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Abstract. The problem of finding a vector with the fewest nonzero elements that satisfies an
underdetermined system of linear equations is an NP-complete problem that is typically solved nu-
merically via convex heuristics or nicely-behaved non-convex relaxations. In this work we consider
elementary methods based on projections for solving a sparse feasibility problem without employing
convex heuristics. We show that the fundamental method of alternating projections must converge
locally linearly to a solution to the sparse feasibility problem with an affine constraint. Our analysis
provides the radius of convergence and rate based on the angle of intersection of the sparsity set and
the affine constraint. Under stronger assumptions on the intersection we also show local linear con-
vergence, with radius of convergence, of the Douglas-Rachford algorithm. The stronger assumptions
are in fact necessary for convergence of the Douglas-Rachford for affine feasibility. We show that
these assumptions are not satisfied for most sparsity problems of interest, indicating that methods
related to the Douglas-Rachford Algorithm, such as Alternating Directions Method of Multipliers,
are not a promising algorithmic approach asymptotically for sparsity optimization.
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1. Introduction. We consider the problem of sparsity optimization with affine
constraints:

minimize ‖x‖0 subject to Mx = p(1.1)

where m,n ∈ N, m < n, M ∈ Rm×n is a real m−by−n matrix and ‖x‖0 :=∑n
j=1 |sgnxj | is the number of nonzero entries of a real vector x ∈ Rn of dimen-

sion n. Given an a priori bound s ∈ N on the desired sparsity of the solution one can
relax problem (1.1) to the feasibility problem

find x̄ ∈ A ∩B(1.2)

where

A := {x ∈ Rn| ‖x‖0 ≤ s} , B := {x ∈ Rn| Mx = p} .(1.3)

The set B is an affine subspace, whilst A is a non-convex set. However the set
A (locally) has a nice structure in the sense that one can explicitly calculate the
projection onto the set, i.e. for a given point x one can find x̄ ∈ A such that

‖x− x̄‖ = dA(x) := inf
y∈A
‖x− y‖.
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We call the (set-valued) mapping PA : Rn → A, x 7→ argminy∈Aprojector‖x − x̄‖,
while a point x̄ ∈ PA(x) is called a projection. Projection Methods as discussed in
this work are easy to implement at a low cost computationally effort. We will discuss
the applicability of two fundamental Projection Methods to the feasibility problem
(1.2).

Definition 1.1 (Method of Alternating Projections). For two sets A,B ⊂ E we
call the mapping

TMAPx = PAPBx(1.4)

the Method of Alternating Projections operator. We call the MAP algorithm, or simply
MAP, the corresponding Picard iteration,

xn+1 ∈ TMAPxn, n = 0, 1, 2, . . .(1.5)

for x0 given.

An operator closely related to the projection is the reflection. We call the (possibly
set-valued) mapping RA : Rn → Rn, x 7→ 2PAx− x the reflection on A.

Definition 1.2 (Averaged Alternating Reflections/Douglas Rachford). For two
sets A,B ⊂ E we call the mapping

TAARx =
1

2
(RARBx+ x)(1.6)

the Averaged Alternating Reflection (AAR) operator. We call the AAR algorithm, or
simply AAR, the corresponding Picard iteration,

xn+1 ∈ TAARxn, n = 0, 1, 2, . . .(1.7)

for x0 given.

Further, define the mapping

TRAARx =
β

2
(RARBx+ x) + (1− β)PBx(1.8)

the Relaxed Averaged Alternating Reflection (RAAR) operator. The RAAR algorithm,
or simply RAAR, is defined similarly.

