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Abstract

We consider the problem of minimizing the sum of a convex function and a
convex function composed with an injective linear mapping. For such problems,
subject to a coercivity condition at fixed points of the corresponding Picard
iteration, iterates of the alternating directions method of multipliers converge
locally linearly to points from which the solution to the original problem can
be computed. Our proof strategy uses duality and strong metric subregularity
of the Douglas–Rachford fixed point mapping. Our analysis does not require
strong convexity and yields error bounds to the set of model solutions. We
show in particular that convex piecewise linear-quadratic functions naturally
satisfy the requirements of the theory, guaranteeing eventual linear convergence
of both the Douglas–Rachford algorithm and the alternating directions method
of multipliers for this class of objectives under mild assumptions on the set of
fixed points. We demonstrate this result for quantitative image deconvolution
and denoising with multiresolution statistical constraints.
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1 Introduction.

The alternating directions method of multipliers (ADMM) has received a great deal
of attention recently for large-scale problems involving constraints on the image of the
unknowns under some linear mapping. The analysis has focused on either global com-
plexity estimates [34] or sufficient conditions for local linear convergence [14, 24, 48].
The closely related Douglas–Rachford algorithm has also been the focus of recent stud-
ies showing global complexity [42, 52] and (local linear) convergence in increasingly
inhospitable settings [1, 7–9, 13, 36, 37, 54]. A survey of results on proximal methods
in general can be found in [51]. In the convex setting, the convergence studies for
both ADMM and Douglas–Rachford share a common thread through the well-known
duality between these algorithms [29]. Studies of ADMM frequently invoke strong
convexity. Studies of Douglas–Rachford, on the other hand have, until very recently,
focused on feasibility problems and corresponding notions of regularity of intersec-
tions. We combine an analysis of the ADMM algorithm with facts learned from the
local convergence of Douglas–Rachford to provide sufficient conditions for local linear
convergence of sequences generated by ADMM without strong convexity. While this
paper was under review we became aware of two recent studies that also combine
the analysis of ADMM and Douglas-Rachford to improve and generalize many local
and global results [30,31]. While our theoretical results are general and abstract, our
motivation for the current study comes from the application of statistical multiscale
image denoising/deconvolution following [26, 27] for fluorescence microscopic images
(see also [2] for a review of fluorescence microscopy techniques and statistical meth-
ods for them). We demonstrate the analysis for image denoising/deconvolution of
Stimulated Emission Depletion (STED) images [35,38].

1.1 Notation and definitions

Though many of the arguments presented here work equally well for infinite dimen-
sional Hilbert spaces, to avoid technicalities, it will be assumed throughout that U
and V are Euclidean spaces. The norm ‖ · ‖ denotes the Euclidean norm. We de-
note the extended reals by (−∞,+∞] := R ∪ {+∞} and the nonnegative orthant
by R+ := {x ∈ R |x ≥ 0}. The closed unit ball centered at the origin is denoted
by B. In the usual notation for the natural numbers N we include 0. The mapping
A : U → V is linear and the functional J : U → (−∞,+∞] is proper (not everywhere
+∞ and nowhere −∞), convex and lower semicontinuous (lsc), as is the functional
H : V → (−∞,+∞]. The level set of J corresponding to α ∈ R is defined by
lev≤αJ := {u ∈ U : J(u) ≤ α}. The domain of a function f : U → (−∞,+∞] is
defined by dom f = {u ∈ U : f(u) <∞}. We use the notation Φ : U ⇒ V to denote
a set-valued mapping from U to V .

A proper function f : U → (−∞,+∞] is strongly convex if there is a constant
µ > 0 such that

f ((1− τ)x0 + τx1) ≤ (1− τ)f(x0) + τf(x1)− 1
2
µτ(1− τ)‖x0 − x1‖2, (1.1)

for all x0 and x1 and τ ∈ (0, 1). We will not assume smoothness of functions and so
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will require the subdifferential. The subdifferential of a function f : U → (−∞,+∞]
at a point x ∈ dom f is defined by

∂f(x) := {v ∈ U | 〈v, x− x〉 ≤ f(x)− f(x), for all x ∈ U } . (1.2)

When x /∈ dom f the subdifferential is defined to be empty. Elements from the
subdifferential are called subgradients. The subdifferential of a proper, lsc convex
function is a maximally monotone set-valued mapping [56, Theorem 12.17]. The
Fenchel conjugate of a function f is denoted by f ∗ and defined by

f ∗(y) := sup
x∈U
{〈y, x〉 − f(x)} .

A mapping Φ : V ⇒ V is said to be β-inverse strongly monotone [56, Corollary 12.55]
if for all x, x′ ∈ V

〈v − v′, x− x′〉 ≥ β‖v − v′‖2, whenever v ∈ Φ(x), v′ ∈ Φ(x′). (1.3)

The mapping Φ is said to be polyhedral (or piecewise polyhedral [56]) if its graph is
the union of finitely many sets that are polyhedral convex in U × V [20]. We denote
the resolvent of Φ by JΦ := (Id +Φ)−1 where Id denotes the identity mapping and the
inverse is defined as

Φ−1(y) := {x ∈ U | y ∈ Φ(x)} . (1.4)

The corresponding reflector is defined by RηΦ := 2JηΦ − Id.
Notions of continuity of set-valued mappings have been thoroughly developed over

the last 40 years. Readers are referred to the monographs [4, 20, 56] for basic results.
A mapping Φ : U ⇒ V is said to be Lipschitz continuous if it is closed valued and
for all u, u′ ∈ U there exists a τ ≥ 0 such that

Φ(u′) ⊂ Φ(u) + τ‖u′ − u‖B. (1.5)

Lipschitz continuity is, however, too strong a notion for set-valued mappings. A key
property of set-valued mappings that we will rely on is metric subregularity, which
can be understood as the property corresponding to a Lipschitz-like continuity of the
inverse mapping relative to a specific point. As the name suggests, it is a weaker
property than metric regularity which, in the case of an n×m matrix for instance, is
equivalent to surjectivity. Our definition follows the characterization of this property
given in [20, Exercise 3H.4].

Definition 1.1 ((strong) metric subregularity).

(i) The mapping Φ : U ⇒ V is called metrically subregular at x for y relative to
W ⊂ U if (x, y) ∈ gph Φ and there is a constant c > 0 and neighborhoods O of
x such that

dist (x,Φ−1(y) ∩W ) ≤ c dist (y,Φ(x)) ∀ x ∈ O ∩W. (1.6)
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(ii) The mapping Φ is called strongly metrically subregular at x for y relative to
W ⊂ U if (x, y) ∈ gph Φ and there is a constant c > 0 and neighborhoods O of
x such that

‖x− x‖ ≤ c dist (y,Φ(x)) ∀ x ∈ O ∩W. (1.7)

The constant c measures the stability under perturbations of inclusion y ∈ Φ(x).
An important instance where metric subregularity comes for free is for polyhedral

mappings.

Proposition 1.2 (polyhedrality implies strong metric subregularity). Let W ⊂ V
be an affine subspace and T : W ⇒ W . If T is polyhedral and Fix T ∩ W is an
isolated point, {x}, then Id−T : W ⇒ (W − x) is strongly metrically subregular,
hence metrically subregular, at x for 0 relative to W .

Proof. If T is polyhedral, so is Φ−1 := (Id−T )−1. Now by [20, Propositions 3I.1 and
3I.2], since Φ−1 is polyhedral and x is an isolated point of Φ−1(0)∩W , then Φ = Id−T
is strongly metrically subregular at x for 0 with constant c on the neighborhood O of
x restricted to W (1.7).

One prevalent source of polyhedral mappings is the subdifferential of piecewise linear-
quadratic functions (see Proposition 2.6 below).

Definition 1.3 (piecewise linear-quadratic functions). A function f : Rn → [−∞,+∞]
is called piecewise linear-quadratic if domf can be represented as the union of finitely
many polyhedral sets, relative to each of which f(x) is given by an expression of the
form 1

2
〈x,Ax〉+〈a, x〉+α for some scalar α ∈ R vector a ∈ Rn, and symmetric matrix

A ∈ Rn×n.

A notion related to metric regularity is that of weak-sharp solutions. This will be
used in the development of error bounds (Theorem 3.4).

