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Abstract

The method of alternating projections (MAP) is a common method for solving feasibility prob-
lems. While employed traditionally to subspaces or to convex sets, little was known about
the behavior of the MAP in the nonconvex case until 2009, when Lewis, Luke, and Malick de-
rived local linear convergence results provided that a condition involving normal cones holds
and at least one of the sets is superregular (a property less restrictive than convexity). How-
ever, their results failed to capture very simple classical convex instances such as two lines in a
three-dimensional space.

In this paper, we extend and develop the Lewis-Luke-Malick framework so that not only
any two linear subspaces but also any two closed convex sets whose relative interiors meet
are covered. We also allow for sets that are more structured such as unions of convex sets.
The key tool required is the restricted normal cone, which is a generalization of the classical
Mordukhovich normal cone. Numerous examples are provided to illustrate the theory.
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1 Introduction

Throughout this paper, we assume that

(1) X is a Euclidean space

(i.e., finite-dimensional real Hilbert space) with inner product ⟨·, ·⟩, induced norm ∥ · ∥, and in-
duced metric d.

Let A and B be nonempty closed subsets of X. We assume first that A and B are additionally
convex and that A ∩ B ̸= ∅. In this case, the projection operators PA and PB (a.k.a. projectors or
nearest point mappings) corresponding to A and B, respectively, are single-valued with full do-
main. In order to find a point in the intersection A and B, it is very natural to simply alternate the
operators PA and PB resulting in the famous method of alternating projections (MAP). Thus, given a
starting point b−1 ∈ X, sequences (an)n∈N and (bn)n∈N are generated as follows:

(2) (∀n ∈ N) an := PAbn−1, bn := PBan.

In the present consistent convex setting, both sequences have a common limit in A ∩ B. Not sur-
prisingly, because of its elegance and usefulness, the MAP has attracted many famous mathemati-
cians, including John von Neumann [28] and Norbert Wiener [29] and it has been independently
rediscovered repeatedly. It is out of scope of this article to review the history of the MAP, its many
extensions, and its rich and convergence theory; the interested reader is referred to, e.g., [5], [9],
[13], and the references therein.

Since X is finite-dimensional and A and B are closed, the convexity of A and B is actually not
needed in order to guarantee existence of nearest points. This gives rise to set-valued projection op-
erators which for convenience we also denote by PA and PB. Dropping the convexity assumption,
the MAP now generates sequences via

(3) (∀n ∈ N) an ∈ PAbn−1, bn ∈ PBan.

This iteration is much less understood than its much older convex cousin. For instance, global
convergence to a point in A ∩ B cannot be guaranteed anymore [11]. Nonetheless, the MAP is
widely applied to applications in engineering and the physical sciences for finding a point in
A ∩ B (see, e.g., [27]). Lewis, Luke, and Malick achieved a break-through result in 2009, when
there are no normal vectors that are opposite and at least one of the sets is superregular (a property
less restrictive than convexity). Their proof techniques were quite different from the well known
convex approaches; in fact, the Mordukhovich normal cone was a central tool in their analysis.
However, their results were not strong enough to handle well known convex and linear scenarios.
For instance, the linear convergence of the MAP for two lines in R3 cannot be obtained in their
framework.

The goal of this paper is to extend the results by Lewis, Luke and Malick to make them applicable in more
general settings. Their theory is unified with classical convex convergence results. We even allow for sets
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that are unions of superregular (or even convex) sets. The known optimal convergence rate for the MAP
for two linear subspaces is also recovered.

Our principal tool is the new restricted normal cone, which we carefully investigated in the com-
panion paper [6]. In a parallel paper [7], we apply our results to the important problem of sparsity
optimization with affine constraints.

The remainder of the paper is organized as follows. The theoretical machinery from variational
analysis underlying our main results is reviewed in Section 2. We are then in a position to provide
in Section 3 our main results dealing with the local linear convergence of the MAP.

Notation

The notation employed in this article is quite standard and follows largely [8], [24], [25], and
[26]; these books also provide exhaustive information on variational analysis. The real num-
bers are R, the integers are Z, and N :=

{
z ∈ Z

∣∣ z ≥ 0
}

. Further, R+ :=
{

x ∈ R
∣∣ x ≥ 0

}
,

R++ :=
{

x ∈ R
∣∣ x > 0

}
and R− and R−− are defined analogously. Let R and S be subsets

of X. Then the closure of S is S, the interior of S is int(S), the boundary of S is bdry(S), and
the smallest affine and linear subspaces containing S are aff S and span S, respectively. The lin-
ear subspace parallel to aff S is par S := (aff S) − S = (aff S) − s, for every s ∈ S. The rela-
tive interior of S, ri(S), is the interior of S relative to aff(S). The negative polar cone of S is
S⊖ =

{
u ∈ X

∣∣ sup ⟨u, S⟩ ≤ 0
}

. We also set S⊕ := −S⊖ and S⊥ := S⊕ ∩ S⊖. We also write R ⊕ S
for R + S :=

{
r + s

∣∣ (r, s) ∈ R × S
}

provided that R ⊥ S, i.e., (∀(r, s) ∈ R × S) ⟨r, s⟩ = 0. We
write F : X ⇒ X, if F is a mapping from X to its power set, i.e., gr F, the graph of F, lies in X × X.
Abusing notation slightly, we will write F(x) = y if F(x) = {y}. A nonempty subset K of X is a
cone if (∀λ ∈ R+) λK :=

{
λk

∣∣ k ∈ K
}
⊆ K. The smallest cone containing S is denoted cone(S);

thus, cone(S) := R+ · S :=
{

ρs
∣∣ ρ ∈ R+, s ∈ S

}
if S ̸= ∅ and cone(∅) := {0}. The smallest con-

vex and closed and convex subset containing S are conv(S) and conv (S), respectively. If z ∈ X
and ρ ∈ R++, then ball(z; ρ) :=

{
x ∈ X

∣∣ d(z, x) ≤ ρ
}

is the closed ball centered at z with radius ρ

while sphere(z; ρ) :=
{

x ∈ X
∣∣ d(z, x) = ρ

}
is the (closed) sphere centered at z with radius ρ. If u

and v are in X, then [u, v] :=
{
(1 − λ)u + λv

∣∣ λ ∈ [0, 1]
}

is the line segment connecting u and v.

2 Auxiliary theoretical results

In this section, we fix some basic notation used throughout this article. We also collect several
auxiliary results from [6] that will be useful in the proof of the main results on the MAP.
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Projections

Definition 2.1 (distance and projection) Let A be a nonempty subset of X. Then

(4) dA : X → R : x 7→ inf
a∈A

d(x, a)

is the distance function of the set A and

(5) PA : X ⇒ X : x 7→
{

a ∈ A
∣∣ dA(x) = d(x, a)

}
is the corresponding projection.

The following result is well known.

Proposition 2.2 (existence) (See, e.g., [6, Proposition 1.2].) Let A be a nonempty closed subset of X.
Then (∀x ∈ X) PA(x) ̸= ∅.

Example 2.3 (sphere) (See, e.g., [6, Example 1.4].) Let z ∈ X and ρ ∈ R++. Set S := sphere(z; ρ).
Then

(6) (∀x ∈ X) PS(x) =

{
z + ρ x−z

∥x−z∥ , if x ̸= z;

S, otherwise.

In view of Proposition 2.2, the next result is in particular applicable to the union of finitely many
nonempty closed subsets of X.

Lemma 2.4 (union) Let (Ai)i∈I be a collection of nonempty subsets of X, set A :=
∪

i∈I Ai, let x ∈ X,
and suppose that a ∈ PA(x). Then there exists i ∈ I such that a ∈ PAi(x).

Proof. Indeed, since a ∈ A, there exists i ∈ I such that a ∈ Ai. Then d(x, a) = dA(x) ≤ dAi(x) ≤
d(x, a). Hence d(x, a) = dAi(x), as claimed. ■

The projection onto a nonempty closed convex set has very nice properties as we point out next.

Fact 2.5 (projection onto closed convex set) Let C be a nonempty closed convex subset of X, and let x,
y and p be in X. Then the following hold:

(i) PC(x) is a singleton.

(ii) PC(x) = p if and only if p ∈ C and sup ⟨C − p, x − p⟩ ≤ 0.

(iii) ∥PC(x)− PC(y)∥2 + ∥(Id−PC)(x)− (Id−PC)(y)∥2 ≤ ∥x − y∥2.

(iv) ∥PC(x)− PC(y)∥ ≤ ∥x − y∥.

Proof. (i)&(ii): [5, Theorem 3.14]. (iii): [5, Proposition 4.8]. (iv): Clear from (iii). ■
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Restricted normal cones

Let us start by reviewing the definitions of various normal cones from variational analysis (see,
e.g., [8], [10], [24], [25], and [26] for further information and applications).

