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Alternating Projections and Douglas-Rachford for
Sparse Affine Feasibility

Robert Hesse, D. Russell Luke and Patrick Neumann*

Abstract

The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of
linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-
behaved nonconvex relaxations. In this work we consider elementary methods based on projections for solving
a sparse feasibility problem without employing convex heuristics. It has been shown recently that, locally, the
fundamental method of alternating projections must converge linearly to a solution to the sparse feasibility problem
with an affine constraint. In this paper we apply different analytical tools that allow us to show global linear
convergence of alternating projections under familiar constraint qualifications. These analytical tools can also be
applied to other algorithms. This is demonstrated with the prominent Douglas-Rachford algorithm where we establish
local linear convergence of this method applied to the sparse affine feasibility problem.

Index Terms

Compressed sensing, iterative methods, linear systems, optimization, projection algorithms, sparse Matrices

I. INTRODUCTION

NUMERICAL algorithms for nonconvex optimization models are often eschewed because the usual optimality
criteria around which numerical algorithms are designed do not distinguish solutions from critical points.

This issue comes into sharp relief with what has become known as the sparsity optimization problem [16, Equation
(1.3)]:

minimize ‖x‖0 subject to Mx = p, (1)

where m,n ∈ IN , the nonnegative integers, with m < n, M ∈ IRm×n is a real m−by−n matrix of full rank and
‖x‖0 :=

∑n
j=1 |sign(xj)| with sign(0) = 0 is the number of nonzero entries of a real vector x ∈ IRn of dimension

n. The first-order necessary optimality condition for this problem is (formally)

0 ∈ ∂ (‖x‖0 + ιB(x)) , (2)

where ∂ is the basic, or limiting, subdifferential (see, for example, [33, Definition 1.77]),

B := {x ∈ IRn| Mx = p} (3)

and ιB(x) = 0 if x ∈ B and +∞ otherwise. The function ‖ · ‖0 is subdifferentially regular so all of the varieties of
the subdifferential – basic or limiting, Fréchet, Clarke – in (2) are equivalent. This fact, together with an explicit
formulation of the subdifferential of ‖ · ‖0 were given in [28]. It can be shown, however, that every point in B
satisfies (2) and so this is uninformative as a basis for numerical algorithms [22].

In this note we explore the following question: when do elementary numerical algorithms for solving some
related nonconvex problem converge locally and/or globally?

The current trend for solving this problem, sparked by the now famous paper of Candès and Tao [16], is to
use convex relaxations. Convex relaxations have the advantage that every point satisfying the necessary optimality
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criteria is also a solution to the relaxed optimization problem. This certainty comes at the cost of imposing difficult-
to-verify restrictions on the affine constraints [39] in order to guarantee the correspondence of solutions to the relaxed
problem to solutions to the original problem. Moreover, convex relaxations can lead to a tremendous increase in
the dimensionality of the problem (see for example [15]).

In this work we present a different nonconvex approach; one with the advantage that the available algorithms are
simple to apply, (locally) linearly convergent, and the problem formulation stays close in spirit if not in fact to the
original problem, thus avoiding the curse of dimensionality. We also provide conditions under which fundamental
algorithms applied to the nonconvex model are globally convergent. These conditions are in the same family of
restrictions used to guarantee the success of convex relaxations, but come without the tax of dimensionality.

Many strategies for relaxing (1) have been studied in the last decade. In addition to convex, and in particular `1,
relaxations, authors have studied dynamically reweighted `1 (see [14], [17]) as well as relaxations to `p semi-metric
(0 < p < 1) (see, for instance, [27]). The key to all relaxations, whether they be convex or not, is the correspondence
between the relaxed problem and (1). Candès and Tao [16] introduced the restricted isometry property of the matrix
M as a sufficient condition for the correspondence of solutions to (1) with solutions to the convex problem of
finding the point x in the set B with smallest `1-norm. This condition was generalized in [12], [13], [11] in order
to show global convergence of the simple projected gradient method for solving the problem

minimize 1
2‖Mx− p‖22 subject to x ∈ As, (4)

where
As := {x ∈ IRn| ‖x‖0 ≤ s} , (5)

the set of s-sparse vectors for a fixed s ≤ n. Notable in this model is that the sparsity “objective” is in the constraint,
and one must specify a priori the sparsity of the solution. Also notable is that the problem (4) is still nonconvex,
although one can still obtain global convergence results.

Inspired by (4), and the desire to stay as close to (1) as possible, we model the optimization problem as a
feasibility problem

Find x̄ ∈ As ∩B, (6)

where As and B are given by (5) and (3), respectively. For a well-chosen sparsity parameter s, solutions to (6)
exactly correspond to solutions to (1). Such an approach was also proposed in [18] where the authors proved local
convergence of a simple alternating projections algorithm for feasibility with a sparsity set. Alternating projections
is but one of a huge variety of projection algorithms for solving feasibility problems. The goal of this paper is to
show when and how fast fundamental projection algorithms applied to this nonconvex problem converge. Much of
this depends on the abstract geometric structure of the sets As and B; for affine sparse feasibility this is well-defined
and surprisingly simple.

The set B is an affine subspace and As is a nonconvex set. However, the set As is the union of finitely many
subspaces, each spanned by s vectors from the standard basis for IRn [9]. We show in (20) that one can easily
calculate a projection onto As.

For Ω ⊂ IRn closed and nonempty, we call the mapping PΩ : IRn ⇒ Ω the projector onto Ω defined by

PΩx := argminy∈Ω‖x− y‖. (7)

This is in general a set-valued mapping, indicated by the notation “⇒” [38, Chapter 5]. We call a point x̄ ∈ PΩx
a projection. It is well known that if the set Ω is closed, nonempty and convex then the projector is single-valued.
In a reasonable abuse of terminology and notation, we will write PΩx for the (there is only one) projection onto a
convex set Ω. An operator closely related to the projector is the reflector. We call the (possibly set-valued) mapping
RΩ : IRn ⇒ IRn the reflector across Ω defined by RΩx := 2PΩx−x. We call a point in RΩx a reflection. As with
projections, when Ω is convex, we will write RΩx for the (there is only one) reflection. The projection/reflection
methods discussed in this work are easy to implement, computationally efficient and lie at the foundation of many
first-order methods for optimization.

Definition I.1 (alternating projections) For two closed sets Ω1,Ω2 ⊂ IRn the mapping

TAPx := PΩ1
PΩ2

x (8)
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is called the alternating projections operator. The corresponding alternating projections algorithm is given by the
iteration xk+1 ∈ TAPxk, k ∈ IN with x0 given.

Other well known algorithms, such as steepest descents for minimizing the average of squared distances between
sets, can be formulated as instances of the alternating projections algorithm [36], [37]. We show below (Corollary
III.13) that alternating projections corresponds to projected gradients for problems with special linear structure.

Definition I.2 (Douglas-Rachford) For two closed sets Ω1,Ω2 ⊂ IRn the mapping

TDRx :=
1

2
(RΩ1

RΩ2
x+ x) (9)

is called the Douglas-Rachford operator. The corresponding Douglas-Rachford algorithm is the fixed point iteration
xk+1 ∈ TDRxk, k ∈ IN with x0 given.

The Douglas-Rachford algorithm [30] owes its prominence in large part to its relation via duality to the alternating
directions method of multipliers for solving constrained optimization problems [20].

We present four main results, three of which are new. The first of these results, Theorem III.8, concerns local
linear convergence of alternating projections to a solution of (6). This has been shown, with optimal rates, in [9].
Our proof uses fundamentally different tools developed in [21]. It is exactly these newer tools that enable us to prove
the second of our main results, Theorem IV.7, namely local linear convergence of the Douglas-Rachford algorithm.
Convergence of Douglas-Rachford, with rates, for sparse affine feasibility is a new result. In the remaining two main
new results, Corollary III.13 and Theorem III.15, we specify classes of affine subspaces B for which alternating
projections is globally linearly convergent. This shows that nonconvex models, in this case, can be a reasonable
alternative to convex relaxations.

The outline of this paper is as follows. First we recall some definitions and results from variational analysis
regarding alternating projections and Douglas-Rachford in Section 2. In Section 3 we show local linear convergence
of alternating projections and we provide conditions on matrices M that guarantee global linear convergence of
alternating projections. In the same section we formulate different conditions on the matrices M that guarantee
global linear convergence of the same algorithm. In Section 4 we show that for most problems of interest in sparse
optimization there exist fixed points of Douglas-Rachford that are not in the intersection As∩B. On the other hand,
we show that locally the iterates of Douglas-Rachford converge with linear rate to a fixed point whose shadow is
a solution to (6). Finally in Section 5 we present numerical and analytical examples to illustrate the theoretical
results.