2. Algorithms for Nonconvex Feasibility - local convergence results.

2.1. Regularity of Sets.

Definition 2.1 ((ε, δ)-subregularity). A nonempty set Ω ⊂ E is (ε, δ)-
subregular at x̄ with respect to S ⊂ E, if there exists ε > 0, δ > 0, and

〈v, z − y〉 ≤ ε‖v‖‖z − y‖(2.1)

holds for all y ∈ Bδ(x̄) ∩ Ω, z ∈ S ∩ Bδ(x̄), v ∈ NΩ(y). We simply say Ω is (ε, δ)-
subregular at x̄ if S = {x̄}. The definition of (ε, δ)-subregularity was introduced in
[5] and is a generalization of the notion of (ε, δ)-regularity introduced in [3, Definition
9.1]. In contrast to [2, Proposition 3.13] the definition of subregularity applies to the
set A for any s ≤ n and the convergence results of [5] can be applied directly.
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2.2. Regularity of Intersections. We will state some Definitions of regularity
of intersections, that provide sufficient and necessary conditions for linear convergence
of both MAP and RAAR.

Definition 2.2 (linear regularity).
A family of closed, nonempty sets Ω1,Ω2, . . . ,Ωm has locally linearly regular inter-
section at x̄ ∈ ∩mj=1Ωj if there exists a κ > 0 and a δ > 0 such that

d∩m
j=1

Ωj
(x) ≤ κ max

i=1,...,m
dΩi

(x), ∀x ∈ Bδ(x̄).(2.2)

If (2.2) holds for any δ > 0 the intersection is called linearly regular. The infimum
over all κ such that (2.2) holds is called regularity modulus.

Theorem 2.3 (strong regularity). The intersection of A,B at x̄ is strongly
regular if

NA(x̄) ∩ −NB(x̄) = {0}(2.3)

2.3. Linear Convergence.
Proposition 2.4 ([5] Corollary 37). Let A,B have locally linearly regular in-

tersection at x̄ ∈ S := A ∩B and let A and B be (ε, δ)−subregular w.r.t. x̄. For any
x0 ∈ Bδ(x̄), generate the sequence {xn}n∈N by

x2n+1 ∈ PAx2n and x2n+2 ∈ PBx2n+1 (∀n = 0, 1, 2, . . .).(2.4)

Then

dS(x2n+2) ≤ (1− 1

κ2
+ ε)dS((x2n),

where κ is the regularity modulus given in Definition 2.2.
Proposition 2.4 is a generalization of the work [1] to the non-convex setting. Local

linear regularity of the intersection A ∩ B is described in [4] as the precise property
equivalent to uniform linear convergence of MAP.

[3] and [2] showed local linear convergence of MAP applied to (1.2) using a relaxed
version of property (2.3). The framework used in that papers is a bit more restrictive,
however the rate of convergence they achieve is optimal, whilst the one we discuss
here is not. There still is a gap between this more dual result and the one used in [5]
based on linear regularity.

Proposition 2.5 ([5] Corollary 44). Let A,B be two affine subspaces with A∩B.
AAR converges to a point in A ∩ B for all x0 ∈ E with linear rate c̃ < 1 if and only
if the intersection A ∩ B is strongly regular. This result is for our knowledge -so
far- the best convergence result for AAR on subspaces. However the linear rate of
convergence is not optimal as discussed in [5]

3. Sparse Feasibility with an Affine Constraint. In order to apply Propo-
sition 2.4 to MAP and Proposition 2.5 to AAR for solving (1.2) we must discuss a
decomposition of the set A.

The following tools can be reviewed in more details in in [2].
For a ∈ Rn define the sparsity subspace associated with a

supp(a) := {x ∈ Rn| xj = 0 if aj = 0}(3.1)
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and the mapping

I : Rn → {1, . . . , n}, x 7→ {i ∈ {1, . . . , n}| xi 6= 0}(3.2)

Define

J := 2{1,2,...,n} and Js := {J ∈ J | #J = s}(3.3)

and note that the set A can be decomposed in

A =
⋃
J∈Js

AJ(3.4)

where AJ := span {ei| i ∈ J} and ei is the i−th standart unit vector in Rn.
and for x ∈ Rn the set of s largest coordinate in absolute value