Definition 1.4 (weak sharp minimum [16]). The solution set argmin {f(x) |x ∈ Ω}
for a nonempty closed convex set Ω, is weakly sharp if, for p = infΩ f , there exists a
positive number α (sharpness constant) such that

f(x) ≥ p+ α dist (x, Sf ) ∀x ∈ Ω.

Similarly, the solution set Sf is weakly sharp of order ν > 0 if there exists a positive
number α (sharpness constant) such that, for each x ∈ Ω,

f(x) ≥ p+ α dist (x, Sf )
ν ∀x ∈ Ω.

1.2 Preparatory abstract results

To conclude this section we present general results about types of (firmly) nonexpan-
sive operators that clarify the underlying mechanisms yielding linear convergence of
many algorithms. The operative definitions are given here.
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Definition 1.5 ((S, ε)-(firmly-)nonexpansive mappings). Let D and S be nonempty
subsets of U and let T be a (multi-valued) mapping from D to U .

(i) T is called (S, ε)-nonexpansive on D if

‖x+ − x+‖ ≤
√

1 + ε ‖x− x‖ , (1.8)

∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.

If (1.8) holds with ε = 0 then we say that T is S-nonexpansive on D.

(ii) T is called (S, ε)-firmly nonexpansive on D if

‖x+ − x+‖2 + ‖(x− x+)− (x− x+)‖2 ≤ (1 + ε) ‖x− x‖2 , (1.9)

∀x ∈ D, ∀x ∈ S, ∀x+ ∈ Tx, ∀x+ ∈ Tx.

If (1.9) holds with ε = 0 then we say that T is S-firmly nonexpansive on D. If,
in addition, S = Fix T , then T is said to be quasi-firmly nonexpansive.

Theorem 1.6 (abstract linear convergence result). Let W ⊂ V be an affine subspace
and T : W ⇒ W be quasi-firmly nonexpansive on W . Let Fix T ∩W be an isolated
point, {x}. If Id−T : W ⇒ (W − x) is metrically subregular at x for 0, then there
is a neighborhood O of x such that

dist (x+,Fix T ) ≤
√

1− κ dist (x,Fix T ), ∀x+ ∈ Tx, ∀x ∈ O ∩W, (1.10)

where 0 < κ = c−2 for c a constant of metric subregularity of Id−T at x for the
neighborhood O. Consequently, the fixed point iteration xk+1 = Txk converges linearly
to Fix T with rate

√
1− κ for all x0 ∈ O ∩W .

Proof. Define Φ := (Id−T ) and note that {x} = (Id−T )−1(0) ⇐⇒ {x} = Fix T ,
hence

dist (x, (Id−T )−1(0)) = dist (x,Fix T ) = ‖x− x‖.

Suppose that Φ is metrically subregular at Fix T for 0. Then by Definition 1.1(i) we
have, for all x ∈ O ∩W and for all x+ ∈ T (x),

dist (x, (Id−T )−1(0)) = ‖x− x‖ ≤ c dist (0, (x− Tx)) ≤ c‖x− x+‖, (1.11)

which is the coercivity condition of [36, Eq.(3.1), Lemma 3.1]. By assumption, T is
(Fix T, 0)-firmly nonexpansive (i.e., quasi-firmly nonexpansive) on W (Definition 1.5
(ii)). The result then follows from [36, Lemma 3.1] with rate

√
1− κ for κ = c−2.

Remark 1.7 (on κ). The constant κ in the above theorem can always be chosen to be
less than or equal to 1. To see this, note that for any metrically subregular mapping
Φ, there is a constant c ≥ 1 and hence a κ ≤ 1 so that the rate constant given in
Theorem 1.6 will always hold whenever the fixed point is a (relatively) isolated point.

5



Example 1.8 (a simple example). Consider two lines, A and B, in R2 intersecting
orthogonally at the origin and let T be the Douglas–Rachford operator for the projec-
tions onto each line. In this example T = 1

2
(RARB + Id) where RA := 2PA − Id for

the projection onto the line A denoted by PA, and likewise for RB. In the context of
what follows, PA is the resolvent of the subdifferential of the indicator function of the
line A and likewise for PB. It is elementary to verify that T is firmly nonexpansive,
has a unique fixed point, and T (x) = 0 for all x. Moreover Φ = Id−T = Id, which
has a constant of metric subregularity c = 1. Theorem 1.6 then predicts that the
Douglas–Rachford algorithm converges linearly with rate constant 0 in this case, i.e.
it converges in one step. The reader can verify that this indeed is the case.

To see the importance of the restriction to the affine subspace W , consider instead
of two lines in R2 two lines in R3 intersecting at the origin. It can be shown that the
fixed points of the Douglas–Rachford operator consist of the axis – let’s call it the z
axis – extending from the origin, perpendicular to the linear hull of the two lines [6].
It is elementary to verify that, from any starting point x0 in R3, the Douglas–Rachford
algorithm converges in one step to the intersection of the z axis with the affine subspace
containing x0 and parallel to the plane containing the lines A and B. Clearly, the fixed
points of the mapping T are not isolated points, but they are isolated points relative
to the affine subspace containing x0 and parallel to A and B, so Theorem 1.6 applies
and predicts, correctly, that the Douglas-Rachford algorithm converges to a fixed point
in one step. The projection of this fixed point onto the set B is the solution to the
problem of finding the point of intersection.

Corollary 1.9 (Polyhedrality implies linear convergence). Let W ⊂ V be an affine
subspace and T : W ⇒ W be quasi-firmly nonexpansive on W . Let Fix T ∩W be an
isolated point, {x}. If T is polyhedral, then there is a neighborhood O of x such that

dist (x+,Fix T ) ≤
√

1− κ dist (x,Fix T ) ∀x+ ∈ Tx, ∀x ∈ O ∩W,

where 0 < κ = c−2 for c a constant of metric subregularity of Id−T at x for the
neighborhood O ∩W . Consequently, the fixed point iteration xk+1 = Txk converges
linearly to Fix T with rate

√
1− κ for all x0 ∈ O ∩W .

Proof. The result follows immediately from Proposition 1.2 and Theorem 1.6.

The requirement that the fixed point set is a singleton can be viewed as a uniqueness
assumption, which is common in the inverse problems literature. It is well known,
however, that, even if the solution to a given problem is unique, the set of fixed
points of the numerical method (of interest to us, the Douglas–Rachford operator)
need not be solutions to the given problem, much less be unique [6, 44]. Recent
work has shown, however, that the set of fixed points need only consist of singletons
relative to appropriate affine subspaces where the iterates lie [37,54]. This feature has
been exploited in the analysis of the Douglas–Rachford algorithm applied to problems
with polyhedral and quadratic structure [43]. Metric (sub)regularity, on the other
hand, is one of the central assumptions of well-posedness of inverse problems [20,39].
Other useful equivalent characterizations of metric subregularity can be found in [20].
Polyhedrality can be quite easy to verify, as we will see below.
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2 Linear Convergence of Douglas–Rachford/

Alternating Directions Method of Multipliers

We consider problems in the following format:

minimize
u∈U

J(u) +H(Au). (P ′)

There are many possibilities for solving such problems. We focus our attention on
one of the more prevalent methods, the alternating direction method of multipliers,
abbreviated as ADMM (primary sources include [22, 23, 29, 32, 55]). This method
is one of many splitting methods which are the principle approach to handling the
computational burden of large-scale, separable problems [15]. ADMM belongs to a
class of augmented Lagrangian methods whose original motivation was to regularize
Lagrangian formulations of constrained optimization problems.