II. PRELIMINARY DEFINITIONS AND RESULTS

We use the following notation, most of which is standard. We denote the closed ball of radius δ centered on x̄
by IBδ(x̄). We assume throughout that the matrix M is full rank in the definition of the affine subspace B (3). The
nullspace of M is denoted kerM and M † indicates the Moore-Penrose inverse, which, because of the full rank
assumption, becomes

M † = M>
(
MM>

)−1
. (10)

The inner product of two points x, y ∈ IRn is denoted 〈x, y〉. The orthogonal complement to a nonempty affine
set Ω is given by

Ω⊥ := {p ∈ IRn | 〈p, v − w〉 = 0 ∀ v, w ∈ Ω} .

For two arbitrary sets Ω1,Ω2 ⊂ IRn we denote the Minkowski sum by Ω1+Ω2 := {x1+x2 | x1 ∈ Ω1 and x2 ∈ Ω2}.
The set of fixed points of a self-mapping T is given by Fix T . The identity mapping is denoted by Id. For a set
Ω ⊂ IRn we define the distance of a point x ∈ IRn to Ω by dΩ(x) := infy∈Ω ‖x − y‖. When Ω is closed the
distance is attained at a projection onto Ω, that is, dΩ (x) = ‖x̄− x‖ for x̄ ∈ PΩx.

A. Tools and notions of regularity

Our proofs make use of some standard tools and notation from variational analysis which we briefly define here.
We remind the reader of the definition of the projection onto a closed set (7). The following definition follows [8,
Definition 2.1] and is based on [33, Definition 1.1 and Theorem 1.6].
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Definition II.1 (normal cones) The proximal normal cone NP
Ω (x̄) to a closed nonemtpy set Ω ⊂ IRn at a point

x̄ ∈ Ω is defined by
NP

Ω (x̄) := cone(P−1
Ω x̄− x̄).

The limiting normal cone, or simply the normal cone NΩ(x̄) is defined as the set of all vectors that can be written
as the limit of proximal normals; that is, v ∈ NΩ(x̄) if and only if there exist sequences (xk)k∈IN in Ω and (vk)k∈IN
in NP

Ω (xk) such that xk → x̄ and vk → v.

The normal cone describes the local geometry of a set. What is meant by regularity of sets is made precise below.

Definition II.2 ((ε, δ)-subregularity) A nonempty set Ω ⊂ IRn is (ε, δ)-subregular at x̄ with respect to U ⊂ IRn,
if there exist ε ≥ 0 and δ > 0 such that

〈v, z − y〉 ≤ ε‖v‖‖z − y‖

holds for all y ∈ Ω ∩ IBδ(x̄), z ∈ U ∩ IBδ(x̄), v ∈ NΩ(y). We simply say Ω is (ε, δ)-subregular at x̄ if U = {x̄}.

The definition of (ε, δ)-subregularity was introduced in [21] and is a generalization of the notion of (ε, δ)-regularity
introduced in [8, Definition 8.1]. During the preparation of this article it was brought to our attention that a similar
condition appears in the context of regularized inverse problems [24, Corollary 3.6].

We define next some notions of regularity of collections of sets that, together with (ε, δ)-subregularity, provide
sufficient conditions for linear convergence of both alternating projections and Douglas-Rachford. In the case of
Douglas-Rachford, as we shall see, these conditions are also necessary. Linear regularity, defined next, can be found
in [2, Definition 3.13]. Local versions of this have appeared under various names in [23, Proposition 4], [34, Section
3], and [25, Equation (15)].

Definition II.3 (linear regularity)
A collection of closed, nonempty sets (Ω1,Ω2, . . . ,Ωm) ⊂ IRn is called locally linearly regular at x̄ ∈ ∩mj=1Ωj on
IBδ(x̄) (δ > 0) if there exists a κ > 0 such that

d∩m
j=1Ωj

(x) ≤ κ max
i=1,...,m

dΩi
(x), ∀x ∈ IBδ(x̄). (11)

The infimum over all such κ is called modulus of regularity on IBδ(x̄). If there exists κ > 0 such that (11) holds at
x̄ for every δ > 0 (that is, for all x ∈ IRn), the collection of sets is said to be linearly regular there. The modulus
of regularity of a collection of linearly regular sets is the infimum over all κ satisfying (11) for all δ > 0.

There is yet a stronger notion of regularity of collections of sets that we make use of called the basic qualification
condition for sets in [33, Definition 3.2]. For the purposes of this paper we refer to this as strong regularity.

Definition II.4 (strong regularity) The collection (Ω1,Ω2) is strongly regular at x̄ if

NΩ1
(x̄) ∩ −NΩ2

(x̄) = {0}. (12)

It can be shown that strong regularity implies local linear regularity (see, for instance [21]). Any collection of
finite dimensional affine subspaces with nonempty intersection is linearly regular (see for instance [3, Proposition
5.9 and Remark 5.10]). Moreover, it follows from [4, Example 6.42], that if Ω1 and Ω2 are affine subspaces, we
have NΩ1

= Ω⊥1 , NΩ2
= −NΩ2

= Ω⊥2 and hence,

(Ω1,Ω2) is strongly regular at any x̄ ∈ Ω1 ∩ Ω2 ⇐⇒ Ω⊥1 ∩ Ω⊥2 = {0} and Ω1 ∩ Ω2 6= ∅. (13)

In the case where Ω1 and Ω2 are affine subspaces we say that the collection is strongly regular without mention
of any particular point in the intersection - as long as this is nonempty - since the collection is strongly regular at
all points in the intersection.

B. General local linear convergence results

The algorithms that we consider here are fixed-point algorithms built upon projections onto sets. Using tools
developed in [7] and [8], alternating projections applied to (6) was shown in [9] to be locally linearly convergent
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with optimal rates in terms of the Friedrichs angle between As and B, and an estimate of the radius of convergence.
Our approach, based on [21], is in line with [32] but does not rely on local firm nonexpansiveness of the fixed
point mapping. It has the advantage of being general enough to be applied to any fixed point mapping, but the
price one pays for this generality is in the rate estimates, which may not be optimal or easy to compute. We do not
present the results of [21] in their full generality, but focus instead on the essential elements for affine feasibility
with sparsity constraints.

Lemma II.5 (local linear convergence of alternating projections) (See [21, Corollary 3.13].) Let
the collection (Ω1,Ω2) be locally linearly regular at x̄ ∈ Ω := Ω1 ∩ Ω2 with modulus of regularity κ on IBδ(x̄)
and let Ω1 and Ω2 be (ε, δ)−subregular at x̄. For any x0 ∈ IBδ/2(x̄), generate the sequence

(
xk
)
k∈IN ⊂ IRn by

alternating projections, that is, xk+1 ∈ TAPxk. Then

dΩ(xk+1) ≤
(

1− 1

κ2
+ ε

)
dΩ

(
xk
)
.

In the analogous statement for the Douglas-Rachford algorithm, we defer, for the sake of simplicity, characterization
of the constant in the asserted linear convergence rate. A more refined analysis of such rate constants and their
geometric interpretation is the subject of future research.

Lemma II.6 (local linear convergence of Douglas-Rachford) (See [21, Corollary 3.20].) For T := 1
2(RΩ1

RΩ2
+

Id) and Ω1,Ω2 affine subspaces with Ω1 ∩ Ω2 6= ∅, Fix T = Ω1 ∩ Ω2 if and only if (Ω1,Ω2) is strongly regular,
in which case the corresponding Picard iteration converges linearly to the intersection.

III. SPARSE FEASIBILITY WITH AN AFFINE CONSTRAINT: LOCAL AND GLOBAL CONVERGENCE OF

ALTERNATING PROJECTIONS

We are now ready to apply the above general results to affine sparse feasibility. We begin with characterization
of the regularity of the sets involved.

A. Regularity of sparse sets

We specialize to the case where B is an affine subspace defined by (3) and As defined by (5) is the set of vectors
with at most s nonzero elements. Following [9] we decompose the set As into a union of subspaces. For a ∈ IRn
define the sparsity subspace associated with a by

supp(a) := {x ∈ IRn| xj = 0 if aj = 0} , (14)

and the mapping
I : IRn → {1, . . . , n}, x 7→ {i ∈ {1, . . . , n}| xi 6= 0} . (15)

Define J := 2{1,2,...,n} and Js := {J ∈ J | J has s elements}. The set As can be written as the union of all
subspaces indexed by J ∈ Js [9, Equation (27d)],

As =
⋃
J∈Js

AJ , (16)

where AJ := span {ei| i ∈ J} and ei is the i−th standard unit vector in IRn. For x ∈ IRn we define the set of s
largest coordinates in absolute value

Cs(x) :=

{
J ∈ Js

∣∣∣∣ min
i∈J
|xi| ≥ max

i/∈J
|xi|
}
. (17)

The next elementary result will be useful later.