Cs(x) :=

{
I ∈ Js

∣∣∣∣ min
i∈I

xi ≥ max
i/∈I

xi

}
.(3.5)

Proposition 3.1 ([2] Lemma 3.4).
Let a ∈ A and assume s ≤ n− 1. Then

min {dAJ
(a) | a /∈ AJ , J ∈ Js} = min {|aj | | j ∈ I(a)} .(3.6)

3.1. Variational Analysis.
Proposition 3.2 (Normal cones to A, [2] Theorem 3.9 and 3.15 ).

For a ∈ A the (Mordukhovich) normal cone to A is

NA(a) = {ν ∈ Rn| ‖ν‖0 ≤ n− s} ∩ (supp(a))
⊥

=
⋃

I(a)⊆J∈Js

A⊥J .(3.7)

Proposition 3.3 (normal cones to B).
For the affine set B one has for x ∈ B

parB = kerM,(3.8)

where parB = B − b for arbitrary b is the subspace parallel to B.
Theorem 3.4. At any point x̄ ∈ A\{0} the set A is (0, δ)-subregular at x̄ for

0 < δ < min {|x̄j | | j ∈ I(c)} such. At 0 the set A is (0,∞)-subregular.
Proof. If s = n the set A is all of Rn and the statement is trivial. For the case

s ≤ n− 1, choose any J ∈ Js and assume that x ∈ Bδ(x̄) ∩A. We show first x ∈ AJ
implies that x̄ ∈ AJ by proving the contrapositive statement, namely that x̄ /∈ AJ
implies that x /∈ AJ . But this follows from the definition of δ and Proposition 3.1 as
claimed. By the characterization of the normal cone in (3.7) we have NA(x) ⊂ A⊥J
and hence, for all x ∈ Bδ(x̄) ∩A and νx ∈ NA(x),

〈 νx︸︷︷︸
∈A⊥

J

, x̄− x〉︸ ︷︷ ︸
∈AJ

= 0.

Thus by the definition of (ε, δ)-regularity (Definition 2.1) A is (0, δ)-subregular as
claimed.

For x̄ = 0 by (3.7), for any νx ∈ NA(x) 〈 νx︸︷︷︸
∈supp(x)⊥

, x︸︷︷︸
∈supp(x)

〉 = 0 holds.
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3.2. Projections onto A and B.

Proposition 3.5 ([2] Theorem 3.5). The projections onto the set A is given by

PA(x) =
⋃

J∈Cs(x)

PAJ
(x).(3.9)

Note that (PAJ
(x))i = xi, i ∈ J, (PAJ

(x))i = 0, j /∈ J .

The pojection onto B = {x ∈ Rn| Mx = p} is given by

PBx := x−M†(Mx− p),(3.10)

where M† is the Moore-Penrose inverse of M .

3.3. Linear Convergence of MAP. We can now prove one of our main results.

Theorem 3.6. Let A and B be as above and let x̄ ∈ A ∩ B 6= ∅. Choose
0 < δ < min {|x̄j | | j ∈ I(c)}. For x ∈ Bδ(x̄) ∩ U , U = {x | PAPBx ⊂ Bδ(x̄)} the
MAP iterates converge locally with linear rate.

Proof. The intersection of two affine subspaces (finite dimension) is locally linearly
regular (See for instance [4, Theorem 3.28]), so the intersection of a A (finite collection
of affine subspaces) and B ist locally linearly regular. Theorem 3.4 showed that A is
locally subregular, so we can apply Theorem 2.4. The rate of convergence given by
the last theorem is not optimal, whilst the one achieved in [2] is and is explicitly given
by the Friedrichs angle. However the result in this work, based on (0, δ)−subregularity
provides the convergence result more directly, omitting decompositions as in [3, 2].
Linear regularity is a more quantitative property and due to this fact the rate in this
work is not optimal. As meantioned earlier it would be interesting to connect the
results in [3, 2] and the results in a quantitative fashion [5].