Definition 2.6 (normal cones) (See also [6, Definition 2.1].) Let A and B be nonempty subsets of X,
and let a and u be in X. If a ∈ A, then various normal cones of A at a are defined as follows:

(i) The B-restricted proximal normal cone of A at a is

(7) N̂B
A(a) := cone

((
B ∩ P−1

A a
)
− a

)
= cone

((
B − a

)
∩
(

P−1
A a − a

))
.

(ii) The (classical) proximal normal cone of A at a is

(8) Nprox
A (a) := N̂X

A (a) = cone
(

P−1
A a − a

)
.

(iii) The B-restricted normal cone NB
A(a) is implicitly defined by u ∈ NB

A(a) if and only if there exist
sequences (an)n∈N in A and (un)n∈N in N̂B

A(an) such that an → a and un → u.

(iv) The Fréchet normal cone NFré
A (a) is implicitly defined by u ∈ NFré

A (a) if and only if (∀ε > 0)
(∃ δ > 0) (∀x ∈ A ∩ ball(a; δ)) ⟨u, x − a⟩ ≤ ε∥x − a∥.

(v) The normal convex from convex analysis Nconv
A (a) is implicitly defined by u ∈ Nconv

A (a) if and
only if sup ⟨u, A − a⟩ ≤ 0.

(vi) The Mordukhovich normal cone NA(a) of A at a is implicitly defined by u ∈ NA(a) if and only if
there exist sequences (an)n∈N in A and (un)n∈N in Nprox

A (an) such that an → a and un → u.

If a /∈ A, then all normal cones are defined to be empty.

In the convex case, all unrestricted normal cones coincide:

Lemma 2.7 (convex case) (See, e.g., [6, Lemma 2.4(vii)].) Let A be nonempty closed convex subset of
X, and let a ∈ A. Then N̂X

A (a) = Nprox
A (a) = NFré

A (a) = Nconv
A (a) = NA(a).

In the following two results, we revisit classical constraint qualifications and provide character-
izations in terms of normal cones.

Theorem 2.8 (two convex sets: restricted normal cones and relative interiors) (See [6, Theorem 3.13].)
Let A and B be nonempty convex subsets of X. Then the following are equivalent:

(i) ri A ∩ ri B ̸= ∅.

(ii) 0 ∈ ri(B − A).
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(iii) cone(B − A) = span(B − A).

(iv) NA(c) ∩ (−NB(c)) ∩ cone(B − A) = {0} for some c ∈ A ∩ B.

(v) NA(c) ∩ (−NB(c)) ∩ cone(B − A) = {0} for every c ∈ A ∩ B.

(vi) NA(c) ∩ (−NB(c)) ∩ span(B − A) = {0} for some c ∈ A ∩ B.

(vii) NA(c) ∩ (−NB(c)) ∩ span(B − A) = {0} for every c ∈ A ∩ B.

(viii) Naff(A∪B)
A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for some c ∈ A ∩ B.

(ix) Naff(A∪B)
A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for every c ∈ A ∩ B.

(x) Nspan(B−A)
A−B (0) = {0}.

Corollary 2.9 (two convex sets: normal cones and interiors) (See [6, Corollary 3.14].) Let A and B
be nonempty convex subsets of X. Then the following are equivalent:

(i) 0 ∈ int(B − A).

(ii) cone(B − A) = X.

(iii) NA(c) ∩ (−NB(c)) = {0} for some c ∈ A ∩ B.

(iv) NA(c) ∩ (−NB(c)) = {0} for every c ∈ A ∩ B.

(v) NA−B(0) = {0}.

CQ and joint-CQ numbers

The notions of CQ and joint-CQ numbers can be viewed as quantifications of constraint qualifica-
tions.

Definition 2.10 ((joint) CQ-number) (See [6, Definition 6.1 and Definition 6.2].) Let A, Ã, B, B̃, be
nonempty subsets of X, let c ∈ X, and let δ ∈ R++. The CQ-number at c associated with (A, Ã, B, B̃)
and δ is

(9) θδ := θδ

(
A, Ã, B, B̃

)
:= sup

{
⟨u, v⟩

∣∣∣∣ u ∈ N̂ B̃
A(a), v ∈ −N̂ Ã

B (b), ∥u∥ ≤ 1, ∥v∥ ≤ 1,
∥a − c∥ ≤ δ, ∥b − c∥ ≤ δ.

}
.

The limiting CQ-number at c associated with (A, Ã, B, B̃) is

(10) θ := θ
(

A, Ã, B, B̃
)

:= lim
δ↓0

θδ

(
A, Ã, B, B̃

)
.
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For nontrivial collections1 A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J , B̃ := (B̃j)j∈J of nonempty subsets
of X, the joint-CQ-number at c ∈ X associated with (A, Ã,B, B̃) and δ > 0 is

(11) θδ = θδ

(
A, Ã,B, B̃

)
:= sup

(i,j)∈I×J
θδ

(
Ai, Ãi, Bj, B̃j

)
,

and the limiting joint-CQ-number at c associated with (A, Ã,B, B̃) is

(12) θ = θ
(
A, Ã,B, B̃

)
:= lim

δ↓0
θδ

(
A, Ã,B, B̃

)
.

The CQ-number is obviously an instance of the joint-CQ-number when I and J are singletons.
When the arguments are clear from the context we will simply write θδ and θ.

Clearly,

(13) θδ

(
A, Ã, B, B̃

)
= θδ

(
B, B̃, A, Ã

)
and θ

(
A, Ã, B, B̃

)
= θ

(
B, B̃, A, Ã

)
.

Note that, δ 7→ θδ is increasing; this makes θ well defined. Furthermore, since 0 belongs to
nonempty B-restricted proximal normal cones and because of the Cauchy-Schwarz inequality,
we have

(14) c ∈ A ∩ B and 0 < δ1 < δ2 ⇒ 0 ≤ θ ≤ θδ1 ≤ θδ2 ≤ 1,

while θδ, and hence θ, is equal to −∞ if c /∈ A ∩ B and δ is sufficiently small (using the fact that
sup∅ = −∞).

Example 2.11 (joint-CQ-number < CQ-number of the unions) (See [6, Example 6.4].) Suppose
that X = R3, let I := J := {1, 2}, A1 := R(0, 1, 0), A2 := R(2, 0,−1), B1 := R(0, 1, 1), B2 :=
R(1, 0, 0), c := (0, 0, 0), and let δ > 0. Furthermore, set A := (Ai)i∈I , B := (Bj)j∈J , A := A1 ∪ A2,
and B := B1 ∪ B2. Then

(15) θδ

(
A,A,B,B

)
= 2√

5
< 1 = θδ

(
A, A, B, B

)
.

CQ and joint-CQ conditions

The notions of CQ and joint-CQ conditions are complementary to those of CQ and joint-CQ num-
bers — while the former build on restricted proximal normals in a neighbourhood of a point of
interest, the latter rest on the restricted normal cone at a point.

Definition 2.12 (CQ and joint-CQ conditions) (See [6, Definition 6.6].) Let c ∈ X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. Then the (A, Ã, B, B̃)-CQ condition holds at c if

(16) N B̃
A(c) ∩

(
− N Ã

B (c)
)
⊆ {0}.

1The collection (Ai)i∈I is said to be nontrivial if I ̸= ∅.
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(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections of
nonempty subsets of X. Then the (A, Ã,B, B̃)-joint-CQ condition holds at c if for every (i, j) ∈
I × J, the (Ai, Ãi, Bj, B̃j)-CQ condition holds at c, i.e.,

(17)
(
∀(i, j) ∈ I × J

)
N

B̃j
Ai
(c) ∩

(
− N Ãi

Bj
(c)

)
⊆ {0}.

Definition 2.13 (exact CQ-number and exact joint-CQ-number) (See [6, Definition 6.7].) Let c ∈
X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. The exact CQ-number at c associated with
(A, Ã, B, B̃) is 2

(18) α := α
(

A, Ã, B, B̃
)

:= sup
{
⟨u, v⟩

∣∣∣∣ u ∈ N B̃
A(c), v ∈ −N Ã

B (c), ∥u∥ ≤ 1, ∥v∥ ≤ 1
}

.

(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections of
nonempty subsets of X. The exact joint-CQ-number at c associated with (A,B, Ã, B̃) is

(19) α := α(A, Ã,B, B̃) := sup
(i,j)∈I×J

α(Ai, Ãi, Bj, B̃j).

The next result relates the various condition numbers defined above.

