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Abstract

A new iterative method for finding the projection onto the intersection of two closed convex sets in a
Hilbert space is presented. It is a Haugazeau-like modification of a recently proposed averaged alternating
reflections method which produces a strongly convergent sequence.
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1. Introduction

Throughout this paper,

X is a real Hilbert space with inner product 〈· | ·〉 and induced norm ‖ · ‖, (1)

and

A and B are two closed convex sets in X such that C = A ∩ B &= !. (2)

Given a point x ∈ X, the problem under consideration is the best approximation problem

find c ∈ C such that ‖x − c‖ = inf ‖x − C‖. (3)
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This problem, which was already studied by von Neumann in the 1930s in this general Hilbert
space setting, is of fundamental importance in applied mathematics (see [5] for historical refer-
ences, recent applications, algorithms, and further references).

The aim of this note is to present a new strongly convergent method—termed Haugazeau-
like Averaged Alternating Reflections (HAAR)—for finding the solution of (3) iteratively. This
algorithm is a modification of the Averaged Alternating Reflections (AAR) scheme, which we
recently introduced in [4]. To describe AAR, we require some notation from convex analysis.
Given any nonempty closed convex set S in X, denote the projector (best approximation operator)
onto S by PS . Furthermore, let I be the identity operator on X and let RS = 2PS −I be the reflector
with respect to S. We recall that the normal cone to S at x ∈ S is defined by NS(x) =

{
x∗ ∈ X |

(∀s ∈ S) 〈x∗ | s − x〉 !0
}
. Both AAR and HAAR rely upon the operator

T = 1
2RARB + 1

2I, (4)

and their analyses require the nonempty closed convex cone

K = NB−A(0). (5)

We are now ready to describe AAR and its asymptotic behavior (see also [4] for background).

Fact 1.1 (AAR). Suppose that x ∈ X. Then the sequence of averaged alternating reflections
(AAR) (T nx)n∈N converges weakly to a point in

Fix T =
{
z ∈ X | T z = z

}
= C + K. (6)

Moreover, the sequence (PBT nx)n∈N is bounded and each of its weak cluster points lies in C.

Proof. Identity (6) was proved in [4, Corollary 3.9]. The statements regarding weak convergence
and weak cluster points follow from [8, Theorem 1] applied to the normal cone operators NA and
NB . (See also [3, Fact 5.9] and [4, Theorem 3.13(ii)].) "

Fact 1.1 implies that the weak cluster points of the sequence (PBT nx)n∈N solve the convex
feasibility problem

find c ∈ C. (7)

Although such points solve (7), they may nonetheless be neither strong cluster points nor the
solution of the best approximation problem (3) (see [4, Section 1] for a counterexample). These
shortcomings ofAAR motivated us to look for variants ofAAR with better convergence properties.
In Section 2, we investigate the relative geometry of the sets A and B, culminating in the formula
PBPC+K = PC (see Corollary 2.9). This identity, Fact 1.1, and a consequence of the weak-
to-strong convergence principle [2] lead in Section 3 to the precise formulation of HAAR. A
crucial ingredient of HAAR is Haugazeau’s [7] explicit projector onto the intersection of two
halfspaces. Our main result (Theorem 3.3) guarantees strong convergence to the nearest point in
C, i.e., to the solution of (3).

2. Relative geometry of two sets

We shall utilize the following notions from fixed point theory; see, e.g., [6].
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Definition 2.1. Suppose that R: X → X. Then:

(i) R is firmly nonexpansive, if

(∀x ∈ X)(∀y ∈ X) ‖Rx − Ry‖2 + ‖(I − R)x − (I − R)y‖2 !‖x − y‖2; (8)

(ii) R is nonexpansive, if

(∀x ∈ X)(∀y ∈ X) ‖Rx − Ry‖!‖x − y‖. (9)

It is well known, for example, that the projector onto a nonempty closed convex set is firmly
nonexpansive.

Fact 2.2. Suppose that R: X → X. Then R is firmly nonexpansive if and only if 2R − I is
nonexpansive.