Introducing a new variable v ∈ V , our problem is to solve

minimize
(u,v)∈U×V

J(u) +H(v), subject to Au = v. (2.1)

The augmented Lagrangian L̃ for (2.1) is given by

L̃(u, v, b) = J(u) +H(v) + 〈b, Au− v〉+ η
2
‖Au− v‖2, (2.2)

where b ∈ V , η > 0 is a fixed penalty parameter. The ADMM algorithm for solving
(2.1) is, given (uk, vk, bk), k ∈ N, compute (uk+1, vk+1, bk+1) by

uk+1 ∈ argmin u

{
J(u) + η

2
‖Au− vk + η−1bk‖2

}
; (2.3)

vk+1 ∈ argmin v

{
H(v) + η

2
‖Auk+1 − v + η−1bk‖2

}
; (2.4)

bk+1 = bk + η(Auk+1 − vk+1). (2.5)

Using η
2
‖Au − v + η−1bk‖2 − 1

2η
‖bk‖2 = 〈bk, Au − v〉 + η

2
‖Au − v‖2, the algorithm

(2.3)-(2.5) can be written equivalently as

Algorithm 2.1 (ADMM).
Initialization. Choose η > 0 and (v0, b0) ∈ U × V × V .
General Step (k = 0, 1, . . .)

uk+1 ∈ argmin u

{
J(u) + 〈bk, Au〉+ η

2
‖Au− vk‖2

}
; (2.6a)

vk+1 ∈ argmin v

{
H(v)− 〈bk, v〉+ η

2
‖Auk+1 − v‖2

}
; (2.6b)

bk+1 = bk + η(Auk+1 − vk+1). (2.6c)

The penalty parameter η need not be a constant, and indeed evidence indicates that
the choice of η can greatly impact the complexity of the algorithm, but this is beyond
the scope of this investigation, so we have left this parameter fixed.

We do not specify how the argmin in steps (2.6a)-(2.6b) should be calculated, and
indeed, the analysis that follows assumes that these can be computed exactly. This
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is, of course, not true in practice. In an attempt to circumvent this fact, the standard
approach in numerical analysis is to accommodate summable errors. The general-
ization to summable errors is, however, tantamount to eventual exact evaluation of
(2.6a)-(2.6b) and thus, for all practical purposes, is no different from immediate exact
evaluation, the latter involving errors that sum to zero.

Even if we do assume infinite precision, a few remarks about the computational
complexity of the individual steps of Algorithm 2.1 are warranted. Inspection of (2.6a)
shows that an implicit method involving computation of the inverse of ATA may not
be feasible if this is very large or does not otherwise enjoy a structure that allows
for efficient inversion. If J is smooth, a number of classical quasi-Newton methods,
with error bounds, are available [49]. If J is nonsmooth, then a forward-backward-
type method such as FISTA [10] could be applied. In the latter case new results
on convergence of the iterates to a solution open the door to error bounds at this
stage [3]. The second step (2.6b) does not involve any matrix inversion, but will, for
exact penalization, involve a nonsmooth penalty H. Again, one has recourse to fast
first-order methods that, as of very recently, permit error bounds.

Our goal is to determine the rate of convergence of these algorithms so that they
may be used as inner routines in an iteratively regularized procedure. Knowing that
an algorithm converges linearly, for instance, yields rational stopping criteria with
computable estimates for the distance of the current iterate to the solution set.

We present sufficient conditions for linear convergence of Algorithm 2.1 by showing
the same for the Douglas-Rachford algorithm which is more amenable to the tools of
abstract fixed point theory presented in Section 1.2. It is well known [22, 29] that
the ADMM algorithm can be derived from the Douglas–Rachford algorithm, and vice
versa, and therefore sufficient conditions for convergence of Douglas–Rachford also
apply here. The first convergence result for Douglas–Rachford is due to Lions and
Mercier [44], under the assumption of strong convexity and Lipschitz continuity of J .
Recent published work in this direction includes [30, 31, 34]. Convergence rates with
respect to objective values under various assumptions on the objective, all of which
involving strong convexity, was established in [34, 50] which is conservative. Local
linear convergence of the iterates to a solution was established in [14] for linear and
quadratic programs using spectral analysis. In the first main result, Theorem 2.3, we
describe two conditions that guarantee linear convergence of the ADMM iterates to
a solution. The first of these conditions follows from classical results of Lions and
Mercier [44]. The second condition is based on work of more recent vintage [36], is
much more prevalent in applications and generalizes the results of [14].

The (Fenchel-Legendre) dual problem corresponding to the problem (P ′) is (see,
for instance [12])

min
w∈V

J∗(ATw) +H∗(−w).

Here J∗ and H∗ are the Fenchel conjugates of J and H respectively. Instead of working
with this dual, we work with the following equivalent form with the change of variable
v = −w:

min
v∈V

J∗(−ATv) +H∗(v). (D′)
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Under the assumption that the solutions u and b of the primal and dual problems exist
and that the dual gap is zero, the following two inclusions characterize the solutions
of the problems (P ′) and (D′) respectively:

0 ∈ ∂J(u) + ∂(H ◦ A)(u);

0 ∈ ∂
(
J∗ ◦ (−AT )

)
(b) + ∂H∗(b).

In both cases, one has to solve an inclusion of the form

0 ∈ (B +D)(x), (2.7)

for general set-valued mappings B and D. For any η > 0, the Douglas–Rachford
algorithm [21,44] for solving (2.7) is given by

bk+1 ∈ T ′bk (k ∈ N), (2.8)

for T ′ := JηD (JηB(Id−ηD) + ηD) , (2.9)

where JηD and JηB are the resolvents of ηD and ηB respectively. The connection
between the ADMM algorithm (2.6a)-(2.6c) and the Douglas–Rachford algorithm
(2.8) was first discovered by Gabay [29] and is derived for convenience in the Appendix.

Given b0 and v0 ∈ Db0, following [57], define the new variable x0 := b0+ηv0 so that
b0 = JηDx0. We thus arrive at an alternative formulation of the Douglas–Rachford
algorithm (2.8):

xk+1 ∈ Txk (k ∈ N), (2.10)

for T := 1
2
(RηBRηD + Id) = JηB(2JηD − Id) + (Id−JηD), (2.11)

where RηD and RηB are the reflectors of the respective resolvents. This is exactly the
form of Douglas–Rachford considered in [44].

Remark 2.1 (proximal mappings of convex functions). Note that for our application

B := ∂
(
J∗ ◦ (−AT )

)
and D := ∂H∗, (2.12)

and so the resolvent mappings are the proximal mappings of the convex functions(
J∗ ◦ (−AT )

)
and H∗ respectively, and hence the resolvent mappings and correspond-

ing fixed point operator T are single-valued [47].

Proposition 2.2. Let J : U → R∪{+∞} and H : V → R be proper, lsc and convex.
Let A : U → V be linear and suppose there exists a solution to 0 ∈ (B + D)(x)
for B and D defined by (2.12). For fixed η > 0, given any initial points x0 and
(b0, v0) ∈ gphD such that x0 = b0 + ηv0, the sequences

(
bk
)
k∈N,

(
xk
)
k∈N and

(
vk
)
k∈N

defined respectively by (2.8), (2.10) and vk := 1
η

(
xk − bk

)
converge to points b ∈ Fix T ′,

x ∈ Fix T and v ∈ D (Fix T ′). The point b = JηDx is a solution to (D′), and
v = 1

η

(
x− b

)
∈ Db. If, in addition, A has full column rank, then the sequence(

bk, vk
)
k∈N corresponds exactly to the sequence of points generated in steps (2.6b) and

(2.6c) of Algorithm 2.1 and the sequence
(
uk+1

)
k∈N generated by (2.6a) converges to

u, a solution to (P ′).
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Proof. Following [22,57], we rewrite the Douglas–Rachford iteration 2.8 in two steps:
Given (b0, v0) ∈ gphD, for k ∈ N do

find (qk+1, sk+1) ∈ gph(B) such that qk+1 + ηsk+1 = bk − ηvk; (2.13a)

find (bk+1, vk+1) ∈ gph(D) such that bk+1 + ηvk+1 = qk+1 + ηvk. (2.13b)

The existence and uniqueness in the above steps follows from the representation lemma
[22, Corollary 3.6.3]. The mappings B,D are maximal monotone operators as the
subdifferentials of proper lsc convex functions. This together with the fact that the
solution set of (2.7) is non-empty yields that the sequence (bk, vk)k∈N defined by the
algorithm (2.13) converges to some (b, v) such that v ∈ Db and b solves (D′) [57,
Theorem 1]. By the change of variables xk = bk + ηvk, it follows that xk → x ∈ Fix T
for T given by (2.11).