Theorem 2.14 (See [6, Theorem 6.8].) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J
be nontrivial collections of nonempty subsets of X. Set A :=

∪
i∈I Ai and B :=

∪
j∈J Bj, and suppose that

c ∈ A ∩ B. Denote the exact joint-CQ-number at c associated with (A, Ã,B, B̃) by α (see (19)), the joint-
CQ-number at c associated with (A, Ã,B, B̃) and δ > 0 by θδ (see (11)), and the limiting joint-CQ-number
at c associated with (A, Ã,B, B̃) by θ (see (12)). Then the following hold:

(i) If α < 1, then the (A, Ã,B, B̃)-CQ condition holds at c.

(ii) α ≤ θδ.

(iii) α ≤ θ.

Now assume in addition that I and J are finite. Then the following hold:

(iv) α = θ.

(v) The (A, Ã,B, B̃)-joint-CQ condition holds at c if and only if α = θ < 1.

2Note that if c /∈ A ∩ B, then α = sup∅ = −∞.
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Examples

Example 2.15 (CQ-number quantifies CQ condition) (See [6, Example 7.2].) Let A and B be sub-
sets of X, and suppose that c ∈ A ∩ B. Let L be an affine subspace of X containing A ∪ B. Then
the following are equivalent:

(i) NL
A(c) ∩ (−NL

B(c)) = {0}, i.e., the (A, L, B, L)-CQ condition holds at c (see (16)).

(ii) NA(c) ∩ (−NB(c)) ∩ (L − c) = {0}.

(iii) θ < 1, where θ is the limiting CQ-number at c associated with (A, L, B, L) (see (10)).

Example 2.16 (CQ condition depends on restricting sets) (See [6, Example 7.3].) Suppose that
X = R2, and set A := epi(| · |), B := R × {0}, and c := (0, 0). Then we readily verify that
NA(c) = NX

A (c) = −A, NB
A(c) = − bdry A, NB(c) = NX

B (c) = {0} × R, and NA
B (c) = {0} × R+.

Consequently,

(20) NX
A (c) ∩

(
− NX

B (c)
)
= {0} × R− while NB

A(c) ∩
(
− NA

B (c)
)
= {(0, 0)}.

Therefore, the (A, A, B, B)-CQ condition holds, yet the (A, X, B, X)-CQ condition fails.

The case of two spheres is very pleasant because the quantities can be computed explicitly:

Proposition 2.17 (CQ-numbers of two spheres) (See [6, Example 7.4].) Let z1 and z2 be in X, let
ρ1 and ρ2 be in R++, set S1 := sphere(z1; ρ1) and S2 := sphere(z2; ρ2) and assume that c ∈ S1 ∩ S2.
Denote the limiting CQ-number at c associated with (S1, X, S2, X) by θ (see Definition 2.10), and the exact
CQ-number at c associated with (S1, X, S2, X) by α (see Definition 2.13). Then the following hold:

(i) θ = α =
| ⟨z1 − c, z2 − c⟩ |

ρ1ρ2
.

(ii) α < 1 unless the spheres are identical or intersect only at c.

Now assume that α < 1, let ε ∈ R++, and set δ := (
√
(ρ1 + ρ2)2 + 4ρ1ρ2ε − (ρ1 + ρ2))/2 > 0. Then

(21) α ≤ θδ ≤ α + ε,

where θδ is the CQ-number at c associated with (S1, X, S2, X) (see Definition 2.10).

Let us revisit the classical constraint qualification for two convex sets.

Proposition 2.18 (See [6, Proposition 7.5].) Let A and B be nonempty convex subsets of X such that
A ∩ B ̸= ∅, and set L = aff(A ∪ B). Then the following are equivalent:

(i) ri A ∩ ri B ̸= ∅.
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(ii) The (A, L, B, L)-CQ condition holds at some point in A ∩ B.

(iii) The (A, L, B, L)-CQ condition holds at every point in A ∩ B.

We now turn to two linear subspaces.

Definition 2.19 (angles between two subspaces) Let A and B be linear subspaces of X.

(i) (Dixmier angle) [17] The Dixmier angle between A and B is the number in [0, π
2 ] whose cosine is

given by

(22) c0(A, B) := sup
{
| ⟨a, b⟩ |

∣∣ a ∈ A, b ∈ B, ∥a∥ ≤ 1, ∥b∥ ≤ 1
}

.

(ii) (Friedrichs angle) [18] The Friedrichs angle (or simply the angle) between A and B is the number
in [0, π

2 ] whose cosine is given by

c(A, B) := c0(A ∩ (A ∩ B)⊥, B ∩ (A ∩ B)⊥)(23a)

= sup
{
| ⟨a, b⟩ |

∣∣∣∣ a ∈ A ∩ (A ∩ B)⊥, ∥a∥ ≤ 1,

b ∈ B ∩ (A ∩ B)⊥, ∥b∥ ≤ 1

}
.(23b)

Let us state a striking connection between the CQ-number and the Friedrichs angle.

Theorem 2.20 (CQ-number of two linear subspaces and Friedrichs angle) (See [6, Theorem 7.12].)
Let A and B be linear subspaces of X, and let δ > 0. Then

(24) θδ(A, A, B, B) = θδ(A, X, B, B) = θδ(A, A, B, X) = c(A, B) < 1,

where the CQ-number at 0 is defined as in (9).

Regularities

Regularity is a notion of a set that generalizes convexity. We shall also use restricted versions
involving restricted normal cones.

Definition 2.21 (regularity and superregularity) (See [6, Definition 8.1].) Let A and B be nonempty
subsets of X, and let c ∈ X.

(i) We say that B is (A, ε, δ)-regular at c ∈ X if ε ≥ 0, δ > 0, and

(25)
(y, b) ∈ B × B,

∥y − c∥ ≤ δ, ∥b − c∥ ≤ δ,
u ∈ N̂A

B (b)

 ⇒ ⟨u, y − b⟩ ≤ ε∥u∥ · ∥y − b∥.

If B is (X, ε, δ)-regular at c, then we also simply speak of (ε, δ)-regularity.
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(ii) The set B is called A-superregular at c ∈ X if for every ε > 0 there exists δ > 0 such that B is
(A, ε, δ)-regular at c. Again, if B is X-superregular at c, then we also say that B is superregular at c.

Remark 2.22 (See [6, Remark 8.2].) Several comments on Definition 2.21 are in order.

(i) Superregularity with A = X was introduced by Lewis, Luke and Malick in [20, Section 4].
Among other things, they point out that amenability and prox regularity are sufficient con-
ditions for superregularity, while Clarke regularity is a necessary condition.

(ii) The reference point c does not have to belong to B. If c ̸∈ B, then for every δ ∈ ]0, dB(c)[, B is
(0, δ)-regular at c; consequently, B is superregular at c.

(iii) If ε ∈ [1,+∞[, then Cauchy-Schwarz implies that B is (ε,+∞)-regular at every point in X.

(iv) Note that B is (A1 ∪ A2, ε, δ)-regular at c if and only if B is both (A1, ε, δ)-regular and
(A2, ε, δ)-regular at c.

(v) If B is convex, then it follows with Lemma 2.7 that B is (A, 0,+∞)-regular at c; consequently,
B is superregular.

(vi) Similarly, if B is locally convex at c, i.e., there exists ρ ∈ R++ such that B ∩ ball(c; ρ) is
convex, then B is superregular at c.

(vii) If B is (A, 0, δ)-regular at c, then B is A-superregular at c; the converse, however, is not true
in general (see Example 2.23 below).

Example 2.23 (sphere) (See [6, Example 8.3].) Let z ∈ X and ρ ∈ R++. Set S := sphere(z; ρ),
suppose that s ∈ S, let ε ∈ R++, and let δ ∈ R++. Then S is (ε, ρε)-regular at s; consequently, S is
superregular at s (see Definition 2.21). However, S is not (0, δ)-regular at s.

The notion of joint-regularity is critical in our analysis of the MAP below.

Definition 2.24 (joint-regularity) (See [6, Definition 8.6].) Let A be a nonempty subset of X, let B :=
(Bj)j∈J be a nontrivial collection of nonempty subsets of X, and let c ∈ X.

(i) We say that B is (A, ε, δ)-joint-regular at c if ε ≥ 0, δ > 0, and for every j ∈ J, Bj is (A, ε, δ)-regular
at c.

(ii) The collection B is A-joint-superregular at c if for every j ∈ J, Bj is A-superregular at c.

As in Definition 2.21, we may omit the prefix A if A = X.

In the convex case, we note that all regularity notions hold.

Corollary 2.25 (convexity and regularity) (See [6, Corollary 8.8].) Let B := (Bj)j∈J be a nontrivial
collection of nonempty convex subsets of X, let A ⊆ X, and let c ∈ X. Then B is (0,+∞)-joint-regular,
(A, 0,+∞)-joint-regular, joint-superregular, and A-joint-superregular at c.
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Let us explicitly point out that these notions are about collections of sets rather than their unions.