Lemma III.1 (See [9, Lemma 3.4])
Let a ∈ As and assume s ≤ n− 1. Then

min {dAJ
(a) | a /∈ AJ , J ∈ Js} = min {|aj | | j ∈ I(a)} . (18)



6

Using the above notation, the normal cone to the sparsity set As at a ∈ As has the following closed-form
representation (see [9, Theorem 3.9] and [31, Proposition 3.6] for the general matrix representation).

NAs
(a) = {ν ∈ IRn| ‖ν‖0 ≤ n− s} ∩ (supp(a))⊥

=
⋃

J∈Js,I(a)⊆J

A⊥J . (19)

The normal cone to the affine set B also has a simple closed form, namely NB(x) = B⊥ (see for example [33,
Proposition 1.5]). Let y ∈ IRn be a point such that My = p. Note that kerM is the subspace parallel to B, i.e.
kerM = B + {−y}.

This notation yields the following explicit representations for the projectors onto As [9, Proposition 3.6] and B:

PBx := x−M †(Mx− p) and PAs
x :=

⋃
J∈Cs(x)

PAJ
x, (20)

where M † is given by (10) and

(PAJ
x)i =

{
xi, i ∈ J,
0, i /∈ J . (21)

We collect next some facts about the projectors and reflectors of As and B. We remind the reader that, in a slight
abuse of notation, since the set B is convex, we make no distinction between the projector PBx and the projection
x̄ ∈ PBx.

Lemma III.2 Let As and B be defined by (5) and (3). Let a ∈ As and b ∈ B. For any δa ∈ (0,min {|aj | | j ∈ I(a)})
and δb ∈ (0,∞) the following hold:

(i) PBx ∈ IBδb(b) for all x ∈ IBδb(b);
(ii) PAs

x ⊂ IBδa/2(a) for all x ∈ IBδa/2(a);
(iii) RBx ∈ IBδb(b) for all x ∈ IBδb(b);
(iv) RAs

x ⊂ IBδa/2(a) for all x ∈ IBδa/2(a).

Proof: (i). This follows from the fact that the projector is nonexpansive, since B is convex and ‖PBx− b‖ =
‖PBx− PBb‖ ≤ ‖x− b‖.

(ii). Let x ∈ IBδa/2(a). For any i ∈ I◦(a) := {i : ai = 0}, we have |xi − ai| = |xi| ≤ δa/2. Moreover, for all
j ∈ I(a) := {j : aj 6= 0}, we have |xj−aj | ≤ δa/2 and so |xj | > δa/2 for all j ∈ I(a). Altogether this means that
|xj | > |xi| for all i ∈ I◦(a), j ∈ I(a). Therefore the indices of the nonzero elements of a correspond exactly to the
indices of the |I(a)|-largest elements of x, where |I(a)| denotes the cardinality of the set I(a). Since |I(a)| ≤ s, the
projector of x need not be single-valued. (Consider the case a = (1, 0, . . . , 0)> and x = (1, δa/4, δa/4, 0, . . . , 0)>

and s = 2.) Nevertheless, for all x+ ∈ PAs
x we have a ∈ supp(x+) where supp(x+) is defined by (14). (Suppose

not. Then a /∈ supp(x+) for some x+ ∈ PAs
x, that is, for some i ∈ I(a) we have ai 6= 0 while x+

i = 0. But
then ‖a − x+‖ ≥ |ai| > δa, which is a contradiction to x ∈ IBδa/2(a).) Since supp(x+) is a subspace, x+ is the
orthogonal projection of x onto a subspace, hence by Pythagoras’ Theorem

‖x− x+‖22 + ‖x+ − a‖22 = ‖x− a‖22
and ‖x+ − a‖2 ≤ ‖x− a‖2 ≤ δ

2 .
(22)

Thus PAs
x ⊂ IBδa/2(a).

(iii). Since the reflector RB is with respect to an affine subspace containing b a simple geometric argument shows
that for all x we have ‖RBx− b‖ = ‖x− b‖. The result follows immediately.

(iv). As in the proof of (ii), for all x ∈ IBδa/2 we have a ∈ supp(x+) for each x+ ∈ PAs
x. In other words,

the projector, and hence the corresponding reflector, is with respect to a subspace containing a. Thus, as in (iii),
‖RAs

x− a‖ = ‖x− a‖, though in this case only for x ∈ IBδa/2.
The next lemma shows that around any point x̄ ∈ As the set As is the union of subspaces in As containing

x̄. Hence around any point x̄ ∈ As ∩ B the intersection As ∩ B can be described locally as the intersection of
subspaces and the affine set B, each containing x̄.
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Lemma III.3 Let x̄ ∈ As ∩B with 0 < ‖x̄‖0 ≤ s. Then for all δ < min{|x̄i| : x̄i 6= 0} we have

As ∩ IBδ(x̄) =
⋃

J∈Js, I(x̄)⊆J

AJ ∩ IBδ(x̄) (23)

and hence
As ∩B ∩ IBδ(x̄) =

⋃
J∈Js, I(x̄)⊆J

AJ ∩B ∩ IBδ(x̄). (24)

If in fact ‖x̄‖0 = s, then there is a unique J ∈ Js such that for all δ < min{|x̄i| : x̄i 6= 0} we have As ∩ IBδ(x̄) =
AJ ∩ IBδ(x̄) and hence As ∩B ∩ IBδ(x̄) = AJ ∩B ∩ IBδ(x̄).

Proof: If s = n, then the set As is all of IRn and both statements are trivial. For the case s ≤ n− 1, choose
any x ∈ IBδ(x̄) ∩ As. From the definition of δ and Lemma III.1 we have that, for any J ∈ Js, if x̄ /∈ AJ , then
dAJ

(x̄) > δ, and, since ‖x− x̄‖ < δ, we have x /∈ AJ . By contraposition, therefore, x ∈ AJ implies that x̄ ∈ AJ ,
hence, for each x ∈ IBδ(x̄)∩As, we have x ∈ IBδ(x̄)∩AI(x) where I(x̄) ⊆ I(x) ∈ Js. The intersection IBδ(x̄)∩As
is then the union over all such intersections as given by (23). Equation (24) is an immediate consequence of (23).

If, in addition ‖x̄‖0 = s, then the cardinality of I(x̄) is s and by [9, Lemma 3.5] Cs(x̄) = {I(x̄)}, where
Cs(x̄) is given by (17). This means that if x̄ has sparsity s, then there is exactly one subspace AJ with index set
J := I(x̄) in Js containing x̄. By (16) we have As =

⋃
J∈Js

AJ and by Lemma III.1 we conclude dAK
(x̄) ≥

min {|x̄j | | j ∈ J} > δ for all K ∈ Js \ J . This gives us the equality As ∩ IBδ(x̄) = AJ ∩ IBδ(x̄) and hence
As ∩B ∩ IBδ(x̄) = AJ ∩B ∩ IBδ(x̄), as claimed.

We conclude this introductory section with a characterization of the sparsity set As.

Theorem III.4 (regularity of As) At any point x̄ ∈ As\{0} the set As is (0, δ)-subregular at x̄ for δ ∈ (0,min {|x̄j | | j ∈ I(x̄)}).
On the other hand, the set As is not (0, δ)-subregular at x̄ ∈ As\{0} for any δ ≥ min {|x̄j | | j ∈ I(x̄)}). In contrast,
at 0 the set As is (0,∞)-subregular.

Proof: Choose any x ∈ IBδ(x̄) ∩ As and any v ∈ NAs
(x). By the characterization of the normal cone in

(19) there is some J ∈ Js with I(x) ⊆ J and v ∈ A⊥J ⊂ NAs
(x). As in the proof of Lemma III.3, for any

δ ∈ (0,min {|x̄j | | j ∈ I(x̄)}) we have I(x̄) ⊆ I(x), hence x̄− x ∈ AJ and thus 〈v, x̄− x〉 = 0. By the definition
of (ε, δ)-regularity (Definition II.2) As is (0, δ)-subregular as claimed.

That As is not (0, δ)-subregular at x̄ ∈ As \ {0} for any δ ≥ min {|x̄j | | j ∈ I(x̄)}) follows from the failure of
Lemma III.3 on balls larger than min {|x̄j | | j ∈ I(x̄)}. Indeed, suppose
δ ≥ min {|x̄j | | j ∈ I(x̄)}, then by Lemma III.1 there is a point x ∈ IBδ(x̄) ∩ As and there exists J ∈ Js with
x ∈ AJ ⊂ As but x̄ /∈ AJ . In particular, A⊥J ∩ AI(x̄) 6= {0}, so there exists a nonzero v ∈ A⊥J ∩ AI(x̄). Then
v ∈ NAs

(x) and |〈v, x̄− x〉| = |〈v, x̄〉| > 0. Since NAs
(x) is a union of subspaces, the sign of v can be chosen so

that 〈v, x̄− x〉 > 0, in violation of (0, δ)-subregularity.
For the case x̄ = 0, by (19) for any x ∈ As and v ∈ NAs

(x) we have 〈v, x〉 = 0, since supp(x)⊥ ⊥ supp(x),
which completes the proof.