For these definitions of B and D, the sequence
(
bk
)
k∈N generated by bk := JηDxk

for xk generated by (2.10) corresponds exactly to the sequence
(
bk
)
k∈N generated by

(2.8). Moreover, if A is full column rank, then by the discussion in [22] (see the
Appendix) both

(
bk
)
k∈N and the sequence

(
vk
)
k∈N generated by vk := 1

η

(
xk − bk

)
∈

Dbk correspond exactly to the sequences of points bk and vk generated by (2.6a)-
(2.6c). Consequently, by [22, Proposition 3.42]1 the sequence

(
uk
)
k∈N defined by

(2.6a) converges to a solution of (P ′).
We now state sufficient conditions guaranteeing linear convergence of the ADMM

and the Douglas–Rachford algorithms. The first conditions (i) of Theorem 2.3 are
classical. The second conditions are new.

Theorem 2.3 (local linear convergence I). Let J : U → R ∪ {+∞} and H : V → R
be proper, lsc and convex. Suppose there exists a solution to 0 ∈ (B + D)(x) for
B and D defined by (2.12) where A : U → V is an injective linear mapping. Let
x̂ ∈ Fix T for T defined by (2.11). For fixed η > 0 and any given triplet of points
(b0, v0, x0) satisfying x0 := b0 + ηv0, with v0 ∈ Db0, generate the sequence (vk, bk)k∈N
by (2.6a)-(2.6c) and the sequence (xk)k∈N by (2.10).

(i) Let O ⊂ U be a neighborhood of x̂ on which H is strongly convex with con-
stant µ and ∂H is β-inverse strongly monotone for some β > 0. Then, for
any (b0, v0, x0) ∈ O satisfying x0 := b0 + ηv0 ∈ O, the sequences (xk)k∈N and
(vk, bk)k∈N converge linearly to the respective points x ∈ Fix T and

(
b, v
)

with

rate at least K = (1− 2ηβµ2

(µ+η)2
)

1
2 < 1.

(ii) Suppose that T : W → W for some affine subspace W ⊂ U with x̂ ∈ W . On the
neighborhood O of x̂ relative to W , that is O ∩W , suppose there is a constant
κ > 0 such that

‖x− x+‖ ≥
√
κ dist (x,Fix T ) ∀x ∈ O ∩W, ∀x+ ∈ Tx. (2.14)

Then the sequences (xk)k∈N and (vk, bk)k∈N converge linearly to the respective
points x ∈ Fix T ∩W and

(
b, v
)

with rate bounded above by
√

1− κ.

1By convergence of vk → v and bk → b and the update rule (2.6c), Auk → v, from which the
claim follows – see the Appendix.
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In either case, the limit point b = JηDx is a solution to (D′), v ∈ Db and the sequence(
uk
)
k∈N given by (2.6a) of Algorithm 2.1 converges to u, a solution of (P ′).

Proof. The final statement of the theorem and the statements about the sequence(
bk, vk

)
follows from Proposition 2.2 where it is shown that the sequence (vk, bk)k∈N

generated by (2.6a)-(2.6c) corresponds to sequences
(
bk
)
k∈N and

(
vk
)
k∈N generated

respectively by (2.8) and vk = 1
η

(
xk − bk

)
∈ Dbk for

(
xk
)
k∈N generated by (2.10).

The linear convergence of the iterates of Algorithm 2.1 claimed in statements (i) and
(ii) follows from the properties of the operators T ′ and T defined respectively by (2.9)
and (2.11).

Part (i). Since H is assumed to be strongly convex with µ > 0 the modulus of
convexity onO, ∂H is strongly monotone with modulus of monotonicity µ [5, Example
22.3]. Since ∂H is also maximally monotone, using the identity ∂H = (∂H∗)−1 (see,
for example, [53, Corollary 3.49]) we conclude that ∂H∗ is Lipschitz continuous with
constant 1

µ
. Moreover, since ∂H is β-inverse strongly monotone on O, we have for

any x, y ∈ O

〈u− v, x− y〉 ≥ β‖u− v‖2, whenever u ∈ ∂H(x), v ∈ ∂H(y).

Hence ∂H∗ is strongly monotone with modulus β and Proposition 4 of [44] applies to
yield linear convergence of the sequences

(
xk
)

and
(
bk
)

to the respective limit points

x and b
‖xk − x‖ ≤ LKk; ‖bk − b‖ ≤ LKk, (2.15)

where L is some constant, K = (1− 2ηβ
(1+ηξ)2

)
1
2 and ξ = 1

µ
is the Lipschitz constant for

the set-valued map ∂H∗ on O. Now, since vk = 1
η
(xk − bk), we have for vk → v :=

1
η
(x− b) with the same rate as xk and bk, modulo a constant:

‖vk − v‖ ≤ 1
η

(
‖xk − x‖+ ‖b− bk‖

)
≤ 2LKk

η
. (2.16)

This completes the proof of the first statement. 4
Part (ii). Since B and D are maximal monotone operators the reflected resolvents

RηB and RηD are nonexpansive [5, Proposition 23.7]. The composition RηBRηD is
nonexpansive which implies that the mapping T is firmly nonexpansive [5, Proposition
4.2], and hence quasi-firmly nonexpansive on W . Condition (2.14) is the coercivity
condition (b) of [36, Lemma 3.1] which guarantees local linear convergence of fixed-
point iterations for (S, ε)-firmly nonexpansive mappings (S ⊂ Fix T ∩ W ). Quasi-
firmly nonexpansive mappings, under consideration here, are (Fix T ∩ W, 0)-firmly
nonexpansive. Thus, by [36, Lemma 3.1] the sequence (xk)k∈N converges linearly on
the neighborhood O with rate

√
1− κ. Nonexpansiveness of the resolvent JηD and

the relations bk = JηDxk and vk = 1
η

(
xk − bk

)
then complete the proof of the second

statement.

Remark 2.4. The strong convexity assumption (i) of Theorem 2.3 fails in a wide
range of applications, and in particular for feasibility problems (minimizing the sum
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of indicator functions). By Theorem 1.6, case (ii) of Theorem 2.3, in contrast, holds
in general for mappings T for which Id−T is metrically subregular and the fixed
point sets are isolated points with respect to an affine subspace to which the iterates
are confined. The restriction to the affine subspace W is a natural generalization
for the Douglas–Rachford algorithm, where the iterates are known to stay confined to
affine subspaces orthogonal to the fixed point set [37,54]. It would be far too restrictive
to require that Fix T be a singleton on the entire ambient space V rather than with
respect to just the affine hull of the iterates. We show that metric subregularity with
respect to this affine subspace holds in many applications. (See also Example 1.8.)

Remark 2.5. Proposition 2.2 and Theorem 2.3 and their proofs also hold in infinite
dimensional Hilbert spaces. Lemma 3.1 of [36] is stated for Euclidean spaces, but the
proof holds also on general Hilbert spaces.

Proposition 2.6 (polyhedrality of the Douglas–Rachford operator). Let J : U →
R ∪ {+∞} and H : V → R be proper, lsc and convex. Suppose, in addition, that J
and H are piecewise linear-quadratic. The operator T : V → V defined by (2.11)
with η > 0 fixed, is polyhedral for B and D given by (2.12) where A : U → V is a
linear mapping.

Proof. Since the functions J and H are proper, lsc, convex and piecewise linear-
quadratic, by [56, Theorem 11.14] so are the Fenchel conjugates, J∗ and H∗. The
subdifferentials B := ∂

(
J∗ ◦ (−AT )

)
and D := ∂H∗ and their resolvents, therefore,

are polyhedral mappings [56, Proposition 12.30]. Since the graphs of reflectors RηB

and RηD correspond to the graphs of their respective resolvents JηB and JηD through
a linear transformation, RηB and RηD are also polyhedral mappings. Since by Remark
2.1 the resolvents JηB and JηD are single-valued, the reflectors RηB and RηD are also
single-valued. Therefore T = 1

2
(RηBRηD + I) is polyhedral as the composition of

single-valued polyhedral mappings.