3.4. Failure of DR. In contrast the the MAP algorithm, the Douglas Rachford
algorithm fails in the most interesting cases, as we show next.

Theorem 3.7. Let A and B be as above and let x̄ ∈ A ∩ B 6= ∅. Choose
0 < δ < min {|x̄j | | j ∈ I(c)}. For x ∈ Bδ(x̄) ∩ U , U = {x | TAARx ⊂ Bδ(x̄)} the
AAR iterates do not converge to A ∩B if AAR does not converge if s < rankM .

Proof. Since A,B are (0, δ)-subregular TAAR is (0, {x̄})-firmly nonexpansive
(see [5]) and therefore x+ ∈ Bδ(x̄) for x+ ∈ TAARx. Furthermore one has x+ =
(RAJ

RBx+ x)/2 for some J ∈ Cs. By Proposition 2.5 AAR (applied to AJ and B )
convergeces if and only if the intersection is strongly regular.

Assume that the intersection AJ ∩ B is strongly regular (2.3). AJ ∩ B = {0}
implies

A⊥J + dim(ker(M)⊥) ≤ n
⇔ n− s+ dim(ker(M)⊥) ≤ n
⇔ dim(ker(M)⊥) ≤ s
⇔ dim(ker(M)) ≥ n− s
⇔ rank(M) ≤ s.

This means if s < rankM AAR cannot converge. Since this holds for any x+ ∈ TAARx
the proof is complete.

This gives us a lower bound for s in terms of the rank of the matrix M . Of course
this condition is not very helpful when dealing with sparse solutions recovery.
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(a) (b)

(c) (d)

Fig. 4.1. Comparision of MAP and AAR iteratations for sparse image reconstruction. (a)
shows the reconstructed image with error shown in (b). The gap distance between the sparsity set
and the affine constraint is shown in (c) and the change in the iterates is shown in (d).

3.4.1. Counterexample for Douglas Rachford. The example given here is
the same as in [2]. Define the matrix M and the measurement p to be

M :=

[
1 1 1
1 1 0

]
, p :=

[
1
1

]
The sparsest solutions to the problem ”find x ∈

{
v ∈ R3 |Mv = p

}
” are the

points x̄ = (1, 0, 0)t and y∗ = (0, 1, 0)t. We choose a starting point x0 = x̄+λ(0, 0, 1)t

with λ < 2−
√

2
18(4−

√
2)
. The point x0 is contained in the fixed point set of the AAR-

algoritm. To see this, we apply AAR on x0:

x1 = TAAR(x0) =
1

2
(RARB + Id)x0 =

1

2
(x0 + x0) = x0.

4. Numerical Demonstration. We show demonstrate the above counterex-
amples for more realistic applications as one might observe in practice. We construct
a sparse object with 328 positive and negative point-like sources in a 256-by-256 pixel
field and under-sample the Fourier transform of this object at a ratio of 1-to-8 for
8192 affine constraints. We set the sparsity set at exactly the number of nonzero
elements in the original image, though in practice the sparsity of the original image is
not known precisely. The problem is therefore consistent, and MAP converges locally
linearly as shown in Theorem 3.6. Since the sparsity is less than the number of affine
constraints, strong regularity of the intersection cannot hold. We showed in Theorem
3.7 that strong regularity is in fact necessary for convergence of the AAR method.
Indeed, our numerical demonstration bears this out. What is quite unexpected in
our numerical experiment, however, is that MAP appears to be much more robust
than the theory predicts. Having a starting value within the radius of convergence as
required in Theorem 3.6 is tantamount to solving the problem. Nevertheless, in our
numerical experiments we have never been able to construct a starting point for which
the MAP algorithm does not converge to the exact solution. This suggests that our
estimates for the radius of convergence are too conservative and that further investi-
gation of the non-convex structures will yield more information about the underlying
regularity of the problem.
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