B. Regularity of the collection (As, B)

We show in this section that the collection (As, B) is locally linearly regular as long as the intersection is
nonempty. We begin with a technical lemma.

Lemma III.5 (linear regularity under unions) Let (Ω1,Ω2, . . . ,Ωm,Ωm+1) be a collection of nonempty sub-
sets of IRn with nonempty intersection. Let x̄ ∈

(
∩mj=1Ωj

)
∩ Ωm+1. Suppose that, for some δ > 0, the pair

(Ωj ,Ωm+1) is locally linearly regular with modulus κj on IBδ(x̄) for each j ∈ {1, 2, . . . ,m}. Then the collection(⋃m
j=1 Ωj ,Ωm+1

)
is locally linearly regular at x̄ on IBδ(x̄) with modulus κ = maxj{κj}.

Proof: Denote Γ :=
⋃m
j=1 Ωj . First note that for all x ∈ IBδ(x̄) we have

dΓ∩Ωm+1
(x) = min

j

{
dΩj∩Ωm+1

(x)
}
≤ min

j

{
κj max{dΩj

(x) , dΩm+1
(x)}

}
, (25)
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where the inequality on the right follows from the assumption that (Ωj ,Ωm+1) is locally linearly regular with
modulus κj on IBδ(x). Let κ ≥ maxj{κj}. Then

dΓ∩Ωm+1
(x) ≤ κmin

j

{
max{dΩj

(x) , dΩm+1
(x)}

}
= κmax

{
min
j
{dΩj

(x)}, dΩm+1
(x)

}
. (26)

This completes the proof.

Theorem III.6 (regularity of (As, B)) Let As and B be defined by (5) and (3) with As∩B 6= ∅. At any x̄ ∈ As∩B
and for any δ ∈ (0,min {|x̄j | | j ∈ I(x̄)}) the collection (As, B) is locally linearly regular on IBδ/2(x̄) with
modulus of regularity κ = max

J∈Js,I(x̄)⊆J
{κJ} where κJ is the modulus of regularity of the collection (AJ , B).

Proof: For any x̄ ∈ As ∩B we have x̄ ∈ AJ ∩B for all J ∈ Js with I(x̄) ⊆ J and thus (AJ , B) is linearly
regular with modulus of regularity κJ [3, Proposition 5.9 and Remark 5.10]. Define

Ax̄s :=
⋃

J∈Js, I(x̄)⊆J

AJ .

Then by Lemma III.5 the collection (Ax̄s , B) is linearly regular at x̄ with modulus of regularity κ := max
J∈Js, I(x̄)⊆J

{κJ}.

By Lemma III.3 As∩IBδ/2(x̄) = Ax̄s∩IBδ/2(x̄) for any δ ∈ (0,min {|x̄j | | j ∈ I(x̄)}). Moreover, by Lemma III.2(ii),
for all x ∈ IBδ/2(x̄), we have PAs

x ⊂ IBδ/2(x̄), and thus PAs
x = PAx̄

s
x. In other words, dAs

(x) = dAx̄
s

(x) for all
x ∈ IBδ/2(x̄), hence the collection (As, B) is locally linearly regular on IBδ(x̄) with modulus κ. This completes
the proof.

Remark III.7 A simple example shows that the collection (As, B) need not be linearly regular. Consider the
sparsity set A1, the affine set B = {(1, τ, 0)> | τ ∈ IR} and the sequence of points (xk)k∈IN defined by xk =
(0, k, 0)>. Then A1 ∩ B = {(1, 0, 0)>} and max{dA1

(
xk
)
, dB

(
xk
)
} = 1 for all k while dA1∩B

(
xk
)
→ ∞ as

k →∞.

C. Local linear convergence of alternating projections

The next result shows the local linear convergence of alternating projections to a solution of (6). This was also
shown in [9, Theorem 3.19] using very different techniques. The approach taken here based on the modulus of
regularity κ on IBδ(x) is more general, that is, it can be applied to other nonconvex problems, but the relationship
between the modulus of regularity and the angle of intersection which is used to characterize the optimal rate of
convergence [9, Theorem 2.11] is not fully understood.

Theorem III.8 Let As and B be defined by (5) and (3) with nonempty intersection and let x̄ ∈ As ∩ B. Choose
0 < δ < min {|x̄j | | j ∈ I(x̄)}. For x0 ∈ IBδ/2(x̄) the alternating projections iterates converge linearly to the
intersection As ∩B with rate

(
1− 1

κ2

)
where κ is the modulus of regularity of (As, B) on IBδ(x̄) (Definition II.3).

Proof: We show that we may apply Lemma II.5. By Lemma III.2(i) and (ii) the projections PB and PAs
each

map IBδ/2(x̄) to itself, hence their composition maps IBδ/2(x̄) to itself. Moreover, the set B is (0,+∞)-subregular
at every point in B (i.e., convex) and, by Theorem III.4, the sparsity set As is (0, δ)− subregular at x̄. Finally, by
Theorem III.6 the pair (As, B) is locally linearly regular at x̄ on IBδ(x̄). The assertion then follows from Lemma
II.5 with ε = 0.

Remark III.9 The above result does not need an exact a priori assumption on the sparsity s. If there is a solution
x ∈ As ∩ B, then ‖x‖0 can be smaller than s and, geometrically speaking, x is on a crossing of linear subspaces
contained in As. It is also worth noting that the assumptions are also not tantamount to local convexity. In the
case that B is a subspace, the point 0 is trivially a solution to (6) (and, for that matter (1)). The set As is not
convex on any neighborhood of 0, however the assumptions of Theorem III.8 hold, and alternating projections
indeed converges locally linearly to 0, regardless of the size of the parameter s.
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D. Global convergence of alternating projections

Following [11] where the authors consider problem (4), we present a sufficient condition for global linear
convergence of the alternating projections algorithm for affine sparse feasibility. Though our presentation is modeled
after [11] this work is predated by the nearly identical approach developed in [12], [13]. We also note that the
arguments presented here do not use any structure that is particular to IRn, hence the results can be extended, as
they were in [11], to the problem of finding the intersection of the set of matrices with rank at most s and an
affine subspace in the Euclidean space of matrices. Since this generalization complicates the local analysis, we have
chosen to limit our scope to IRn.

Key to the analysis of [12], [13], [11] are the following well-known restrictions on the matrix M .

Definition III.10 The mapping M : IRn → IRm satisfies the restricted isometry property of order s, if there exists
0 ≤ δ ≤ 1 such that

(1− δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22 ∀x ∈ As. (27)

The infimum δs of all such δ is the restricted isometry constant.
The mapping M : IRn → IRm satisfies the scaled/asymmetric restricted isometry property of order (s, α) for α > 1,
if there exist νs, µs > 0 with 1 ≤ µs

νs
< α such that

νs‖x‖22 ≤ ‖Mx‖22 ≤ µs‖x‖22 ∀x ∈ As. (28)

The restricted isometry property (27) was introduced in [16], while the asymmetric version (28) first appeared in
[12, Theorem 4]. Clearly (27) implies (28), since if a matrix M satisfies (27) of order s with restricted isometry
constant δs, then it also satisfies (28) of order (s, β) for β > 1+δs

1−δs .
To motivate the projected gradient algorithm given below, note that any solution to (6) is also a solution to

Find x̄ ∈ S := argminx∈As

1

2
‖Mx− p‖22. (29)

Conversely, if As ∩B 6= ∅ and x̄ is in S, then x̄ solves (6).

Definition III.11 (projected gradients) Given a closed set A ⊂ IRn, a continuously differentiable function f :
IRn → IR and a positive real number τ , the mapping

TPG(x; τ) = PA

(
x− 1

τ
∇f(x)

)
(30)

is called the projected gradient operator. The projected gradients algorithm is the fixed point iteration

xk+1 ∈ TPG(xk; τk) = PA

(
xk − 1

τk
∇f(xk)

)
, k ∈ IN

for x0 given arbitrarily and a sequence of positive real numbers (τk)k∈IN .

In the context of linear least squares with a sparsity constraint, the projected gradient algorithm is equivalent to what
is also known as the iterative hard thresholding algorithm (see for instance [12], [13], [26]) where the constraint
A = As and the projector given by (20) amounts to a thresholding operation on the largest elements of the iterate.