Theorem 2.7 (local linear convergence II). Let J : U → R ∪ {+∞} and H : V → R
be proper, lsc, convex, piecewise linear-quadratic functions (see Definition 1.3). Define
the operator T : V → V by (2.11) with η > 0 fixed and B and D given by (2.12)
where A : U → V is a linear mapping. Suppose that there exists a solution to
0 ∈ (B + D)(x), that T : W → W for W some affine subspace of V and that
Fix T ∩W is an isolated point {x}. Then there is a neighborhood O of x such that,
for all starting points (x0, v0, b0) with x0 := b0 + ηv0 ∈ O ∩W for v0 ∈ D(b0) so that
JηDx0 = b0, the sequence (xk)k∈N generated by (2.10) converges linearly to x where
b := JηDx is a solution to (D′). The rate of linear convergence is bounded above by√

1− κ, where κ = c−2 > 0, for c a constant of metric subregularity of Id−T at x for
the neighborhood O. Moreover, the sequence

(
bk, vk

)
k∈N generated by Algorithm 2.1

converges linearly to
(
b, v
)

with v = 1
η

(
x− b

)
, and the sequence

(
uk
)
k∈N defined by

(2.6a) of Algorithm 2.1 converges to a solution to (P ′).

Proof. By Proposition 2.6 the Douglas–Rachford operator T is polyhedral and thus
the first statement follows from Corollary 1.9. The statement about the sequences
generated by Algorithm 2.1 follows as in Theorem 2.3.
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3 Error Bounds and Iterative Penalization

In this section, we study an iteratively regularized algorithmic scheme for solving the
problems of the form

min {J(u) |u ∈ U and fj(Au) ≤ εj, j = 1, 2, . . . ,M } ,

where J : U → (−∞,+∞] is proper lsc and convex, the mapping A : U → V is linear,
for all j the nonnegative-valued function fj : V → R+ is convex and smooth (at least
at points that matter) and εj > 0. We refer to the inequality constraints as structured
constraints. It will be convenient to introduce the following notation that will help
to reduce clutter. We collect the constraints into a vector-valued function so that we
can write the problem as

minimize
u∈U

J(u)

subject to Fε(Au) ≤ 0,
(P)

where
Fε : V → RM := v 7→ (f1(v)− ε1, f2(v)− ε2, . . . , fM(v)− εM)T . (3.1)

Here the vector inequality is understood as holding element-wise.
A common approach to solving problems of the type (P) arising from inverse

problems is to apply implicitly the structured constraint by adding some (usually
smooth) quantification of the constraint violation into the objective function:

minimize
u∈U

J(u) + ρθ(Fε(Au)), (Pρ)

where θ : RM → (−∞,+∞] is a proper, lsc convex function and ρ > 0. This places
us in the context of the previous section since problem (Pρ) is the specialization of
(P ′) with H(Au) = ρθ(Fε(Au)).

As is often seen in the inverse problems literature, the constraint violation pa-
rameter εj = 0 (j = 1, . . . ,M), essentially penalizing divergence from the origin. A
prominent instance of this form of regularization is the squared norm: θ(v) := ‖v‖2.
There are many efficient methods available for solving (Pρ). It is clear that for a
certain value of ρ the optimal solution to (Pρ), uρ, will satisfy fj(Auρ) ≤ εj(ρ) with
the effective error εj(ρ) depending on ρ. What is not true in general, however, is that
the solution to (Pρ) corresponds to the solution to (P) for the constraint error ε(ρ).
Moreover, for our intended applications, U is a finite dimensional Euclidean space
with dimension n and the dimensionality of the constraints M grows superlinearly as
a function of n, so we would like to consolidate the constraints somehow while ex-
ploiting the phenomenon that, at the solution to (P) relatively few of the constraints
are in fact tight or active.

We consider convex penalties that reduce the dimensionality of the constraint
structure and have the property that θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0. Of
particular interest among penalties with this property are exact penalties, that is
penalties θ with the property that solutions to (Pρ) correspond to solutions to (P) for
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all values of ρ beyond a certain threshold ρ. For more background on exact penaliza-
tion see, for example, [11,17,19,25,33,46]. We point also to Friedlander and Tseng [28]
for a connection between exact penalization and what they call exact regularization as
this fits well with our viewpoint that the structured constraints Fε(Au) ≤ 0 constitute
a regularization of the model with regularization parameter ε. This illustrates the dis-
tinction between model-based regularization, that is, regularization of the constraints
motivated by external (eg. statistical) considerations, versus numerical regulariza-
tion motivated solely on the grounds of enabling efficient (approximate) numerical
solutions to (P).

While it is nice to know that, with exact penalization, one can achieve an exact cor-
respondence between the original constrained optimization problem and the penalized
problem, the whole point of relaxing the constraints is to reduce the computational
burden of strictly enforcing the constraints. As is often done in practice, one gradually
strengthens the constraints, finding intermediate points that nearly solve the relaxed
problem and using these as starting points for solving a more strictly penalized prob-
lem. Together with Theorem 3.4 below, the linear convergence rate established in
Theorems 2.3 and 2.7 of the previous section yield estimates on the distance of inter-
mediate points to the solution set of the relaxed problem as well as estimates on the
distance to feasibility for the unrelaxed problem.

3.1 Structured Constraints and penalization

Define
C := {u ∈ U |Fε(Au) ≤ 0} . (3.2)

This is a closed convex set since the fj are lsc and convex. If there exists some
α ∈ R such that C ∩ lev ≤α J is nonempty and bounded then (P) has a solution [5,
Theorem 11.9]. This will happen, for instance, if dom (J)∩C 6= ∅ and J is coercive [5,
Proposition 11.12], that is J satisfies

lim
‖u‖→∞

J(u) = +∞. (3.3)

Such assumptions are naturally satisfied in many applications. Moreover, lev ≤α J(u),
the lower level-set of J corresponding to the optimal value α in (P), is convex and
so the set of optimal solutions to (P) is also convex. Define Jρ := J + ρθ(Fε ◦ A)
for the convex, lsc function θ satisfying θ(w) ≥ 0 for all w and θ(w) = 0 if and only
if Fε(w) ≤ 0. Then Jρ is convex, lsc and corresponds exactly to J on the set C.
Otherwise Jρ increases pointwise to +∞ at points outside C as ρ → ∞. For (ρk)k∈N
with ρk → ∞, the sequence of functions (Jρk) epi-converges (see [56, Definition 7.1])
to J + ιC as k → +∞ where ιC is the indicator function of the set C. As we will
allow approximate solution of problems (Pρ) it will be helpful to recall the set of
γ-minimizers: γ − argmin Jρ := {u | Jρ(u) ≤ inf Jρ + γ }. The relation between the
solution sets to (P) and (Pρ) is detailed in the following, which is a direct application
of [56, Theorem 7.33].
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Proposition 3.1. Let J : U → (−∞,+∞], Fε : V → RM and θ : RM → R
be proper, lsc and convex, and let A : U → V be linear. Let J be coercive with
dom J ∩ C 6= ∅ for C defined by (3.2). Suppose further that θ(w) ≥ 0 and that
θ(w) = 0 if and only if Fε(w) ≤ 0. Define Jρk := J + ρkθ(Fε ◦ A) where ρk ↗ +∞
as k ↗ +∞. Then inf Jρk → inf J + ιC < +∞. Moreover, for any sequence of
errors γk ↘ 0 and corresponding points uk ∈ γk − argmin Jρk , the sequence

(
uk
)
k∈N

is bounded, and all its cluster points belong to argmin {J + ιC}.

Proof sketch. The property of the convex penalty θ that θ(w) ≥ 0 and θ(w) = 0
if and only if Fε(w) ≤ 0 yields epi-convergence of Jρk to J + ιC. Coercivity of J
guarantees that Jρ is level bounded for all values of ρ > 0. These two properties,
together with lower semicontinuity and the fact that J and Jρ are proper, are all that
is needed to prove the result. 2

If the regularization were exact, then we would know that for all parameter values
ρ large enough, the solutions to (Pρ) coincide with solutions to (P). We return to
this later.

3.2 Solution to the regularized Subproblem and error bounds

We now turn our attention to solution of the problem (Pρ) for a fixed value of ρk.
The ADMM algorithm discussed in Section 2 is useful for solving this problem in the
sense that it has an error bound under specific assumptions which gives a stopping
rule. This is not unique to Algorithm 2.1, but we focus on this method due to its
prevalence in practice.

