b−ε) var

(
ζn
)
<∞,

∑

n

1
n2(b−ε) var

(
ζ ′n
)
<∞. (4.71)

Define the partial sums by

Σn :=
n∑

j

ζ j
jb

, Σ′n :=
n∑

j

ζ ′j
jb
. (4.72)

By Proposition 4.8, it follows that

lim
n→∞

Σn
a.s.−−→ Σ∞, lim

n→∞
Σ′n

a.s.−−→ Σ∞′. (4.73)

Here Σ∞ and Σ∞′ are finite random variables. The partial sums represent a random walk.
In Figure 4.1, we show one realization of this random walk with b = 1 after 104 steps.
The continued fraction has b = 2, so we have thus proved the divergence of !1 for the
cases illustrated in Figure 2.3. By Theorem 4.1, the odd and even parts of !1 converge to
separate limits as it is shown in the odd and even iterates of (2.1) converging to separate
orbits.
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5. Summary and open problems

The analysis of Section 4.1, while specifically developed with continued fractions of the
form !1(a) in mind, easily generalizes to continued fractions of the form !1(a,b) given
by (1.1). It was shown in [2] that this leads to the rescaled sequence (v(b)

n ), analogous to
(1.8),

v(b)
n := qn

Γb/2(n+ 3/2)an+1
n

. (5.1)

The difference equation (2.1) then becomes

v(b)
n =

(
2

2n+ 1

)b/2 1
an

(
an−1

an

)n
v(b)
n−1 +

(
4

(2n− 1)(2n+ 1)

)b/2
n2
(
an−2

an

)n−1

v(b)
n−2, (5.2)

and the matrix product

$(b)
n =

( n∏

j=2

Kj

) n∏

j=2

(
I +

1
(2 j)b/2

Ŵj

)
. (5.3)

With this, we have established Theorem 1.1, in addition to sufficient conditions for
the iterates v(b)

n to remain bounded. We recap with the following summary of our main
results.

Theorem 5.1 (summary). For ε > 0, b > 1, and b− ε > 0, let a := (an) be a random se-
quence of complex, zero-mean, independent random variables satisfying

0 "=
∞∏

n=1

(
1− 1

(2n)2ba2
2n

)
<∞, 0 "= lim

n→∞
a2

a2n−1
2n a2n−2

2n−1

2n−2∏

j=1

a2
j <∞ a.s.,

∞∑

n

1
n2(b−ε) var

(
1
a2

n∏

j=1

a2
2 j−1

a2
2 j

)
<∞,

∞∑

n

1
n2(b−ε) var

(
a2

a2
2n

n∏

j=1

a2
2 j

a2
2 j−1

)
<∞.

(5.4)

Then the iterates v(b)
n of the corresponding stochastic difference equation (5.2) are bounded

almost surely and the stochastic Ramanujan continued fraction !1(a,b) defined by (1.1) di-
verges almost surely with the even/odd parts of !1(a,b) converging almost surely to separate
limits.

Note that only sufficient conditions for divergence of random continued fractions have
been determined with this analysis. The apparently more delicate question of necessary
conditions for convergence remains open.
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