With these definitions we cite a result on convergence of the projected gradient algorithm applied to (29) (see
[13, Theorem 4] and [11, Theorem 3 and Corollary 1]).

Theorem III.12 (global convergence of projected gradients/iterative hard thresholding) Let M satisfy (28) of
order (2s, 2) and, for any given initial point x0, let the sequence (xk)k∈IN be generated by the projected gradient
algorithm with A = As, f(x) = 1

2 ‖Mx− p‖22 and the constant step size τ ∈ [µ2s, 2ν2s). Then there exists a unique
global solution x̄ to (29) and the iterates converge to x̄ for any x0 ∈ IRn. Further, f(xk)→ 0 linearly as k →∞
with rate ρ =

(
τ
ν2s
− 1
)
< 1, that is,

f(xk+1) ≤ ρf(xk) (∀k ∈ IN).

We specialize this theorem to alternating projections next.
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Corollary III.13 (global convergence of alternating projections I) Let the matrix M satisfy (28) of order (2s, 2)
with µ2s = 1 and MM> = Id. Then As ∩B is a singleton x̄ and alternating projections applied to (6) converges
to x̄ for every initial point x0. Further, the values of f(xk) = 1

2

∥∥Mxk − p
∥∥2

2
converge linearly to 0 with rate

ρ =
(

1
ν2s
− 1
)
< 1.

Proof: For f(x) = 1
2‖Mx − p‖22 we have ∇f(x) = M>(Mx − p). The projected gradients iteration with

constant step length τ = 1 then takes the form

xk+1 ∈ PAs

(
xk −∇f(xk)

)
= PAs

(
xk −M>(Mxk − p)

)
.

The projection onto the subspace B is given by (see (20))

PBx =
(

Id−M>(MM>)−1M
)
x+M>(MM>)−1p.

Since MM> = Id this simplifies to xk −M>(Mxk − p) = PBx
k, hence

xk+1 ∈ PAs

(
xk −∇f(xk)

)
= PAs

PBx
k.

This shows that projected gradients III.11 with unit step length applied to (29) with A = As and f(x) =
1
2 ‖Mx− p‖22 is equivalent to the method of alternating projections I.1 applied to (6).

To show convergence to a unique solution, we apply Theorem III.12, for which we must show that the step length
τ = 1 lies in the nonempty interval [µ2s, 2ν2s). By assumption M satisfies (28) of order (2s, 2) with µ2s = 1.
Hence 1

2 < ν2s ≤ 1 and τ = 1 lies in the nonempty interval [1, 2ν2s). The assumptions of Theorem III.12 are thus
satisfied with τ = 1, whence global linear convergence to the unique solution of (29), and hence (6), immediately
follows.

The restriction to matrices satisfying MM> = Id is very strong indeed. We consider next a different condition
that, in principle, can be more broadly applied to the alternating projections algorithm. The difference lies in our
ansatz: while in [11] the goal is to minimize f(x) := 1

2 ‖Mx− p‖22 over x ∈ As, we solve instead

minimize
x∈As

g(x) :=
1

2
dB (x)2 . (31)

These are different objective functions, yet the idea is similar: both functions f and g take the value zero on As
if and only if x ∈ As ∩ B. The distance of the point x to B, however, is the space of signals, while f measures
the distance of the image of x under M to the measurement. The former is more robust to bad conditioning of the
matrix M ∈ IRm×n with m < n, since a poorly-conditioned M could still yield a small residual 1

2 ‖Mx− p‖22.
Note also that the matrix M †M is the orthogonal projection onto the subspace ker(M)⊥. This means that the

operator norm of M †M is 1 and so we have, for all x ∈ IRn, that
∥∥M †Mx

∥∥
2
≤ ‖x‖2. Our second global result

for alternating projections given below, involves a scaled/asymmetric restricted isometry condition analogous to
(28) with M replaced by M †M . This only requires a lower bound on the operator norm of M †M with respect to
vectors of sparsity 2s since the upper bound analogous to (28) is automatic. Specifically, we assume that

M is full rank and (1− δ2s) ‖x‖22 ≤
∥∥∥M †Mx

∥∥∥2

2
∀ x ∈ A2s. (32)

The condition (32) can be reformulated in terms of the scaled/asymmetric restricted isometry property (28) and
strong regularity of the range of M> and the complement of each of the subspaces comprising A2s. We remind
the reader that AJ := span {ei| i ∈ J} for J ∈ J2s :=

{
J ∈ 2{1,2,...,n}

∣∣ J has 2s elements
}

.

Proposition III.14 (scaled/asymmetric restricted isometry and strong regularity) Let M ∈ IRm×n with m ≤
n be full rank. Then M satisfies (32) with δ2s ∈ [0, α−1

α ) for some fixed s > 0 and α > 1 if and only if M †M
satisfies the scaled/asymmetric restricted isometry property (28) of order (2s, α) with µ2s = 1 and ν2s = (1− δ2s).
Moreover, for M satisfying (32) with δ2s ∈ [0, α−1

α ) for some fixed s > 0 and α > 1, for all J ∈ J2s the collection(
A⊥J , range(M>)

)
is strongly regular (Definition II.4), that is,

(∀J ∈ J2s) AJ ∩ ker(M) = {0}. (33)



11

Proof: The first statement follows directly from the definition of the scaled/asymmetric restricted isometry
property.

For the second statement, note that, if M satisfies inequality (32) with δ2s ∈ [0, α−1
α ) for some fixed s > 0 and

α > 1, then the only element in A2s satisfying M †Mx = 0 is x = 0. Recall that M †M is the projector onto the
space orthogonal to the nullspace of M , that is, the projector onto the range of M>. Thus

A2s ∩ [range(M>)]⊥ = {0}. (34)

Here we have used the fact that the projection of a point x onto a subspace Ω is zero if and only if x ∈ Ω⊥. Now
using the representation for A2s given by (16) we have that (34) is equivalent to

AJ ∩ ker(M>) = {0} for all J ∈ J2s. (35)

But by (13) this is equivalent to the strong regularity of
(
A⊥J , range(M>)

)
for all J ∈ J2s.

We are now ready to prove one of our main new results.

Theorem III.15 (global convergence of alternating projections II) For a fixed s > 0, let the matrix M †M
satisfy (32) with δ2s ∈ [0, 1

2) for M in the definition of the affine set B given by (3) . Then B ∩ As is a
singleton and, for any initial value x0 ∈ IRn, the sequence (xk)k∈IN generated by alternating projections with
xk+1 ∈ PAs

PBx
k converges to B∩As. Moreover, dB

(
xk
)
→ 0 as k →∞ at a linear rate with constant bounded

by
√

δ2s
1−δ2s .

Proof: From the correspondence between (32) and (28) in Proposition III.14, we can apply Theorem III.12 to
the feasibility problem Find x ∈ As ∩ B̂, where B̂ := {x | M †Mx = p̂} for p̂ := M †p. This establishes that the
intersection is a singleton. But from (10) the set B̂ is none other than B, hence (32) for α = 2 implies existence
and uniqueness of the intersection As ∩ B. To establish convergence of alternating projections, for the iterate xk

define the mapping

q(x, xk) := g(xk) +
〈
x− xk,M †(Mxk − p)

〉
+

1

2

∥∥∥x− xk∥∥∥2

2
,

where g is the objective function defined in (31). By definition of the projector, the iterate xk+1 is a solution
to the problem min

{
q(x, xk)

∣∣ x ∈ As} . To see this, recall that, by the definition of the projection, g(xk) =
1
2‖x

k − PBxk‖2. Together with (20), i.e. xk − PBxk = M †(Mxk − p), this yields

q(x, xk) =
1

2

∥∥∥xk − PBxk∥∥∥2

2
+
〈
x− xk, xk − PBxk

〉
+

1

2

∥∥∥x− xk∥∥∥2

2

=
1

2

∥∥∥x− xk + xk − PBxk
∥∥∥2

2
. (36)

Now, by definition of the alternating projections sequence,

xk+1 ∈ PAs
PBx

k = PAs

(
xk − (Id− PB)xk

)
,

which, together with (36), yields

xk+1 ∈ argmin
x∈As

{∥∥∥x− (xk − (Id− PB)xk
)∥∥∥2

2

}
= argmin

x∈As

{q(x, xk)}.