Recall the exact problem (P):

minimize
u∈U

J(u)

subject to Fε(Au) ≤ 0.
(P)

It will be convenient to rewrite the penalized problem2 (Pρ) as

minimize
u∈U

1

ρ
J(u) + θ(Fε(Au)). (Pρ)

Consider also the limiting problem

minimize
u∈U

θ(Fε(Au)). (P∞)

We view problem (Pρ) as the regularized version of (P∞) with J as the regularizing
functional and 1

ρ
as the regularization parameter. Denote the solution sets to these

problems by

S := argmin {J(u) |u ∈ U, Fε(Au) ≤ 0} ,

Sρ := argmin

{
1

ρ
J(u) + θ (Fε(Au)) |u ∈ U

}
,

S∞ := argmin {θ (Fε(Au)) |u ∈ U } .
2Of course, the value of the problem is not the same, but the solutions are.
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If the penalization θ satisfies θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0, then it
is immediately clear that S∞ corresponds to the feasible set of problem (P) hence
S ⊂ S∞. What is more remarkable is that, if a Lagrange multiplier for (P) exists,
then Sρ = S for all ρ large enough, that is, the penalty θ is exact.

Theorem 3.2 (Theorem 4.2 of [28]). Suppose that S is nonempty and compact, and
that there exist Lagrange multipliers λ for (P). Let the penalization θ in (Pρ) be
convex. Assume, moreover, that θ satisfies the condition θ(Fε(Au)) = 0 if and only
if Fε(Au) ≤ 0. Then the solution set to the penalized problem, Sρ, coincides with the
solution set to the exact problem, S, for all ρ > θ◦(λ) where θ◦ is the polar function

of θ given by θ◦(λ) = supx�0
λT x
θ(x)

.

It is easy to check whether a solution uρ ∈ Sρ is in fact feasible for (P) (and
hence also in S) by simply evaluating the value of θ (Fq(Auρ)). More generally, one
would check whether the first order optimality conditions for (P∞) are satisfied at uρ,
namely

0
?
∈ ∂θ (Fε ◦ A(·)) at uρ. (3.4)

An explicit formula for the subdifferential in (3.4) for image denoising and deconvolu-
tion is given in Section 4 as this will be needed for computing Step (2.6b) of Algorithm
2.1.

If, in addition, S∞ is weakly sharp (see Definition 1.4), then one can obtain an
upper bound for the distance of solutions to (Pρ) to feasible solutions to (P), even in
the absence of Lagrange multipliers for (P).

Assumption 3.3.

(i) The solution set S∞ of problem (P∞) is nonempty.

(ii) lev ≤α J is bounded for each α ∈ R and infx∈U > −∞.

(iii) The solution set S∞ of (P∞) is weakly sharp of order ν ≥ 1.

Theorem 3.4. Suppose Assumption 3.3(i)-(ii) hold.

(i) For any ρ > 0,
⋃
ρ≥ρ Sρ is bounded.

(ii) If, in addition, Assumption 3.3(iii) holds with modulus of sharpness ν, then for
any ρ > 0 there exists τ > 0 such that

dist(uρ, S∞)ν−1 ≤ τ

ρ
, ∀uρ ∈ Sρ, ρ ≥ ρ. (3.5)

(iii) If, in addition, Assumption 3.3(iii) holds and the penalization θ is exact, then
for all ρ large enough, uρ ∈ S and dist(uρ, S∞) = dist(uρ, S) = 0.

Proof. (i) and (ii). Under the assumption 3.3, Theorem 5.1 in [28] directly applies to
yield the result. 4

(iii). If the penalization θ is exact, then θ(Fε(Au)) = 0 if and only if Fε(Au) ≤ 0,
hence S = Sρ for all ρ large enough, and S∞ corresponds exactly to the feasible set
in (P).
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Remark 3.5. The error bound (3.5) holds independent of the existence of Lagrange
multipliers for (P), hence, for exact penalization under Assumption 3.3, Theorem 3.4
yields an upper bound on the distance of solutions to (Pρ) to feasible points for (P).

4 Application: image deconvolution and denoising

with statistical multiscale analysis

We specialize the above results to the application of optimization with statistical
multiscale side constraints. All of the examples considered in this section satisfy the
requirements of Theorem 2.7, and thus for each fixed value of the penalty parameter
ρ local linear convergence to a solution of (Pρ) is guaranteed. Moreover, the penalty
function θ that we use is exact and hence by Theorem 3.2, for ρ large enough, the
computed solution to (Pρ) is also a solution to (P). What is not known a priori is
what value of ρ yields the correspondence. Moreover, since the whole point of the
relaxation (Pρ) is to remove the burden of satisfying the constraints, we approach a
solution to (P) via a sequence of solutions to (Pρ) for progressively larger values of ρ.
This is described precisely in the following sequentially penalized algorithm.

Algorithm 4.1 (Exactly Penalized Sequential ADMM).
Initialization. Given an image y, a sequence of error tolerances (γk)k∈N
with 0 ≤ γk → 0 Choose parameters: β > 1 and the penalty parameter
η ∈ (0, 2). Initialize k = i = 0, b(0,0) = 0, v0 = y, u(0,0) = ATy, and compute
u(0,1) = argmin u

{
J(u) + 〈b(0,0), Au〉+ η

2
‖Au− v(0,0)‖2 + 1

2
‖u− u(0,0)‖2

}
.

For k = 0, 1, 2, . . .

• While ‖u(k,i+1) − u(k,i)‖ > γk

– Compute (v(k,i+1), b(k,i+1)) via Algorithm 2.1 steps (2.6b)-(2.6c) with H :=
ρkθ (Fq (·)) for the exact penalty θ and structured constraints Fq.

– Increment i = i+ 1 and calculate u(k,i+1) via Algorithm 2.1 step (2.6a).

• Update/reset: Set u(k+1,1) := u(k,i+1) and ρk+1 = βρk. Set k = k + 1 and
i = 0. If θ

(
Fq
(
u(k,1)

))
= 0, set γk = 0.

The outer iteration, indexed by k, consists of numerical approximations to solutions of
(Pρ) for the penalty parameter ρk. The the inner iteration proceeds with the current
value of ρk until the step size between successive iterates uk,i+1 and uk,i drops in a
linear fashion below a given tolerance γk. From Theorem 2.7 one can then obtain a
posteriori estimates on the distance of the iterate uk+1,j to the true solution. Then
ρk is increased by a constant factor. Since, for this model the penalization θ is exact,
once the constraints appear to be satisfied (as determined by monitoring the value of
θ
(
Fq
(
vk
))

), it is reasonable to conclude that the correspondence between problems
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(Pρ) and (P) holds, and the penalty ρk no longer needs to be updated; the inner loop
of the algorithm then can be run to the desired accuracy. As indicated in Figures
1(b) and 4, the constraints appear to be satisfied when the penalty term ρkθ

(
Fq
(
vk
))

(green plot) drops suddenly to machine precision.
The application problem involves image deconvolution and denoising with statis-

tical multiscale estimation as presented in [2,26,27]. We are well aware that there are
many ways to model such problems that permit much less computationally intensive
numerical solutions than the technique we present here. Our interest in multiresolu-
tion deconvolution/denoising is two-fold: first, it is one of the few techniques available
that has the potential to yield quantitative (i.e. statistical) guarantees for the recov-
ered images, and secondly, it is an important instance of convex optimization problems
where the number of constraints grows superlinearly as a function of the number of
unknowns. Our numerical demonstration addresses the first issue of quantitative im-
age denoising: if the numerics do not permit estimates for the distance to the model
solution, then the quantitative assurances of the model are irrelevant. Unlike the nu-
merical approach proposed in [26,27], the numerical approach we present here permits
error bounds to within machine accuracy of our numerical solution to the true model
solution.