Example 2.26 (two lines: joint-superregularity ̸⇒ superregularity of the union) (See [6, Exam-
ple 8.9].) Suppose that d1 and d2 are in sphere(0; 1). Set B1 := Rd1, B2 := Rd2, and B :=
B1 ∪ B2, and assume that B1 ∩ B2 = {0}. By Corollary 2.25, (B1, B2) is joint-superregular at
0. Let δ ∈ R++, and set b := δd1 and y := δd2. Then ∥y − 0∥ = δ, ∥b − 0∥ = δ, and
0 < ∥y − b∥ = δ∥d2 − d1∥. Furthermore, NB(b) = {d1}⊥. Note that there exists v ∈ {d1}⊥
such that ⟨v, d2⟩ ̸= 0 (for otherwise {d1}⊥ ⊆ {d2}⊥ ⇒ B2 ⊆ B1, which is absurd). Hence
there exists u ∈ {d1}⊥ = {b}⊥ = NB(b) such that ∥u∥ = 1 and ⟨u, d2⟩ > 0. It follows that
⟨u, y − b⟩ = ⟨u, y⟩ = δ ⟨u, d2⟩ = ⟨u, d2⟩ ∥u∥∥y − b∥/∥d2 − d1∥. Therefore, B is not superregular at
0.

3 The method of alternating projections (MAP)

We now apply the machinery of restricted normal cones and associated results to derive linear
convergence results.

On the composition of two projection operators

The method of alternating projections iterates projection operators. Thus, in the next few results,
we focus on the outcome of a single iteration of the composition.

Lemma 3.1 Let A and B be nonempty closed subsets of X. Then the following hold3:

(i) PA(B ∖ A) ⊆ bdryaff A∪B A ⊆ bdry A.

(ii) PB(A ∖ B) ⊆ bdryaff A∪B(B) ⊆ bdry B.

(iii) If b ∈ B and a ∈ PAb, then:

(26) a ∈ (bdry A)∖ B ⇔ a ∈ A ∖ B ⇒ b ∈ B ∖ A ⇒ a ∈ bdry A.

(iv) If a ∈ A and b ∈ PBa, then:

(27) b ∈ (bdry B)∖ A ⇔ b ∈ B ∖ A ⇒ a ∈ A ∖ B ⇒ b ∈ bdry B.

Proof. (i): Take b ∈ B ∖ A and a ∈ PAb. Assume to the contrary that there exists δ ∈ R++ such
that aff(A ∪ B) ∩ ball(a; δ) ⊆ A. Without loss of generality, we assume that δ < ∥b − a∥. Then
ã := a + δ(b − a)/∥b − a∥ ∈ A and thus dA(b) ≤ d(ã, b) < d(a, b) = dA(b), which is absurd.

(ii): Interchange the roles of A and B in (i).

3We denote by bdryaff A∪B(S) the boundary of S ⊆ X with respect to aff(A ∪ B).
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(iii): If a ∈ (bdry A)∖ B, then clearly a ∈ A ∖ B. Now assume that a ∈ A ∖ B. If b ∈ A, then
a ∈ PAb = {b} ⊆ B, which is absurd. Hence b ∈ B ∖ A and thus (i) implies that a ∈ PA(B ∖ A) ⊆
bdry A.

(iv): Interchange the roles of A and B in (iii). ■

Lemma 3.2 Let A and B be nonempty closed subsets of X, let c ∈ X, let y ∈ B, let a ∈ PAy, let b ∈ PBa,
and let δ ∈ R+. Assume that dA(y) ≤ δ and that d(y, c) ≤ δ. Then the following hold:

(i) d(a, c) ≤ 2δ.

(ii) d(b, y) ≤ 2d(a, y) ≤ 2δ.

(iii) d(b, c) ≤ 3δ.

Proof. Since y ∈ B, we have

(28) d(a, b) = dB(a) ≤ d(a, y) = dA(y) ≤ δ.

Thus,

(29) d(a, c) ≤ d(a, y) + d(y, c) ≤ δ + δ = 2δ,

which establishes (i). Using (28), we also conclude that d(b, y) ≤ d(b, a) + d(a, y) ≤ 2d(a, y) ≤ 2δ;
hence, (ii) holds. Finally, combining (28) and (29), we obtain (iii) via d(b, c) ≤ d(b, a) + d(a, c) ≤
δ + 2δ = 3δ. ■

Corollary 3.3 Let A and B be nonempty closed subsets of X, let ρ ∈ R++, and suppose that c ∈ A ∩ B.
Then

(30) PAPBPA ball(c; ρ) ⊆ ball(c; 6ρ).

Proof. Let b−1 ∈ ball(c; ρ), a0 ∈ PAb−1, b0 ∈ PBa0, and a1 ∈ PAb0. We have d(a0, b−1) = dA(b−1) ≤
d(b−1, c) ≤ ρ, so dB(a0) ≤ d(a0, c) ≤ d(a0, b−1) + d(b−1, c) ≤ 2ρ. Applying Lemma 3.2(iii) to the
sets B and A, the points a0, b0, a1, and δ = 2ρ, we deduce that d(a1, c) ≤ 3(2ρ) = 6ρ. ■

The next two results are essential to guarantee a local contractive property of the composition.

Proposition 3.4 (regularity and contractivity) Let A and B be nonempty closed subsets of X, let Ã and
B̃ be nonempty subsets of X, let c ∈ X, let ε ≥ 0, and let δ > 0. Assume that B is (Ã, ε, 3δ)-regular at
c (see Definition 2.21). Furthermore, assume that y ∈ B ∩ B̃, that a ∈ PA(y) ∩ Ã, that b ∈ PB(a), that
∥y − c∥ ≤ δ, and that dA(y) ≤ δ. Then

(31) ∥a − b∥ ≤ (θ3δ + 2ε)∥a − y∥,

where θ3δ the CQ-number at c associated with (A, Ã, B, B̃) (see (9)).
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Proof. Lemma 3.2(i)&(iii) yields ∥a − c∥ ≤ 2δ and ∥b − c∥ ≤ 3δ. On the other hand, y − a ∈ N̂ B̃
A(a)

and b − a ∈ −N̂ Ã
B (b) by (7). Therefore,

(32) ⟨b − a, y − a⟩ ≤ θ3δ∥b − a∥ · ∥y − a∥.

Since a − b ∈ N̂ Ã
B (b), ∥y − c∥ ≤ δ, and ∥b − c∥ ≤ 3δ, we obtain, using the (Ã, ε, 3δ)-regularity of

B, that ⟨a − b, y − b⟩ ≤ ε∥a − b∥ · ∥y − b∥. Moreover, Lemma 3.2(ii) states that ∥y − b∥ ≤ 2∥a − y∥.
It follows that

(33) ⟨a − b, y − b⟩ ≤ 2ε∥a − b∥ · ∥a − y∥.

Adding (32) and (33) yields ∥a − b∥2 ≤ (θ3δ + 2ε)∥a − b∥ · ∥a − y∥. The result follows. ■

We now provide a result for collections of sets similar to—and relying upon—Proposition 3.4.

Proposition 3.5 (joint-regularity and contractivity) Let A := (Ai)i∈I and B := (Bj)j∈J be nontrivial
collections of closed subsets of X, Assume that A :=

∪
i∈I Ai and B :=

∪
j∈J Bj are closed, and that

c ∈ A ∩ B. Let Ã := (Ãi)i∈I and B̃ := (B̃j)j∈J be nontrivial collections of nonempty subsets of X such
that (∀i ∈ I) PAi((bdry B)∖ A) ⊆ Ãi and (∀j ∈ J) PBj((bdry A)∖ B) ⊆ B̃j. Set Ã :=

∪
i∈I Ãi and

B̃ :=
∪

j∈J B̃j, let ε ≥ 0 and let δ > 0.

(i) If b ∈ (bdry B)∖ A and a ∈ PA(b), then (∃ i ∈ I) a ∈ PAi(b) ⊆ Ai ∩ Ãi.

(ii) If a ∈ (bdry A)∖ B and b ∈ PB(a), then (∃ j ∈ J) b ∈ PBj(a) ⊆ Bj ∩ B̃j.

(iii) If y ∈ B, a ∈ PA(y) and b ∈ PB(a), then:

(34) b ∈
(
(bdry B)∖ A

)
∩

∪
j∈J

(Bj ∩ B̃j) ⇔ b ∈ B ∖ A ⇒ a ∈ A ∖ B.

(iv) If x ∈ A, b ∈ PB(x), and a ∈ PA(b), then:

(35) a ∈
(
(bdry A)∖ B

)
∩

∪
i∈I

(Ai ∩ Ãi) ⇔ a ∈ A ∖ B ⇒ b ∈ B ∖ A.