That is, xk+1 is a minimizer of q(x, xk) in As. On the other hand, by (20) and (31), we have

g(xk+1) =
1

2

∥∥∥M †(Mxk+1 − p)
∥∥∥2

2
. (37)

Expanding the above expression and using fact that M †M is an orthogonal projection onto a subspace yields

g(xk+1) =
1

2

∥∥∥M †M(xk+1 − xk) +M †(Mxk − p)
∥∥∥2

2

= g(xk) +
〈
M †M(xk+1 − xk),M †(Mxk − p)

〉
+

1

2

∥∥∥M †M(xk+1 − xk)
∥∥∥2

2
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≤ g(xk) +
〈
M †M(xk+1 − xk),M †(Mxk − p)

〉
+

1

2

∥∥∥xk+1 − xk
∥∥∥2

2
. (38)

Now, by (10), the right hand side of (38) is equivalent to

g(xk) +
〈
xk+1 − xk,M †(Mxk − p)

〉
+

1

2

∥∥∥xk+1 − xk
∥∥∥2

2
= q(xk+1, xk). (39)

Altogether, (38)-(39) yield g(xk+1) ≤ q(xk+1, xk). But since xk+1 minimizes q(x, xk) over As, we know that, for
{x} = B ∩As,

q(xk+1, xk) ≤ q(x, xk). (40)

Moreover, by assumption (32) we have

q(x, xk) =g(xk) +
〈
x− xk,M †(Mxk − p)

〉
+

1

2

∥∥∥x− xk∥∥∥2

2

≤g(xk) +
〈
x− xk,M †(Mxk − p)

〉
+

1

2 (1− δ2s)

∥∥∥M †M(x− xk)
∥∥∥2

2

=g(xk) +
〈
x− xk,M †(Mxk − p)

〉
+

1

2 (1− δ2s)

∥∥∥M †(p−Mxk)
∥∥∥2

2
. (41)

By (20) and (31) we have

g(xk) +
〈
x− xk,M †(Mxk − p)

〉
+

1

2 (1− δ2s)

∥∥∥M †(p−Mxk)
∥∥∥2

2

=

(
1 +

1

1− δ2s

)
g(xk) +

〈
x− xk,M †(Mxk − p)

〉
(42)

Finally, by (10) and another application of (20) and (31) we have(
1 +

1

1− δ2s

)
g(xk) +

〈
x− xk,M †(Mxk − p)

〉
=

(
1 +

1

1− δ2s

)
g(xk) +

〈
M †M(x− xk),M †(Mxk − p)

〉
=

(
1 +

1

1− δ2s

)
g(xk)− 2g(xk)

=
δ2s

1− δ2s
g(xk). (43)

Together, (41)-(43) yield q(x, xk) ≤ δ2s
1−δ2s g(xk), which from (38)-(40) show that g(xk+1) ≤ δ2s

1−δ2s g(xk). When
0 ≤ δ2s <

1
2 , as assumed, we have 0 ≤ δ2s

1−δ2s < 1. We then have that dB
(
xk
)
→ 0 as k →∞ at a linear rate for

0 ≤ δ2s <
1
2 , with constant bounded above by

√
δ2s

1−δ2s < 1. Since the iterates xk lie in As this proves convergence
of the iterates to the intersection As ∩B, that is, to x̄, as claimed.

IV. SPARSE FEASIBILITY WITH AN AFFINE CONSTRAINT: LOCAL LINEAR CONVERGENCE OF

DOUGLAS-RACHFORD

We turn our attention now to the Douglas-Rachford algorithm. First we present a result that could be discouraging
since we show that the Douglas-Rachford operator has a set of fixed points that is too large in most interesting
cases. However we show later that this set of fixed points has a nice structure guaranteeing local linear convergence
of the iterates and thus convergence of the shadows to a solution of (6).

A. Fixed point sets of Douglas-Rachford

In contrast to the alternating projections algorithm, the iterates of the Douglas-Rachford algorithm are not actually
the points of interest - it is rather the shadows of the iterates that are relevant. This results in an occasional
incongruence between the fixed points of Douglas-Rachford and the intersection that we seek. Indeed, this mismatch
occurs in the most interesting cases of the affine sparse feasibility problem as we show next.
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Theorem IV.1 Let As and B be defined by (5) and (3) and suppose there exists a point x̄ ∈ As∩B with ‖x̄‖0 = s.
If s < rank(M), then on all open neighborhoods N of x̄ ∈ As ∩ B there exist fixed points z ∈ Fix TDR with
z /∈ As ∩B.

Proof: Let x̄ ∈ As ∩ B with ‖x̄‖0 = s and set δ < min{|x̄j | | x̄j 6= 0}. By Lemma III.3 we have As ∩
B ∩ IBδ/2(x̄) = AJ ∩ B ∩ IBδ/2(x̄) for a unique J := I(x̄) ∈ Js. Thus on the neighborhood IBδ/2(x̄) the
feasibility problems Findx ∈ AJ ∩ B, and Findx ∈ As ∩ B have the same set of solutions. We consider the
Douglas-Rachford operators applied to these two feasibility problems, for which we introduce the following notation:
TJ := 1

2 (RAJ
RB + Id) and Ts := 1

2 (RAs
RB + Id). Our proof strategy is to show first that the operators TJ and

Ts restricted to IBδ/2(x̄) are identical, hence their fixed point sets intersected with IBδ/2(x̄) are identical. We then
show that under the assumption s < rank (M) the set FixTJ is strictly larger than the intersection AJ ∩B, hence
completing the proof.

To show that the operators TJ and Ts applied to points x ∈ IBδ/2(x̄) are identical, note that, by Lemma III.2(ii)
and (iv), for all x ∈ IBδ/2(x̄) we have PAs

x ⊂ IBδ/2(x̄) and RAs
x ⊂ IBδ/2(x̄). Moreover by Lemma III.3, since

‖x̄‖0 = s we have As ∩ IBδ(x̄) = AJ ∩ IBδ(x̄). Thus for all x ∈ IBδ/2(x̄) we have PAs
x = PAJ

x ∈ IBδ/2(x̄) and
RAs

x = RAJ
x ∈ IBδ/2(x̄). Also by Lemma III.2, RBx ∈ IBδ/2(x̄) for x ∈ IBδ/2(x̄). Altogether, this yields

Tsx = 1
2 (RAs

RB + Id)x = 1
2 (RAJ

RB + Id)x = TJx ∈ IBδ/2(x̄) (44)

for all x ∈ IBδ/2(x̄). Hence the operators Ts and TJ and their fixed point sets coincide on IBδ/2(x̄).
We derive next an explicit characterization of FixTJ . By [5, Corollary 3.9] and (13) we have:

FixTJ = (AJ ∩B) +NAJ−B(0)
= (AJ ∩B) + (NAJ

(x̄) ∩ −NB(x̄))
= (AJ ∩B) +

(
A⊥J ∩B⊥

)
.

(45)

The following equivalences show that A⊥J ∩B⊥ is nontrivial if s < rank (M). Indeed,

rank(M) > s
⇔ dim(ker(M)⊥) > s
⇔ n− s+ dim(ker(M)⊥) > n
⇔ dim(A⊥J ) + dim(ker(M)⊥) > n
⇔ A⊥J ∩B⊥ 6= {0}.

(46)

In other words, FixTJ contains elements from the intersection AJ ∩ B and the nontrivial subspace A⊥J ∩ B⊥.
This completes the proof.

Remark IV.2 The inequality (46) shows that if rank(M) > s then the intersection AJ ∩B is not strongly regular,
or in other words, if AJ ∩ B is strongly regular then rank(M) ≤ s. This was also observed in [9, Remark 3.17]
using tangent cones and transversality. The simple meaning of these results is that if the sparsity of a feasible
point is less than the rank of the measurement matrix (the only interesting case in sparse signal recovery) then,
since locally the affine feasibility problem is indistinguishable from simple linear feasibility at points x̄ ∈ As with
‖x̄‖0 = s, by Lemma II.6 the Douglas-Rachford algorithm may fail to converge to the intersection on all balls
around a feasible point. As we noted in the beginning of this section, however, it is not the fixed points of Douglas-
Rachford themselves but rather their shadows that are of interest. This leads to positive convergence results detailed
in the next section.

B. Linear convergence of Douglas-Rachford

We begin with an auxiliary result that the Douglas-Rachford iteration applied to linear subspaces converges to
its set of fixed points with linear rate. As the sparse feasibility problem reduces locally to finding the intersection of
(affine) subspaces, by a translation to the origin, results for the case of subspaces will yield local linear convergence
of Douglas-Rachford to fixed points associated with points x̄ ∈ As∩B such that ‖x̄‖0 = s. Convergence of Douglas-
Rachford for convex sets with nonempty intersection was proved first by Lions and Mercier [30], but without rate.
(They do, however, achieve linear rates of convergence under strong assumptions that are not satisfied for convex
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feasibility.) As surprising as it may seem, results on the rate of convergence of this algorithm even for the simple
case of affine subspaces are very recent. Our proof, based on [21], is one of several independent results (with very
different proofs) that we are aware of which have appeared in the last several months [1], [19]. Of these, [21] is
the only work that includes nonconvex settings.