Following the approach proposed in [26] we quantify the difference between an
estimate v = Au and the data y via the maximum absolute value of all weighted inner
products of the residual function 4(·; y) : Rn → Rn:

fj(v) := |〈ωj,4(v; y)〉| , j ∈ {1, 2, . . . ,M}. (4.1)

The residual function used in [26] 4 is simply v − y. The weights ωj are scaled
window functions so that the set I ⊂ {1, 2, . . . ,M} is the index set corresponding
to all collections of these subsets of the image. The statistical multiscale analysis
requires that, on each window,

max
j∈I
{fj(v)} ≤ q. (4.2)

The same error q is specified at all scales. Hence Fε in (3.1) specializes to

Fq : Rn → RM+1 := v 7→ (f1(v)− q, f2(v)− q, . . . , fM(v)− q, 0)T , (4.3)

for fj : Rn → R defined by (4.1) (j = 1, . . . ,M) and

θ : RM+1 → R : θ(w) := max{w1, w2, . . . , wM+1}. (4.4)

(Here we are expanding the original Fε by the constant function fM+1(v) := 0.)
The max function is a standard tool in exact penalization methods [17, 19] and falls
naturally into the context of piecewise linear-quadratic functions.

Algorithm 4.1 does not specify how the iterates u(k,j) and v(k,j) are calculated. The
linear convergence of the inner iterations predicted in Theorem 2.7, from which error
bounds can be determined, as well as the numerical convergence of the outer iterates
to problem (P) is discussed next.
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4.1 Prox-evalutation

Computation of u(k,i+1) and v(k,i+1) in Algorithm 4.1 involves minimizing the sum of
a convex quadratic function and (in general) a convex, nonsmooth, piecewise linear-
quadratic function. This can be solved via any number of techniques ranging from
first order methods like FISTA [10] to higher-order nonlinear optimization methods
like quasi-Newton methods studied in [41]. In order to take advantage of the relative
sparsity of the active constraints, we propose the following (exact) algorithm.

Algorithm 4.2 (Steepest Subdifferential Descent).
Initialization. Given b, u, the constant η > 0 and an initial point v0, compute
the residual r0 := b+ ηAu− ηv0 and the projected residual z0 := P∂(θ(Fq(v0)))(r

0) for
∂(θ(Fq(v

0))) given by (4.10).

For l = 0, 1, 2, . . .

• If zl = rl

– set v = vl and STOP;

• else

– set vl+1 = vl+λl
(
zl − rl

)
where λl > 0 is the largest constant λ such that

θ
(
Fq
(
vl + λ

(
zl − rl

)))
= fi

(
vl + λ

(
zl − rl

))
− q for i ∈ I(vl) with

I(v) := {j | fj(v)− q = θ(Fq(v))} ; (4.5)

– compute rl+1 := b+ ηAu− ηvl+1 and the projected residual

zl+1 := P∂(θ(Fq(vl+1)))(r
l+1); (4.6)

– increment l = l + 1.

Algorithm 4.2 is an active set method and the set I(v) defined by (4.5) is the set of
active indexes at v. Another helpful interpretation is as a steepest subgradient descent
method for solving

argmin v

{
G(v) := θ (Fq(v))− 〈b, v〉+ η

2
‖Au− v‖2

}
. (4.7)

The steepest descent step is
vl+1 = vl + λld

l,

for dl := P∂G(v)(0) = −rl + zl with zl := P∂θ(Fq(vl))
(
rl
)

and rl = b + η
(
Au− vl

)
.

The choice of the step length λl ensures that, at each step l, the active set is growing;
specifically,

I
(
vl
)
⊂ I

(
vl + λld

l
)
.
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At termination, the subdifferential ∂θ
(
Fq
(
vl
))

is large enough that it contains the
residual rl. The terminal point of Algorithm 4.2, v, is a point in (4.7) since it satisfies
the first-order optimality conditions:

0 = z − b− η (Au− v) ∈ ∂θ (Fq(v))− b− η (Au− v) = ∂G(v), (4.8)

where z = P(∂θ(Fq(v))) (b+ η (Au− v)). Replacing u and b with u(k,i+1) and b(k,i) re-
spectively yields the update for v(k,i) in Algorithm 4.1.

The expression for the subdiffferential ∂θ (Fq) is particularly simple in this case.
Note that I(v) 6= ∅ for all v. Applying the (convex) calculus of subdifferentials to the
objective θ(Fε(v)), as permitted by the regularity of θ and F (see, for instance [18,
Section 2.3]), yields

∂θ (Fq(v)) = co {∇fj(v) | j ∈ I(v)} , (4.9)

where co denotes the convex hull of a set of points. This, of course, assumes that
fj is differentiable at v for those j ∈ I(v). Inspection of (4.1) shows that this is not
the case in general, in particular at points v∗ where fj(v

∗) = 0. However, such points
will never be in the active set I(v∗) since f(v∗) − q < 0 ≤ θ (Fq (v∗)) for all q > 0,
so we can safely apply formula (4.9) without further ado. This yields the following
specialization for fj(v) = |〈wj, v − y〉| given by (4.1):

∂θ (Fq (v)) = co {∇fj(v) | j ∈ I(v)} (4.10)

=

{
co {{sign (〈wj, v − y〉)wj | j ∈ I(v) \ {M + 1}} , 0} θ(Fq(v)) ≤ 0

co {sign (〈wj, v − y〉)wj | j ∈ I(v)} θ(Fq(v)) > 0.

4.2 Synthetic data

Fig. 1 shows a set of synthetic exact data u∗ ∈ Rn (shown in blue) and correspond-
ing noisy data y ∈ Rn (shown in green) with n = 512 data points, as well as the
reconstructed/denoised signal u ∈ Rn (shown in red). In this example we consider
only denoising, that is, the imaging operator A is the identity so v = u. The noisy
data y was generated by adding i.i.d. Gaussian random noise with standard deviation
σ = 0.05 to each original data point of u∗. In our specialization of problem (P) we
use the total variation penalty

J(u) := a||∇u||22, (4.11)

where ∇ is the (discrete) gradient operator. The structured constraints are given by
(4.2). The weights wj ∈ Rn are scaled window functions of all intervals of lengths
between 1 and 20 pixels, and I ⊂ {1, 2, . . . ,M} is the index set corresponding to all
collections of successive pixels in {1, 2, . . . , n} of cardinality – or length – from 1 to
20. The same error q is specified at all scales.

For a signal length n = 512 with interval lengths from 1 to 20 the number of
windows is M = 10050. The constant α is, strictly speaking, redundant but was
introduced as an additional means to balance the contributions of the individual
terms to make the most of limited numerical accuracy (double precision). We chose
α = 0.01. The constant q was taken to be 2σ.
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Figure 1: (a) Original, noisy and reconstructed data for a one-dimensional denoising
problem. (b) Outer iterates k of Algorithm 4.1 showing solutions, the constraint
violation, the active set size and the objective value for the penalized problem (Pρ) for
successively larger values of the penalty parameter ρ. (c) Inner iterates of Algorithm
4.1 with ρ5 = .032: step sizes, constraint violation, objective value and gap between
the primary, domain-space variables u(k,i).
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(a) (b)

Figure 2: (a) Original data (STED image of Tubulin), (b) an enlargement of the
indicated box to be processed. The length of scale bar in (a) is 1µm, the size of the
reconstruction window (b) is 640× 640 nm2.

Figure 1(a) shows very good correspondence of the reconstructed signal to the
original. The multi-resolution constraint prevents the usual “blocky” artifacts com-
mon to image denoising with TV-regularization. The eventual (starting from around
iteration 15) linear convergence of the algorithm can be seen in Figure 1(c). Un-
der the assumption that the latter iterates are indeed in the region of local lin-
ear convergence, the observed convergence rate is c = 0.9245, which yields an a
posteriori upper bound on the distance of the 39th iterate to the true solution:
‖u39 − u∗‖ ≤ c

1−c‖u
38 − u39‖ = 0.001244. Since the signal length is 512, this amounts

to 5 digits of accuracy in the pointwise value of the signal.