(v) Suppose that B is (Ã, ε, 3δ)-joint-regular at c (see Definition 2.24), that y ∈ ((bdry B) ∖ A) ∩∪
j∈J(Bj ∩ B̃j), that a ∈ PA(y), that b ∈ PB(a), and that ∥y − c∥ ≤ δ. Then

(36) ∥b − a∥ ≤ (θ3δ + 2ε)∥a − y∥,

where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see (11)).

(vi) Suppose that A is (B̃, ε, 3δ)-joint-regular at c (see Definition 2.24), that x ∈ ((bdry A) ∖ B) ∩∪
i∈I(Ai ∩ Ãi), that b ∈ PB(x), that a ∈ PA(b), and that ∥x − c∥ ≤ δ. Then

(37) ∥a − b∥ ≤ (θ3δ + 2ε)∥b − x∥,

where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see (11)).
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Proof. (i)&(ii): Clear from Lemma 2.4 and the assumptions.

(iii): Note that Lemma 3.1(iv)&(iii) and (ii) yield the implications

(38) b ∈ B ∖ A ⇔ b ∈ (bdry B)∖ A ⇒ a ∈ A ∖ B ⇔ a ∈ (bdry A)∖ B ⇒ b ∈
∪
j∈J

(Bj ∩ B̃j),

which give the conclusion.

(iv): Interchange the roles of A and B in (iii).

(v): There exists j ∈ J such that y ∈ Bj ∩ B̃j ∩ ((bdry B)∖ A). Let b′ ∈ PBj a. Then

(39) ∥a − b∥ = dB(a) ≤ dBj(a) = ∥a − b′∥.

Since B is (Ã, ε, 3δ)-joint-regular at c, it is clear that Bj is (Ã, ε, 3δ)-regular at c. Since y ∈ (bdry B)∖
A and because of (i), there exists i ∈ I such that a ∈ PAi y ⊆ Ãi. Since Ãi ⊆ Ã, it follows that (see
also Remark 2.22(iv)) Bj is (Ãi, ε, 3δ)-regular at c. Since y ∈ Bj ∩ B̃j, a ∈ PAi y ∩ Ãi, b′ ∈ PBj a, and
dAi(y) = dA(y) = ∥y − a∥ ≤ ∥y − c∥ ≤ δ, we obtain from Proposition 3.4 that

(40) ∥a − b′∥ ≤
(
θ3δ(Ai, Ãi, Bj, B̃j) + 2ε

)
∥a − y∥.

Combining with (39), we deduce that ∥a − b∥ ≤ ∥a − b′∥ ≤ (θ3δ + 2ε)∥a − y∥.

(vi): This follows from (v) and (13). ■

An abstract linear convergence result

Let us now focus on algorithmic results (which are actually true even in complete metric spaces).

Definition 3.6 (linear convergence) Let (xn)n∈N be a sequence in X, let x̄ ∈ X, and let γ ∈ [0, 1[.
Then (xn)n∈N converges linearly to x̄ with rate γ if there exists µ ∈ R+ such that

(41) (∀n ∈ N) d(xn, x̄) ≤ µγn.

Remark 3.7 (rate of convergence depends only on the tail of the sequence) Let (xn)n∈N be a se-
quence in X, let x̄ ∈ X, and let γ ∈ ]0, 1[. Assume that there exists n0 ∈ N and µ0 ∈ R+ such
that

(42)
(
∀n ∈ {n0, n0 + 1, . . .}

)
d(xn, x̄) ≤ µ0γn.

Set µ1 := max
{

d(xm, x̄)/γm
∣∣ m ∈ {0, 1, . . . , n0 − 1}

}
. Then

(43) (∀n ∈ N) d(xn, x̄) ≤ max{µ0, µ1}γn,

and therefore (xn)n∈N converges linearly to x̄ with rate γ.
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Proposition 3.8 (abstract linear convergence) Let A and B be nonempty closed subsets of X, let
(an)n∈N be a sequence in A, and let (bn)n∈N be a sequence in B. Assume that there exist constants
α ∈ R+ and β ∈ R+ such that

(44a) γ := αβ < 1

and

(44b) (∀n ∈ N) d(an+1, bn) ≤ αd(an, bn) and d(an+1, bn+1) ≤ βd(an+1, bn).

Then (∀n ∈ N) d(an+1, bn+1) ≤ γd(an, bn) and there exists c ∈ A ∩ B such that

(45) (∀n ∈ N) max
{

d(an, c), d(bn, c)
}
≤ 1 + α

1 − γ
d(a0, b0) · γn;

consequently, (an)n∈N and (bn)n∈N converge linearly to c with rate γ.

Proof. Set δ := d(a0, b0). Then for every n ∈ N,

(46) d(an, bn) ≤ βd(an, bn−1) ≤ αβd(an−1, bn−1) = γd(an−1, bn−1) ≤ · · · ≤ γnδ;

hence,

d(bn, bn+1) ≤ d(bn, an+1) + d(an+1, bn+1) ≤ αd(bn, an) + γd(an, bn)(47a)
= (α + γ)d(an, bn) ≤ (α + γ)δγn.(47b)

Thus (bn)n∈N is a Cauchy sequence, so there exists c ∈ B such that bn → c. On the other hand, by
(46), d(an, bn) → 0 and (an)n∈N lies in A. Hence, an → c and c ∈ A. Thus, c ∈ A ∩ B. Fix n ∈ N

and let m ≥ n. Using (47),

(48) d(bn, bm) ≤
m−1

∑
k=n

d(bk, bk+1) ≤ ∑
k≥n

d(bk, bk+1) ≤ ∑
k≥n

(α + γ)δγk =
(α + γ)δγn

1 − γ
.

Hence, using (46) and (48), we estimate that

(49) d(an, bm) ≤ d(an, bn) + d(bn, bm) ≤ δγn +
(α + γ)δγn

1 − γ
=

(1 + α)δγn

1 − γ
.

Letting m → +∞ in (48) and (49), we obtain (45). ■

The sequence generated by the MAP

We start with the following definition, which is well defined by Proposition 2.2.

Definition 3.9 (MAP) Let A and B be nonempty closed subsets of X, let b−1 ∈ X, and let

(50) (∀n ∈ N) an ∈ PA(bn−1) and bn ∈ PB(an).

Then we say that the sequences (an)n∈N and (bn)n∈N are generated by the method of alternating
projections (with respect to the pair (A, B)) with starting point b−1.
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A2A1c1c2Bb−1a0b0a1b1

The MAP between
A = A1 ∪ A2 and B,

A ∩ B = {c1, c2}

Our aim is to provide sufficient conditions for linear convergence of the sequences generated
by the method of alternating projections. The following two results are simple yet useful.

Proposition 3.10 Let A and B be nonempty closed subsets of X, and let (an) and (bn) be sequences
generated by the method of alternating projections. Then the following hold:

(i) The sequences (an)n∈N and (bn)n∈N lie in A and B, respectively.

(ii) (∀n ∈ N) ∥an+1 − bn+1∥ ≤ ∥an+1 − bn∥ ≤ ∥an − bn∥.

(iii) If {an}n∈N ∩ B ̸= ∅, or {bn}n∈N ∩ A ̸= ∅, then there exists c ∈ A ∩ B such that for all n
sufficiently large, an = bn = c.

Proof. (i): This is clear from the definition.

(ii): Indeed, for every n ∈ N, ∥an+1 − bn+1∥ = dB(an+1) ≤ ∥an+1 − bn∥ = dA(bn) ≤ ∥bn − an∥
using (i).

(iii): Suppose, say that an ∈ B. Then bn = PBan = an =: c ∈ A ∩ B and all subsequent terms of
the sequences are equal to c as well. ■

New convergence results for the MAP

We are now in a position to state and derive new linear convergence results. In this section, we
shall often assume the following:
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(51)



A := (Ai)i∈I and B := (Bj)j∈J are nontrivial collections

of nonempty closed subsets of X;

A :=
∪
i∈I

Ai and B :=
∪
j∈J

Bj are closed;

c ∈ A ∩ B;

Ã := (Ãi)i∈I and B̃ := (B̃j)j∈J are collections

of nonempty subsets of X such that

(∀i ∈ I) PAi

(
(bdry B)∖ A

)
⊆ Ãi,

(∀j ∈ J) PBj

(
(bdry A)∖ B

)
⊆ B̃j;

Ã :=
∪
i∈I

Ãi and B̃ :=
∪
j∈J

B̃j.

Lemma 3.11 (backtracking MAP) Assume that (51) holds. Let (an)n∈N and (bn)n∈N be generated by
the MAP with starting point b−1. Let n ∈ {1, 2, 3, . . .}. Then the following hold:

(i) If bn /∈ A, then an ∈ ((bdry A)∖ B) ∩∪
i∈I(Ai ∩ Ãi) and bn ∈ ((bdry B)∖ A) ∩∪

j∈J(Bj ∩ B̃j).