Proof. See [6, Theorem 12.1]. "

Fact 2.3. Suppose that S is a nonempty closed convex set in X and that x ∈ X. Then there exists
a unique point PSx ∈ S such that ‖x − PSx‖ = inf ‖x − S‖. The point PSx is characterized by

PSx ∈ S and (∀s ∈ S) 〈s − PSx | x − PSx〉 !0. (10)

The induced operator PS : X → S: x +→ PSx is called the projector onto S; it is firmly nonexpan-
sive and consequently, the reflector RS = 2PS − I is nonexpansive.

The following property will be utilized repeatedly.

Fact 2.4. Suppose that S is a nonempty closed convex set in X and that z ∈ X. Then for every
x ∈ X, we have Pz+Sx = z + PS(x − z).

Proof. Use (10). "

We record two additional auxiliary results.

Fact 2.5. Suppose that U and V are two nonempty closed convex sets in X. Suppose furthermore
that u ∈ U and that v ∈ V . Then NU+V (u + v) = NU(u) ∩ NV (v).

Proof. See, e.g., [1, Section 4.6]. "

Proposition 2.6. Suppose that U and V are two nonempty closed convex sets in X such that U⊥V .
Then U + V is closed and PU+V = PU + PV .

Proof. Suppose that (un)n∈N and (vn)n∈N are sequences in U and V, respectively, such that
(un + vn)n∈N converges. For every {m, n} ⊂ N, we have ‖(un + vn) − (um + vm)‖2 = ‖un −
um‖2 +‖vn −vm‖2. Hence (un)n∈N and (vn)n∈N are both Cauchy sequences, since (un +vn)n∈N

is. Thus (un)n∈N and (vn)n∈N are both convergent, which implies that limn∈N un + vn ∈ U + V .
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Now let x ∈ X, u ∈ U , and v ∈ V . Since {u − PUx, −PUx}⊥{v − PV x, −PV x}, Fact 2.3
implies that

〈u + v − PUx − PV x | x − PUx − PV x〉
= 〈u − PUx | x − PUx〉 + 〈u − PUx | −PV x〉

+ 〈v − PV x | x − PV x〉 + 〈v − PV x | −PUx〉
= 〈u − PUx | x − PUx〉 + 〈v − PV x | x − PV x〉
!0. (11)

Using Fact 2.3 again, it follows that PU+V x = PUx + PV x. "

Proposition 2.7. Suppose that c ∈ C. Then K = NB(c) ∩
(
− NA(c)

)
⊂ (C − C)⊥.

Proof. Using (5) and Fact 2.5, we deduce that

K = NB−A(0) = NB+(−A)

(
c + (−c)

)
= NB(c) ∩ N−A(−c) = NB(c) ∩

(
− NA(c)

)
. (12)

Let x ∈ K . By (12), sup 〈x | B − c〉 !0 and sup 〈−x | A − c〉 !0. Since C = A ∩ B, it follows
that sup 〈x | C − c〉 !0 and that sup 〈−x | C − c〉 !0. Therefore, x ∈ (C−c)⊥ = (C−C)⊥. "

Theorem 2.8. Suppose that x ∈ X and that c ∈ C. Then PC+Kx = PCx + PK(x − c).

Proof. Set L = C − C. Then C − c ⊂ L and, by Proposition 2.7, K ⊂ L⊥. Corollary 2.4 and
Proposition 2.6 yield

PC+Kx = Pc+((C−c)+K)x

= c + P(C−c)+K(x − c)

= c + PC−c(x − c) + PK(x − c)

= PCx + PK(x − c), (13)

which completes the proof. "

Corollary 2.9. Suppose that x ∈ X. Then PBPC+Kx = PCx.

Proof. Since PCx ∈ C, Theorem 2.8 implies that PC+Kx = PCx +PK(x −PCx). Hence, using
Proposition 2.7, we deduce that

PC+Kx − PCx = PK(x − PCx) ∈ K ⊂ NB(PCx). (14)

As PCx ∈ B, this shows that PBPC+Kx = PCx. "

3. Main result

Definition 3.1. Suppose that (x, y, z) ∈ X3 satisfies
{
w ∈ X | 〈w − y | x − y〉 !0

}
∩

{
w ∈ X | 〈w − z | y − z〉 !0

}
&= !. (15)

Set

! = 〈x − y | y − z〉 , " = ‖x − y‖2, # = ‖y − z‖2, $ = "# − !2, (16)
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and

Q(x, y, z) =






z, if $ = 0 and !#0;
x + (1 + !/#)(z − y), if $ > 0 and !##$;
y + (#/$)

(
!(x − y) + "(z − y)

)
, if $ > 0 and !# < $.