4.3 Laboratory data

For our main demonstration, we are presented with an image y ∈ Rn (Figure 2(a))
generated from a Stimulated Emission Depletion (STED) microscopy experiment [35,
38] conducted at the Laser-Laboratorium Göttingen examining tubulin, represented
as the “object” u ∈ Rm. The imaging model is simple linear convolution, Au ≈ y
where A is a convolution matrix with a nonsymmetric experimentally measured point-
spread function (290nm2). The measurement y is noisy or otherwise inexact, and thus
an exact solution Au = y is not desirable. Although the noise in such images is usually
modeled by Poisson noise, a Gaussian noise model with constant variance suffices as
the photon counts are of the order of 100 per pixel and do not vary significantly across
the image. Figure 2(b) shows a close-up which we used as the noisy data y ∈ R2 with
n = 64× 64 data points. We calculate the numerically reconstructed tubulin density
u shown in Figure 3(a) via Algorithm 4.1 for the problem (Pρ) with the qualitative
objective

J(u) := α||u||2. (4.12)
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(a) (b)

Figure 3: (a) Numerical reconstruction via Algorithm 4.1 from the imaging data
shown in Figure 2 for ρ = 4096. (b) The reconstruction convolved with the measured
PSF. At each resolution used for the reconstruction, the sum of the pixel values in
(b) lie within a confidence interval of 3σ of those in Figure 2(b).

For the image size n = 64×64 with the window system of squares of lengths 1 and
2, the number of windows is M = 8065. The constant α in (4.12) is, strictly speaking,
redundant but was introduced as an additional means to balance the contributions
of the individual terms to make the most of limited numerical accuracy (double pre-
cision). We chose α = 0.01. The constant q was chosen so that the model solution
would be no more than 3 standard deviations from the noisy data on each interval of
each scale.

We emphasize that, since this is experimental data, there is no “truth” for com-
parison - the constraint, together with the error bounds on the numerical solution to
the model solution provide statistical guarantees on the numerical reconstruction [26].
The numerical “image” generated from the reconstructed tubulin density, u, is given
by v = Au and is shown in Figure 3(b); this figure is a denoised version of the
measured data shown in Figure 2(b).

In Figure 4(a) a sample run of the algorithm shows a succession of outer iterations.
The inner iteration is shown in Figure 4(b) with the value of ρ11 = 4096 for which the
constraints are exactly satisfied (to within machine precision), indicating the corre-
spondence of the computed solution of problem (Pρ) to a solution to the exact model
problem (P). The eventual (starting from around iteration 1500) linear convergence
of the algorithm can be seen in Figure 4(c). Under the assumption that the latter
iterates are indeed in the region of local linear convergence, the observed convergence
rate is c = 0.9997, which yields an a posteriori upper estimate of the pixelwise error
of about 8.9062e−4, or 3 digits of accuracy at each pixel.
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Figure 4: (a) Outer iterates k of Algorithm 4.1 showing solutions, constraint violation,
the value of the regularizer, the objective value for the penalized problem (Pρ) and
the active set size for successively larger values of the penalty parameter ρ. (b) Inner
iterates of Algorithm 4.1 with ρ11 = 4096: step sizes, constraint violation, objective
value and gap between the auxiliary, image-space variables v(k,i) and the primary,
domain-space variables u(k,i).
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5 Concluding remarks

We have focused our attention on the ADMM algorithm due partly to its prevalence
in practice, and partly its amenability to our theoretical techniques. The parameter
η in Algorithm 2.1 was left constant. How to choose this parameter in the context of
minimization is a perplexing question and worthy of further study. Our theoretical
framework can also be adapted to Krasnoselski-Mann relaxations of the Douglas–
Rachford algorithm. Statements about this will appear in work underway studying
more generally averaged mappings.

The statistical interpretation of the reconstruction in Figure 3(b) as described
in [26, 27] opens the door to a quantitative approach to image processing, but this
is only valid when one can estimate the distance of the numerical approximation to
the exact solution to the underlying model optimization problem (P). Determining
quantitative estimates for how close the numerical solution shown in Figure 3(a) is
to an exact solution to problem (P) under the assumption of exact evaluation of the
associated prox operators of has been the topic of our study.

What is needed and largely missing in the current treatment of algorithms in the
literature is a complete error analysis accounting for accumulated errors at each stage
of algorithms – due to finite precision or finite termination of iterative procedures
– together with statements about how close one can get to the solution to a given
optimization problem, as opposed to its optimal value, the latter having in general
no necessary connection to the former. This is a monumental project that has not
received as much attention in the literature as studies of complexity based upon func-
tion values. As we argued, the standard approach for handling inexact computation
by assuming summable errors does not solve the problem, it just distributes it over
infinitely many iterates. An alternative to this was suggested in [40, Section 6] and
applied in [45] which allows a fixed error over all iterations without compromising
local linear convergence. More work in this direction would narrow the gap between
theory and practice.

Appendix

Duality of ADMM and the Douglas–Rachford Algorithm. Consider the sequence(
bk, vk

)
k∈N of the Douglas–Rachford iteration 2.8, for the case B := ∂(J∗ ◦ (−AT ));

D := ∂H∗. Recalling the two-step implementation (2.13), denote p̄ := bk − ηvk and
p′ := qk+1. Then (2.13a) is the proximal step p′ = (I + η∂(J∗ ◦ (−AT )))−1p̄ on the
operator B = ∂(J∗ ◦ (−AT )). If A has full column rank, by [22, Proposition 3.32(iv)],
this step can be performed by

uk+1 = arg min
u
{J(u) + 〈p̄+ ηvk, Au〉+ η

2
‖Au− vk‖2}; (5.1)

p′ = p̄+ ηAuk+1. (5.2)

Indeed, since A has full rank, J(u) + 〈p̄+ ηvk, Au〉+ η
2
‖Au− vk‖2 is a proper strongly

convex function of u and has a unique minimizer uk+1. From the optimality condition
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for (5.1),
0 ∈ ∂J(uk+1) + AT (p̄+ ηAuk+1) = ∂J(uk+1) + ATp′.

Hence, (uk+1,−ATp′) ∈ gph ∂J which implies (−ATp′, uk+1) ∈ gph ∂J∗. This gives

⇔ (p′, uk+1) ∈ gph
(
∂J∗ ◦ (−AT )

)
⇔ (p′,−Auk+1) ∈ gph

(
−A ◦ ∂J∗ ◦ (−AT )

)
⊆ gph ∂

(
J∗ ◦ (−AT )

)
.

Using (5.2),

(p′, 1
η
(p̄− p′) ∈ gph ∂

(
J∗ ◦ (AT )

)
⇔ p′ = (I + η∂(J∗ ◦ (AT )))−1p̄.

Substituting p̄ = bk − ηvk in (5.1)-(5.2) yields

uk+1 = arg min
u
{J(u) + 〈bk − ηvk + ηvk, Au〉+ η

2
‖Au− vk‖2}; (5.3)

qk+1 = bk − ηvk + ηAuk+1. (5.4)

Similarly, if we denote p̄ := qk+1 + ηvk(= bk + ηAuk+1) and p′ := bk+1, (2.13b)
is the proximal step p′ = (I + η∂H∗)−1p̄ on the operator D = ∂H∗ which can be
performed via

vk+1 = arg min
v
{H(v)− 〈p̄− ηAuk+1, v〉+ η

2
‖Auk+1 − v‖2};

p′ = p̄− ηvk+1.

Substituting p̄ = bk + ηAuk+1,

vk+1 = arg min
v
{H(v)− 〈bk + ηAuk+1 − ηAuk+1, v〉+ η

2
‖Auk+1 − v‖2}; (5.5)

bk+1 = bk + ηAuk+1 − ηvk+1. (5.6)

Now, (5.3)-(5.4) and (5.5)-(5.6) together yield

uk+1 = arg min
u
{J(u) + 〈bk, Au〉+ η

2
‖Au− vk‖2};

vk+1 = arg min
v
{H(v)− 〈bk, v〉+ η

2
‖Auk+1 − v‖2};

bk+1 = bk + η(Auk+1 − vk+1).

This is the ADMM algorithm (2.6a)-(2.6c) for the primal problem (Pλ). 2
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[43] J. LIANG, G. PEYRÉ, J. FADILI, AND D. R. LUKE, Activity identification
and local linear convergence of Douglas–Rachford under partial smoothness, in
Proceedings of the SSVM 2015, 2015.

[44] P. L. LIONS AND B. MERCIER, Splitting algorithms for the sum of two non-
linear operators, SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

[45] D. R. LUKE. Local linear convergence of approximate projections onto regularized
sets, Nonlinear Anal., 75 (2012), pp. 1531–1546.

[46] O. L. MANGASARIAN, Sufficiency of exact penalty minimization, SIAM J.
Control Optim., 23 (1985), pp. 30–37.
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