(ii) If an /∈ B, then an ∈ ((bdry A)∖ B) ∩∪
i∈I(Ai ∩ Ãi).

(iii) If an /∈ B and n ≥ 2, then bn−1 ∈ ((bdry B)∖ A) ∩∪
j∈J(Bj ∩ B̃j).

Proof. (i): Applying Proposition 3.5(iii) to bn−1 ∈ B, an ∈ PAbn−1, bn ∈ PBan, we obtain

(52) bn ∈ B ∖ A ⇔ bn ∈
(
(bdry B)∖ A

)
∩

∪
j∈J

(Bj ∩ B̃j) ⇒ an ∈ A ∖ B.

On the other hand, applying Proposition 3.5(iv) to an−1 ∈ A, bn−1 ∈ PBan−1, an ∈ PAbn−1, we see
that

(53) an ∈ A ∖ B ⇔ an ∈
(
(bdry A)∖ B

)
∩

∪
i∈I

(Ai ∩ Ãi).

Altogether, (i) is established.

(ii)&(iii): The proofs are analogous to that of (i). ■

Let us now state and prove a key technical result.

Proposition 3.12 Assume that (51) holds. Suppose that there exist ε ≥ 0 and δ > 0 such that the
following hold:
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(i) A is (B̃, ε, 3δ)-joint-regular at c (see Definition 2.24) and set

(54) σ :=

{
1, if B is not known to be (Ã, ε, 3δ)-joint-regular at c;
2, if B is also (Ã, ε, 3δ)-joint-regular at c.

(ii) θ3δ < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see Defini-
tion 2.10).

Set θ := θ3δ + 2ε ∈ ]0, 1[. Let (an)n∈N and (bn)n∈N be sequences generated by the MAP with starting
point b−1 satisfying

(55) ∥b−1 − c∥ ≤ (1 − θσ)δ

6(2 + θ − θσ)
.

Then (an)n∈N and (bn)n∈N converge linearly to some point c̄ ∈ A ∩ B with rate θσ; in fact,

(56) ∥c̄ − c∥ ≤ δ and (∀n ≥ 1) max
{
∥an − c̄∥, ∥bn − c̄∥

}
≤ δ(1 + θ)

2 + θ − θσ
θσ(n−1).

Proof. In view of a1 ∈ PAPBPAb−1 and (55), Corollary 3.3 yields

(57) β := ∥a1 − c∥ ≤ (1 − θσ)δ

(2 + θ − θσ)
≤ δ

2
.

Since c ∈ A ∩ B, we have θ3δ ≥ 0 by (14) and hence θ > 0. Using (57), we estimate

(∀n ≥ 1) βθσ(n−1) + β + β(1 + θ)
n−2

∑
k=0

θσk ≤ β + β(1 + θ)
n−1

∑
k=0

θσk(58a)

= β + β(1 + θ)
1 − θσn

1 − θσ
(58b)

≤ β + β
1 + θ

1 − θσ
(58c)

= β
(2 + θ − θσ

1 − θσ

)
(58d)

≤ δ.(58e)

We now claim that if

(59) n ≥ 1, ∥an − bn∥ ≤ βθσ(n−1) and ∥an − c∥ ≤ β + β(1 + θ)
n−2

∑
k=0

θσk,

then

∥an+1 − bn+1∥ ≤ θσ−1∥an+1 − bn∥ ≤ θσ∥an − bn∥ ≤ βθσn,(60a)
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∥an+1 − c∥ ≤ β + β(1 + θ)
n−1

∑
k=0

θσk.(60b)

To prove this claim, assume that (59) holds. Using (59) and (58), we first observe that

max
{
∥an − c∥, ∥bn − c∥

}
≤ ∥bn − an∥+ ∥an − c∥(61a)

≤ βθσ(n−1) + β + β(1 + θ)
n−2

∑
k=0

θσk ≤ δ.(61b)

We now consider two cases:

Case 1: bn ∈ A ∩ B. Then bn = an+1 = bn+1 and thus (60a) holds. Moreover, ∥an+1 − c∥ =
∥bn − c∥ and (60b) follows from (61a).

Case 2: bn ̸∈ A∩ B. Then bn ∈ B∖ A. Lemma 3.11(i) implies an ∈ ((bdry A)∖ B)∩∪
i∈I(Ai ∩ Ãi)

and bn ∈ ((bdry B)∖ A) ∩ ∪
j∈J(Bj ∩ B̃j). Note that ∥an − c∥ ≤ δ by (61a), and recall that A is

(B̃, ε, 3δ)-joint-regular at c by (i). It thus follows from Proposition 3.5(vi) (applied to an, bn, an+1)
that

(62) ∥an+1 − bn∥ ≤ θ∥an − bn∥.

On the one hand, if σ = 1, then Proposition 3.10(ii) yields ∥an+1 − bn+1∥ ≤ ∥an+1 − bn∥ =
θσ−1∥an+1 − bn∥. On the other hand, if σ = 2, then B is (Ã, ε, 3δ)-joint-regular at c by (i);
hence, Proposition 3.5(v) (applied to bn, an+1, bn+1) yields ∥an+1 − bn+1∥ ≤ θ∥an+1 − bn∥ =
θσ−1∥an+1 − bn∥. Altogether, in either case,

(63) ∥an+1 − bn+1∥ ≤ θσ−1∥an+1 − bn∥.

Combining (63) with (62) and (59) gives

(64) ∥an+1 − bn+1∥ ≤ θσ−1∥an+1 − bn∥ ≤ θσ∥an − bn∥ ≤ βθσn,

which is (60a). Furthermore, (62), (59) and (61a) yield

∥an+1 − c∥ ≤ ∥an+1 − bn∥+ ∥bn − c∥(65a)
≤ θ∥an − bn∥+ ∥bn − c∥(65b)

≤ θβθσ(n−1) + βθσ(n−1) + β + β(1 + θ)
n−2

∑
k=0

θσk(65c)

= β + β(1 + θ)
n−1

∑
k=0

θσk,(65d)

which establishes (60b). Therefore, in all cases, (60) holds.

Since ∥a1 − b1∥ = dB(a1) ≤ ∥a1 − c∥ = β, we see that (59) holds for n = 1. Thus, the above
claim and the principle of mathematical induction principle imply that (60) holds for every n ≥ 1.
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Next, (60a) implies

(66) (∀n ≥ 1) ∥an+1 − bn∥ ≤ θ∥an − bn∥ and ∥an+1 − bn+1∥ ≤ θσ−1∥an+1 − bn∥.

In view of (66) and ∥a1 − b1∥ ≤ β, Proposition 3.8 yields c̄ ∈ A ∩ B such that

(∀n ≥ 1) max
{
∥an − c̄∥, ∥bn − c̄∥

}
≤ 1 + θ

1 − θσ
∥a1 − b1∥ · θσ(n−1)(67)

≤ 1 + θ

1 − θσ
β · θσ(n−1)(68)

≤ δ(1 + θ)

2 + θ − θσ
θσ(n−1).(69)

On the other hand, (60b) and (58) imply (∀n ≥ 1) ∥an+1 − c∥ ≤ δ; thus, letting n → +∞, we obtain
∥c̄ − c∥ ≤ δ. This completes the proof of (56). ■

Remark 3.13 In view of Lemma 3.1(i)&(ii), an aggressive choice for use in (51) is (∀i ∈ I) Ãi =
bdry Ai and (∀j ∈ J) B̃j = bdry Bj.

Our main convergence result on the linear convergence of the MAP is the following:

Theorem 3.14 (linear convergence of the MAP and superregularity) Assume that (51) holds and
that A is B̃-joint-superregular at c (see Definition 2.24). Denote the limiting joint-CQ-number at c as-
sociated with (A, Ã,B, B̃) (see Definition 2.10) by θ, and the the exact joint-CQ-number at c associated
with (A, Ã,B, B̃) (see Definition 2.13) by α. Assume further that one of the following holds:

(i) θ < 1.

(ii) I and J are finite, and α < 1.

Let θ ∈
]
θ, 1

[
and set ε := (θ − θ)/3 > 0. Then there exists δ > 0 such that the following hold:

(iii) A is (B̃, ε, 3δ)-joint-regular at c (see Definition 2.24).

(iv) θ3δ ≤ θ + ε < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see
Definition 2.10).

Consequently, suppose the starting point of the MAP b−1 satisfies ∥b−1 − c∥ ≤ (1 − θ)δ/12. Then
(an)n∈N and (bn)n∈N converge linearly to some point in c̄ ∈ A ∩ B with ∥c̄ − c∥ ≤ δ and rate θ:

(70) (∀n ≥ 1) max{∥an − c̄∥, ∥bn − c̄∥} ≤ δ(1 + θ)

2
θn−1.