1) The linear case: The idea of our proof is to show that the set of fixed points of the Douglas-Rachford
algorithm applied to the subspaces A and B can always be written as the intersection of different subspaces Ã and
B̃, the collection of which is strongly regular. We then show that the iterates of the Douglas-Rachford algorithm
applied to the subspaces A and B are identical to those of the Douglas-Rachford algorithm applied to the subspaces
Ã and B̃. Linear convergence of Douglas-Rachford then follows directly from Lemma II.6.

We recall that the set of fixed points of Douglas-Rachford in the case of two linear subspaces A ⊂ IRn and
B ⊂ IRn is by [5, Corollary 3.9] and (45) equal to

FixTDR = (A ∩B) +
(
A⊥ ∩B⊥

)
for TDR := 1

2 (RARB + Id). For two linear subspaces A ⊂ IRn and B ⊂ IRn define the enlargements Ã :=

A+
(
A⊥ ∩B⊥

)
and B̃ := B+

(
A⊥ ∩B⊥

)
. By definition of the Minkowski sum these enlargements are given by

Ã =
{
a+ n

∣∣∣ a ∈ A,n ∈ A⊥ ∩B⊥} (47a)

and

B̃ =
{
b+ n

∣∣∣ b ∈ B,n ∈ A⊥ ∩B⊥} . (47b)

The enlargements Ã and B̃ are themselves subspaces of IRn as the Minkowski sum of subspaces.

Lemma IV.3 The equation

C :=
(
A+

(
A⊥ ∩B⊥

))⊥
∩
(
B +

(
A⊥ ∩B⊥

))⊥
= {0}

holds for any linear subspaces A and B of IRn, and hence the collection (Ã, B̃) is strongly regular for any linear
subspaces A and B.

Proof: Let v be an element of C. Because C = Ã⊥ ∩ B̃⊥, we know that

〈v, ã〉 =
〈
v, b̃
〉

= 0 for all ã ∈ Ã, b̃ ∈ B̃. (48)

Further, since A ⊂ Ã and B ⊂ B̃ we have

〈v, a〉 = 〈v, b〉 = 0 for all a ∈ A, b ∈ B. (49)

In other words, v ∈ A⊥ and v ∈ B⊥, so v ∈ A⊥ ∩B⊥. On the other hand, A⊥ ∩B⊥ ⊂ Ã and A⊥ ∩B⊥ ⊂ B̃, so
we similarly have

〈v, n〉 = 0 for all n ∈ A⊥ ∩B⊥, (50)

because A and B are subspaces and v ∈ C. Hence v is also an element of
(
A⊥ ∩B⊥

)⊥. We conclude that v can
only be zero.

Lemma IV.4 Let A and B be linear subspaces and let Ã and B̃ be their corresponding enlargements defined by
(47).

(i) RAd = −d for all d ∈ A⊥.
(ii) RAx = RÃx for all x ∈ A+B.

(iii) RB̃a ∈ A+B for all a ∈ A.
(iv) RÃRB̃x = RARBx for all x ∈ IRn.
(v) For any x ∈ IRn the following equality holds:

1

2

(
RÃRB̃ + Id

)
x =

1

2
(RARB + Id)x.
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Proof: To prove (i), let d ∈ A⊥ be arbitrary. The projection PAd of d onto A is the orthogonal projection onto
A. The orthogonal projection of d ∈ A⊥ is the zero vector. This means that RAd = (2PA − Id)d = −d.

To show (ii)1 note that (A⊥ ∩ B⊥) = (A + B)⊥ hence Ã = A + (A + B)⊥. Now by [6, Proposition 2.6],
PA+(A+B)⊥ = PA +P(A+B)⊥ . Hence for all x ∈ A+B, PÃx = PAx and, consequently, RÃx = RAx, as claimed.

To prove (iii), let a ∈ A and thus a ∈ A+B. We note that by (ii) with A replaced by B we have RBa = RB̃a.
Write a as a sum b + v where b = PBa and v = a − PBa. We note that v ∈ A + B and so −v ∈ A + B.
From (i) we conclude, since A in (i) can be replaced by B and v ∈ B⊥, that RBv = −v. Since b ∈ B, we have
RBb = 2PBb− b = b and so

RB̃a = RBa = RBb+RBv = b− v ∈ A+B. (51)

To see (iv) let x ∈ IRn be arbitrary. Define D := A⊥ ∩ B⊥. Then we can write as x = a + b + d with a ∈ A,
b ∈ B and d ∈ D. This expression does not have to be unique since A and B may have a nontrivial intersection.
In any case, we have the identity 〈b, d〉 = 〈a, d〉 = 0. Since A and B are linear subspaces, the Douglas-Rachford
operator is a linear mapping which, together with parts (i)-(iii) of this lemma, yields

RARBx = RA (RBa+RBb+RBd)
= RA (RBa+ b− d)
= RARBa+RAb+RA(−d)
= RARBa+RAb+ d
= RARB̃a+RÃb+ d
= RÃRB̃a+RÃb+ d

(52)

But since d ∈ A⊥ ∩B⊥, we have d ∈ Ã ∩ B̃, and moreover, b ∈ B ⊂ B̃, hence by (52) we have

RARBx = RÃ
(
RB̃a+ b+ d

)
= RÃ

(
RB̃a+RB̃b+RB̃d

)
= RÃRB̃x.

(53)

This proves (iv).
Statement (v) is an immediate consequence of (iv), which completes the proof.

Proposition IV.5 Let A and B be linear subspaces and let Ã and B̃ be their corresponding enlargements defined
by (47). The Douglas-Rachford iteration applied to the enlargements

xk+1 = T̃DRx
k :=

1

2

(
RÃRB̃ + Id

)
xk (54)

converges with linear rate to Fix T̃DR for any starting point x0 ∈ IRn.

Proof: By Lemma IV.3 we know that the only common element in(
A+

(
A⊥ ∩B⊥

))⊥ and
(
B +

(
A⊥ ∩B⊥

))⊥ is the zero vector. By Lemma II.6 [21, Corollary 3.20] the sequence

x̃k+1 :=
1

2

(
RÃRB̃ + Id

)
x̃k

converges linearly to the intersection Ã ∩ B̃ for any starting point x̃0 ∈ IRn.
Combining these results we obtain the following theorem confirming linear convergence of the Douglas-Rachford

algorithm for subspaces. Convergence of the Douglas-Rachford algorithm for strongly regular affine subspaces was
proved in [21, Corollary 3.20] as a special case of a more general result [21, Theorem 3.18] about linear convergence
of the Douglas-Rachford algorithm for a strongly regular collection of a super-regular set [29, Definition 4.3] and
an affine subspace. Our result below shows that the iterates of the Douglas-Rachford algorithm for linearly regular
affine subspaces (not necessarily strongly regular) converge linearly to the fixed point set.

1This proof is a simplification of our original proof suggested by an anonymous referee.
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Theorem IV.6 For any two affine subspaces A,B ⊂ IRn with nonempty intersection, the Douglas-Rachford
iteration

xk+1 = TDRx
k :=

1

2
(RARB + Id)xk (55)

converges for any starting point x0 to a point in the fixed point set with linear rate. Moreover, PBx ∈ A ∩ B for
x = limk→∞ x

k.

Proof: Without loss of generality, by translation of the sets A and B by −x̄ for x̄ ∈ A ∩B, we consider the
case of subspaces. By Proposition IV.5 Douglas-Rachford applied to the enlargements Ã = A +

(
A⊥ ∩B⊥

)
and

B̃ = B +
(
A⊥ ∩B⊥

)
, namely (54), converges to the intersection Ã ∩ B̃ with linear rate for any starting point

x0 ∈ IRn. By [5, Corollary 3.9] and (13), the set of fixed points of the Douglas-Rachford algorithm (55) is

FixTDR
= (A ∩B) +

(
A⊥ ∩B⊥

)
= Ã ∩ B̃, (56)

where the rightmost equality follows from repeated application of the identity (Ω1 + Ω2)⊥ = (Ω⊥1 ∩ Ω⊥2 ), the
definition of set addition and closedness of subspaces under addition. By Lemma IV.4(v) the iterates of (54) are the
same as the iterates of (55). So the iterates of the Douglas-Rachford algorithm applied to A and B converge to a
point in the set of its fixed points with linear rate. Finally, by [5, Corollary 3.9], PBx ∈ A∩B for any x̄ ∈ Fix TDR.

2) Douglas-Rachford applied to sparse affine feasibility: We conclude with an application of the analysis for
affine subspaces to the case of affine feasibility with a sparsity constraint.

Theorem IV.7 Let As and B be defined by (5) and (3) with nonempty intersection and let x̄ ∈ As ∩ B with
‖x̄‖0 = s. Choose 0 < δ < min {|x̄j | | j ∈ I(x̄)}. For x0 ∈ IBδ/2(x̄) the corresponding Douglas-Rachford iterates
converge with linear rate to Fix TDR. Moreover, for any x̂ ∈ Fix TDR ∩ IBδ/2(x̄), we have PBx̂ ∈ As ∩B.

Proof: By Lemma III.3 we have As ∩B ∩ IBδ(x̄) = AJ ∩B ∩ IBδ(x̄) for a unique J ∈ Js. Thus by (44) at all
points in IBδ/2(x̄) the Douglas-Rachford operator corresponding to As and B is equivalent to the Douglas-Rachford
operator corresponding to AJ and B, whose intersection includes x̄. Applying Theorem IV.6, shifting the subspaces
appropriately, we see that the iterates converge to some point x̂ ∈ Fix TDR with linear rate for all initial points
x0 ∈ IBδ/2(x̄). The last statement follows from (44) and Theorem IV.6.

V. EXAMPLES

A. Numerical Demonstration

We demonstrate the above results on the following synthetic numerical example. We construct a sparse object
with 328 uniform random positive and negative point-like sources in a 256-by-256 pixel field and randomly sample
the Fourier transform of this object at a ratio of 1-to-8. This yields 8192 affine constraints. Local convergence
results are illustrated in Figure 1 where the initial points x0 are selected by uniform random (−δ/512, δ/512)
perturbations of the true solution in order to satisfy the assumptions of Theorems III.8 and IV.7. The alternating
projections and Douglas-Rachford algorithms are shown respectively in panels (a)-(b) and (c)-(d) of Figure 1. We
show both the step lengths per iteration as well as the gap distance at each iteration defined as

(gap distance)k := ‖PAs
xk − PBxk‖. (57)

Monitoring the gap allows one to ensure that the algorithm is indeed converging to a point of intersection instead
of just a best approximation point. In panels (a) and (c) we set the sparsity parameter s = 328, exactly the number
of nonzero elements in the original image. Panels (b) and (d) demonstrate the effect of overestimating the sparsity
parameter, s = 350, on algorithm performance. The convergence of Douglas-Rachford for the case s = 350 is
not covered in our theory, however our numerical experiments indicate that one still achieves a linear-looking
convergence over cycles, albeit with a very poor rate constant. This remains to be proven.
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Fig. 1. Case (a) shows the convergence of alternating projections in the case where the sparsity is exact, s = 328. Case (b) shows the
same with sparsity assumed too big, s = 350. In case (c) and (d) we have the corresponding plots for Douglas-Rachford. Case (d) is not
covered by our theory.

The second synthetic example, shown in Figure 2, demonstrates global performance of the algorithms and
illustrates the results in Theorem III.8, Theorem IV.7 and Corollary III.13. The solution is the vector x̄ :=
(10, 0, 0, 0, 0, 0, 0, 0)> and the affine subspace is the one generated by the matrix in (58). This matrix fulfills
the assumptions of Corollary III.13, as shown in Section V-B1. For the cases (a) and (c) the initial point x0 can be
written as x0 := x̄+u where u is a vector with uniform random values from the interval (−1, 1). The initial values
hence fulfill the assumptions of Theorems III.8 and IV.7. For (b) and (d) again the initial point x0 can be written as
x0 := x̄+ u while u is now a vector with uniform random values from the interval (−100, 100). As expected, the
sequence of alternating projections converges to the true solution in (c). The case for Douglas-Rachford however,
shown in (d), is not covered by our theory.
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Fig. 2. Example with an affine subspace generated by the matrix from Section V-B1: (a) shows the local convergence as shown in Theorem
III.8, (b) is an example of global convergence of alternating projections as stated in Corollary III.13. (c) is an example of local convergence
of Douglas-Rachford to its fixed point set while the shadows converge to the intersection, as proven in Theorem IV.7. This example also
shows that the iterates converge to a fixed point that is not in the intersection, as proven in Theorem IV.1. Plot (d) is an example where
Douglas-Rachford appears to converge globally. This behavior is not covered by our theory.

B. Analytic examples

1) Example of a matrix satisfying assumptions of Corollary III.13: Finding nonsquare matrices satisfying (27)
or deciding whether or not a matrix fulfills some similar condition is, in general, hard to do – but not impossible.
In this section we provide a concrete example of a nonsquare matrix satisfying the assumptions of Corollary III.13.

We take the matrix

M =
1√
8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1


. (58)

The rows of M are pairwise orthogonal and so MM> = Id7. We compute the constant δ in (27) for s = 2 to get a
result for the recovery of 1-sparse vectors with alternating projections. Recall that s can be larger than the sparsest
feasible solution (see Remark III.9). In general, a normalized 2-sparse vector in IR8 has the form

x = (cos(α), sin(α), 0, 0, 0, 0, 0, 0)>,

where the position of the sin and of the cos are of course arbitrary. The squared norm of the product Mx is equal
to

‖Mx‖22 =
1

8

7∑
i=1

| cos(α) + zi sin(α)|2,
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where zi ∈ {−1, 1}. We note that the inner products of distinct columns of M are −1, 1, so
∑7

i=1 zi = ±1. Then

1

8

7∑
i=1

| cos(α) + zi sin(α)|2

=
1

8

7∑
i=1

cos(α)2 + 2zi sin(α) cos(α) + sin(α)2

=
1

8
(7± sin(2α)) ∈

[
3

4
, 1

]
.

This means that 3
4‖x‖

2
2 ≤ ‖Mx‖22 ≤ ‖x‖22 ∀x ∈ A2, where A2 is the set of 2-sparse vectors in IR8. In other

words, we can recover any 1-sparse vector with the method of alternating projections.
2) An easy example where alternating projections and Douglas-Rachford iterates don’t converge: The following

example, discovered with help from Matlab’s Symbolic Toolbox, shows some of the more interesting pathologies
that one can see with these algorithms when not starting sufficiently close to a solution.

Let n = 3,m = 2, s = 1 and

M =

(
1 −1

2 0
0 1

2 −1

)
, p =

(
−5
5

)
.

The point (0, 10, 0)> is the sparsest solution to the equation Mx = p and the affine space B is

B =

 0
10
0

+ λ

1
2
1

 , with λ ∈ IR.

From the initial point (0,−2.5,−5)>, the iterates of the Douglas-Rachford algorithm converge to the cycle TDRx̄ =
x̄+ (−5, 0, 5)> and T 2

DRx̄ = x̄, where

x̄ =


38894857328700073

237684487542793012780631851008

−297105609428507214758454580565
118842243771396506390315925504

−1188422437713940163629828887893
237684487542793012780631851008

 ≈
 0
−2.5
−5

 . (59)

Note that this example is different from the case in Theorem IV.1: in Theorem IV.1 we establish that, if s <
rank(M), then the fix point set of TDR is strictly larger than the solution set to problem (6). The concrete case
detailed here also satisfies s < rank(M), however, with the given x0 we are not near the set of fixed points, but in
a cycle of TDR.

If, on the other hand, we take the point x̂0 = (−4, 0, 0)>, then PBx̂
0 = (−4, 2,−4)> and the set PA1

PBx̂
0 is

equal to
{

(−4, 0, 0)> , (0, 0,−4)>
}

. The projection PB (0, 0,−4)> is again the point (−4, 2,−4)>. This shows

that the alternating projection (8) iteration is stuck at the points (−4, 0, 0)> and (0, 0,−4)> which are clearly not
in the intersection A1 ∩ B =

{
(0, 10, 0)>

}
. This also highlights a manifestation of the multivaluedness of the

projector PA1
.

VI. CONCLUSION

The usual avoidance of nonconvex optimization over convex relaxations is not always warranted. In this work we
have determined sufficient conditions under which simple algorithms applied to nonconvex sparse affine feasibility
are guaranteed to converge globally at a linear rate. We have also shown local convergence of the prominent
Douglas-Rachford algorithm applied to this problem. These results are intended to demonstrate the potential of
recently developed analytical tools for understanding nonconvex fixed-point algorithms in addition to making the
broader point that nonconvexity is not categorically bad. That said, the global results reported here rely heavily
on the linear structure of the problem, and local results are of limited practical use. Of course, the decision about
whether to favor a convex relaxation over a nonconvex formulation depends on the structure of the problem at
hand and many open questions remain. First and foremost among these is: what are necessary conditions for global
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convergence of simple algorithms to global solutions of nonconvex problems? The apparent robust global behavior
of Douglas-Rachford has eluded explanation. What are conditions for global convergence of the Douglas-Rachford
algorithm for this problem? What happens to these algorithms when the chosen sparsity parameter s is too small?
At the heart of these questions lies a long-term research program into regularity of nonconvex variational problems,
the potential impact of which is as broad as it is deep.
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