Proof. Observe that assumption (ii) is more restrictive than assumption (i) by Theorem 2.14(iv).
The definitions of B̃-joint-superregularity and of θ allow us to find δ > 0 sufficiently small such
that both (iii) and (iv) hold. The result thus follows from Proposition 3.12 with σ = 1. ■
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Corollary 3.15 Assume that (51) holds and that, for every i ∈ I, Ai is convex. Denote the limiting joint-
CQ-number at c associated with (A, Ã,B, B̃) (see Definition 2.10) by θ, and assume that θ < 1. Let
θ ∈

]
θ, 1

[
, and let b−1, the starting point of the MAP, be sufficiently close to c. Then (an)n∈N and (bn)n∈N

converge linearly to some point in A ∩ B with rate θ.

Proof. Combine Theorem 3.14 with Corollary 2.25. ■

Example 3.16 (working with collections and joint notions is useful) Consider the setting of Ex-
ample 2.11, and suppose that Ã = A and B̃ = B. Note that Ai is convex, for every i ∈ I. Then
θδ(A, Ã,B, B̃) < 1 = θδ(A, A, B, B) = θ(A, X, B, X). Hence Corollary 3.15 guarantees linear con-
vergence of the MAP while it is not possible to work directly with the unions A and B due to
their condition number being equal to 1 and because neither A nor B is superregular by Exam-
ple 2.26! This illustrates that the main result of Lewis-Luke-Malick (see Corollary 3.25 below) is
not applicable because two of its hypotheses fail.

The following result features an improved rate of convergence θ2 due to the additional presence
of superregularity.

Theorem 3.17 (linear convergence of the MAP and double superregularity) Assume that (51) holds,
that A is B̃-joint-superregular at c and that B is Ã-joint-superregular at c (see Definition 2.24). Denote the
limiting joint-CQ-number at c associated with (A, Ã,B, B̃) (see Definition 2.10) by θ, and the the exact
joint-CQ-number at c associated with (A, Ã,B, B̃) (see Definition 2.13) by α. Assume further that (a)
θ < 1, or (more restrictively) that (b) I and J are finite, and α < 1 (and hence θ = α < 1). Let θ ∈

]
θ, 1

[
and ε := θ−θ

3 . Then there exists δ > 0 such that

(i) A is (B̃, ε, 3δ)-joint-regular at c;

(ii) B is (Ã, ε, 3δ)-joint-regular at c; and

(iii) θ3δ < θ + ε = θ − 2ε < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃)
(see Definition 2.10).

Consequently, suppose the starting point of MAP b−1 satisfies ∥b−1 − c∥ ≤ (1−θ)δ
6(2−θ)

. Then (an)n∈N and
(bn)n∈N converge linearly to some point in c̄ ∈ A ∩ B with ∥c̄ − c∥ ≤ δ and rate θ2; in fact,

(71) (∀n ≥ 1) max
{
∥an − c̄∥, ∥bn − c̄∥

}
≤ δ

2 − θ

(
θ2)n−1.

Proof. The existence of δ > 0 such that (i)–(iii) hold is clear. Then apply Proposition 3.12 with
σ = 2. ■

In passing, let us point out a sharper rate of convergence under sufficient conditions stronger
than superregularity.
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Corollary 3.18 (refined convergence rate) Assume that (51) holds and that there exists δ > 0 such that

(i) A is (B̃, 0, 3δ)-joint-regular at c;

(ii) B is (Ã, 0, 3δ)-joint-regular at c; and

(iii) θ < 1, where θ := θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see Definition 2.10).

Suppose also that the starting point of the MAP b−1 satisfies ∥b−1 − c∥ ≤ (1−θ)δ
6(2−θ)

. Then (an)n∈N and
(bn)n∈N converge linearly to some point in c̄ ∈ A ∩ B with ∥c̄ − c∥ ≤ δ and rate θ2; in fact,

(72) (∀n ≥ 1) max
{
∥an − c̄∥, ∥bn − c̄∥

}
≤ δ

2 − θ

(
θ2)n−1.

Proof. Apply Proposition 3.12 with σ = 2. ■

Let us illustrate a situation where it is possible to make δ in Theorem 3.17 precise.

Example 3.19 (the MAP for two spheres) Let z1 and z2 be in X, let ρ1 and ρ2 be in R, set
A := sphere(z1; ρ1) and B := sphere(z2; ρ2), and assume that {c} ⫋ A ∩ B ⫋ A ∪ B. Then
α := | ⟨z1 − c, z2 − c⟩ |/(ρ1ρ2) < 1. Let θ ∈ ]α, 1[. Then the conclusion of Theorem 3.17 holds with4

(73) δ := min

{√
(ρ1 + ρ2)2 + ρ1ρ2(θ − α)− (ρ1 + ρ2)

6
,
(θ − α)ρ1

12
,
(θ − α)ρ2

12

}

Proof. Combine Example 2.23 (applied with ε = (θ − α)/4 there), Proposition 2.17, and Theo-
rem 3.17. ■

Here is a useful special case of Theorem 3.17:

Theorem 3.20 Assume that A and B are L-superregular, and that

(74) NA(c) ∩
(
− NB(c)

)
∩
(

L − c
)
= {0},

where L := aff(A ∪ B). Then the sequences generated by the MAP converge linearly to a point in A ∩ B
provided that the starting point is sufficiently close to c.

Proof. Combine Example 2.15 with Theorem 3.17 (applied with I and J being singletons, and with
Ã = B̃ = L). ■

We now obtain a well known global linear convergence result for the convex case5, which does
not require the starting point to be sufficiently close to A ∩ B:

4Note that when α approaches 1, then δ approaches 0 which is consistent with the lack of linear convergence of the
MAP for two spheres intersecting in exactly one point.

5This result is part of the folklore and it can be traced back to [19] although it is not stated there explicitly in this
form. It also follows by combining [1, Proposition 4.6.1] with [2, Theorem 3.12].
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Theorem 3.21 (two convex sets) Assume that A and B are convex, and A ∩ B ̸= ∅. Then for every
starting point b−1 ∈ X, the sequences (an)n∈N and (bn)n∈N generated by the MAP converge to some
point in A ∩ B. The convergence of these sequences is linear provided that ri A ∩ ri B ̸= ∅.

Proof. By Fact 2.5(iv), we have

(75) (∀c ∈ A ∩ B) ∥a0 − c∥ ≥ ∥b0 − c∥ ≥ ∥a1 − c∥ ≥ ∥b1 − c∥ ≥ · · ·

After passing to subsequences if needed, we assume that akn → a ∈ A and bkn → b ∈ B. We
show that a = b by contradiction, so we assume that ε := ∥a − b∥/3 > 0. We have eventually
max{∥akn − a∥, ∥bkn − b∥} < ε; hence ∥akn − bkn∥ ≥ ε eventually. By Fact 2.5(iii), we have

(76) ∥akn − c∥2 ≥ ∥akn − bkn∥2 + ∥bkn − c∥2 ≥ ε2 + ∥akn+1 − c∥2 ≥ ε2 + ∥akn+1 − c∥2

eventually. But this would imply that for all n sufficiently large, and for every m ∈ N, we have
∥akn − c∥2 ≥ mε2 + ∥akn+m − c∥2 ≥ mε2, which is absurd. Hence c̄ := a = b ∈ A ∩ B and now (75)
(with c = c̄) implies that an → c̄ and bn → c̄.

Next, assume that ri A ∩ ri B ̸= ∅, and set L := aff(A ∪ B). By Proposition 2.18, the (A, L, B, L)-
CQ conditions holds at c̄. Thus, by Example 2.15, NA(c̄)∩ (−NB(c̄))∩ (L− c̄) = {0}. Furthermore,
Corollary 2.25 and Remark 2.22(v)&(vii) imply that A and B are L-superregular at c̄. The conclu-
sion now follows from Theorem 3.20, applied to suitably chosen tails of the sequences (an)n∈N

and (bn)n∈N. ■

Example 3.22 (the MAP for two linear subspaces) Assume that A and B are linear subspaces of
X. Since 0 ∈ A ∩ B = ri A ∩ ri B, Theorem 3.21 guarantees the linear convergence of the MAP to
some point in A ∩ B, where b−1 ∈ X is the arbitrary starting point. On the other hand, A and B
are (0,+∞)-regular (see Remark 2.22(v)). Since (∀δ ∈ R++) θδ(A, A, B, B) = c(A, B) < 1, where
c(A, B) is the cosine of the Friedrichs angle between A and B (see Theorem 2.20), we obtain from
Corollary 3.18 that the rate of convergence is c2(A, B). In fact, it is well known that this is the
optimal rate, and also that limn an = limn bn = PA∩B(b−1); see [12, Section 3] and [13, Chapter 9].

Remark 3.23 (subspaces vs manifolds) It is tempting to explore the following statement, which
is a variant of Example 3.22.

Let A and B be C2 submanifolds of X, and let c ∈ A∩ B such that the Friedrichs angle between
the tangent spaces at c is strictly positive. If the starting point of the MAP is sufficiently close
to c, then the sequences generated by the MAP converge linearly to a point in A ∩ B.

Interestingly, this statement is false. First, we note that the Friedrichs angle is always strictly posi-
tive by Theorem 2.20. Secondly, consider either (i) two spheres intersecting in precisely one point;
or (ii) A = R × {0} and epi(ρ 7→ ρ2) in X = R2. In either case, A ∩ B = {c} is a singleton, and the
MAP does not converge linearly to c unless the starting point is c itself.

We conjecture that the statement above is correct if the Friedrichs angle is replaced by the
Dixmier angle. Unfortunately, this modified statement is of somewhat limited interest because
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the classical case of two linear subspaces is still not covered (consider two linear subspaces A and
B such that A ∩ B ⫌ {0}; e.g., two planes in R3).

Remark 3.24 For further linear convergence results for the MAP in the convex setting we refer
the reader to [2], [3], [4], [14], [15], [16], and the references therein. See also [22] and [23] for recent
related work for the nonconvex case.

Comparison to Lewis-Luke-Malick results and further examples

The main result of Lewis, Luke, and Malick arises as a special case of Theorem 3.14:

Corollary 3.25 (Lewis-Luke-Malick) (See [20, Theorem 5.16].) Suppose that NA(c) ∩ (−NB(c)) =
{0} and that A is superregular at c ∈ A ∩ B. If the starting point of MAP is sufficiently close to c, then
the sequences generated by the MAP converge linearly to a point in A ∩ B.

Proof. Since NA(c)∩ (−NB(c)) = {0}, we have θ < 1. Now apply Theorem 3.14(i) with Ã := B̃ :=
(X), A := (A) and B := (B). ■

However, even in simple situations, Corollary 3.25 is not powerful enough to recover known
convergence results.

Example 3.26 (Lewis-Luke-Malick CQ may fail even for two subspaces) Suppose that A and B
are two linear subspaces of X, and set L := aff(A ∪ B) = A + B. For c ∈ A ∩ B, we have

(77) NA(c) ∩ (−NB(c)) = A⊥ ∩ B⊥ = (A + B)⊥ = L⊥.

Therefore, the Lewis-Luke-Malick CQ (see [20, Theorem 5.16] and also Corollary 3.25) holds for
(A, B) at c if and only if

(78) NA(c) ∩ (−NB(c)) = {0} ⇔ A + B = X.

On the other hand, the CQ provided in Theorem 3.20 (see also Example 3.22) always holds and we
obtain linear convergence of the MAP. However, even for two lines in R3, the Lewis-Luke-Malick
CQ (see Corollary 3.25) is unable to achieve this. (It was this example that originally motivated us
to pursue the present work.)

Example 3.27 (Lewis-Luke-Malick CQ is too strong even for convex sets) Assume that A and B
are convex (and hence superregular). Then the Lewis-Luke-Malick CQ condition is 0 ∈ int(B− A)
(see Corollary 2.9(i)) while the (A, aff(A ∪ B), B, aff(A ∪ B))-CQ is equivalent to the much less
restrictive condition ri A ∩ ri B ̸= ∅ (see Theorem 2.8).
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The flexibility of choosing (Ã, B̃)

Often, L = aff(A ∪ B) is a convenient choice which yields linear convergence of the MAP as in
Theorem 3.20. However, there are situations when this choice for Ã and B̃ is not helpful but when
a different, more aggressive, choice does guarantee linear convergence:

Example 3.28 ((Ã, B̃) = (A, B)) Let A, B, and c be as in Example 2.16, and let L := aff(A ∪ B).
Since A and B are convex and hence superregular, the (A, L, B, L)-CQ condition is equivalent to
ri A ∩ ri B ̸= ∅ (see Proposition 2.18), which fails in this case. However, the (A, A, B, B)-CQ con-
dition does hold; hence, the corresponding limiting CQ-number is less than 1 by Theorem 2.14(v).
Thus linear convergence of the MAP is guaranteed by Theorem 3.17.

The next example illustrates a situation where the choice (Ã, B̃) = (A, B) fails while the even
tighter choice (Ã, B̃) = (bdry A, bdry B) results in success:

Example 3.29 ((Ã, B̃) = (bdry A, bdry B)) Suppose that X = R2, that A = epi(| · |/2), that B =
− epi(| · |/3), and that c = (0, 0). Note that aff(A ∪ B) = X and ri A ∩ ri B = ∅. Then

NB
A(c) = NX

A (c) = NA(c) =
{
(u1, u2) ∈ R2 ∣∣ u2 + 2|u1| ≤ 0

}
,(79a)

NA
B (c) = NX

B (c) = NB(c) =
{
(u1, u2) ∈ R2 ∣∣ −u2 + 3|u1| ≤ 0

}
,(79b)

and so the (A, A, B, B)-CQ condition fails because

(80) NB
A(c) ∩ (−NA

B (c)) =
{
(u1, u2) ∈ R2 ∣∣ u2 + 3|u1| ≤ 0

}
̸= {0}.

Consequently, for either (Ã, B̃) = (A, B) or (Ã, B̃) = (X, X), Theorem 3.17 is not applicable be-
cause α = θ = 1: indeed, u = (0,−1) ∈ NA(c) and v = (0,−1) ∈ −NB(c), so 1 = ⟨u, v⟩ ≤ ᾱ ≤ 1.

On the other hand, let us now choose (Ã, B̃) = (bdry A, bdry B), which is justified by Re-
mark 3.13. Then

N B̃
A(c) =

{
(u1, u2) ∈ R2 ∣∣ u2 + 2|u1| = 0

}
,(81a)

N Ã
B (c) =

{
(u1, u2) ∈ R2 ∣∣ −u2 + 3|u1| = 0

}
,(81b)

N B̃
A(c) ∩ (−N Ã

B (c)) = {0} and the (A, Ã, B, B̃)-CQ condition holds. Hence, using also Theo-
rem 2.14(v), Theorem 3.21 and Theorem 3.17, we deduce linear convergence of the MAP.

However, even the choice (Ã, B̃) = (bdry A, bdry B) may not be applicable to yield the desired
linear convergence as the following shows. In this example, we employ the tightest possibility
allowed by our framework, namely (Ã, B̃) = (PA((bdry B)∖ A), PB((bdry A)∖ B)).

Example 3.30 ((Ã, B̃) = (PA((bdry B)∖ A), PB((bdry A)∖ B))) Suppose that X = R2, that A =

epi(| · |), that B = −A, and that c = (0, 0). Then Nbdry B
A (c) = bdry B = − bdry A and Nbdry A

B (c) =
bdry A; hence, the (A, bdry A, B, bdry B)-CQ condition fails because Nbdry B

A (c) ∩ (−Nbdry A
B (c)) =
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bdry B ̸= {0}. On the other hand, if (Ã, B̃) = (PA((bdry B)∖ A), PB((bdry A)∖ B)), then N B̃
A =

{0} = N Ã
B = {0} because Ã = {c} = B̃. Thus, the (A, Ã, B, B̃)-CQ conditions holds. (Note that

the MAP converges in finitely many steps.)

Conclusion

We use the technology of restricted normal cones developed in [6] to develop the least restrictive
sufficient conditions to date for linear convergence of the sequences generated by the method of
alternating projections applied to two sets A and B. A key ingredient were suitable restricting
sets (Ã and B̃). The unrestricted — and hence least aggressive — choice (Ã, B̃) = (X, X) recovers
the framework by Lewis, Luke, and Malick. The choice (Ã, B̃) = (aff(A ∪ B), aff(A ∪ B)) allows
us to include basic settings from convex analysis into our framework. Thus, the framework pro-
vided here unifies the recent nonconvex results by Lewis, Luke, and Malick with classical convex-
analytical settings. When the choice (Ã, B̃) = (aff(A ∪ B), aff(A ∪ B)) fails, one may also try more
aggressive choices such as (Ã, B̃) = (A, B) or (Ã, B̃) = (bdry A, bdry B) to guarantee linear con-
vergence. In a follow-up work [7] we demonstrate the power of these tools with the important
problem of sparsity optimization with affine constraints. Without any assumptions on the regu-
larity of the sets or the intersection we achieve local convergence results, with explicit rates and
radii of convergence, where all other sufficient conditions, particularly those of [21] and [20], fail.
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