(17)

In [7], Haugazeau introduced the operator Q as an explicit description of the projector onto
the intersection of the two halfspaces defined in (15). He proved in [7, Théorème 3 –1] that the
sequence (yn)n∈N defined by y0 = x and

(∀n ∈ N) yn+1 = Q
(
x, Q(x, yn, PByn), PAQ(x, yn, PByn)

)
(18)

converges strongly to PCx. The next result is a particular application of the weak-to-strong con-
vergence principle of [2], which will be used to reach the same conclusion for the proposed HAAR
method.

Fact 3.2. Suppose that R: X → X is nonexpansive and that Fix R &= !. Suppose furthermore
that x ∈ X and that (%n)n∈N is a sequence in

]
0, 1

2

]
such that infn∈N %n > 0. Set y0 = x and

define (yn)n∈N by

(∀n ∈ N) yn+1 = Q
(
x, yn, (1 − %n)yn + %nRyn

)
. (19)

Then (yn)n∈N converges strongly to PFixRx.

Proof. This follows from [2, Corollary 6.6(ii)]. "

We are now in a position to introduce HAAR and to establish its convergence properties.

Theorem 3.3 (HAAR). Suppose that x ∈ X and that ("n)n∈N is a sequence in ]0, 1] such that
infn∈N "n > 0. Define the sequence (yn)n∈N generated by Haugazeau-like averaged alternating
reflections by y0 = x and

(∀n ∈ N) yn+1 = Q
(
x, yn, (1 − "n)yn + "nT yn

)
. (20)

Then (yn)n∈N converges strongly to PC+Kx. Moreover, (PByn)n∈N converges strongly to PCx.

Proof. Since the reflectors RA and RB are both nonexpansive (see Fact 2.3), so is their compo-
sition R = RARB . Consequently, Fact 2.2 implies that T is firmly nonexpansive. Moreover, by
Fact 1.1, FixR = Fix

( 1
2R + 1

2I
)

= FixT = C + K . The statement about strong convergence
of (yn)n∈N follows from Fact 3.2 (with %n = "n/2). Since yn → PC+Kx and PB is continuous,
we further deduce that (PByn)n∈N converges strongly to PBPC+Kx, which is equal to PCx by
Corollary 2.9. "

Remark 3.4. Several comments on Theorem 3.3 are in order.

(i) While a detailed numerical study of HAAR lies outside the scope of this paper, we nonetheless
briefly discuss a numerical example demonstrating the potential of HAAR.As in [4, Section 1]
for AAR, we consider the case when X = R2, A =

{
(&1, &2) ∈ X | &2 !0

}
, and B ={

(&1, &2) ∈ X | &1 !&2
}
. Let x = (8, 4) so that PCx = (0, 0). Let (yn)n∈N be a sequence

constructed as in Theorem 3.3 with "n ≡ 1. Then y0 = x = (8, 4), y1 = (6, −2), and yn =
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(0, 0), for every n ∈ {2, 3, . . .}. Therefore, PBy0 = (6, 6), PBy1 = (2, 2), and PByn =
(0, 0), for every n ∈ {2, 3, . . .}. Thus HAAR converges to the solution PCx = (0, 0) in just
two steps. On the other hand, Dykstra’s algorithm, which is a popular best approximation
method (see, e.g., [5, Chapter 9]), requires infinitely many steps in this setting.

(ii) It is important to monitor the sequence (PByn)n∈N rather than (yn)n∈N in order to approx-
imate PCx. Indeed, let A = B = {0} and x ∈ X \ {0}. Then K = X and thus (yn)n∈N

converges to PC+Kx = PXx = x but not to PCx = {0}.
(iii) Theorem 3.3 can be utilized to handle best approximation problems with more than two sets.

Suppose that C1, . . . , CJ are finitely many closed convex sets in X such that

C = C1 ∩ · · · ∩ CJ &= !. (21)

As in our corresponding discussion for AAR in [4, Section 4], we employ Pierra’s product
space technique [9]. Let us take ('j )1! j !J in ]0, 1] such that

∑J
j=1 'j = 1, and let us

denote by X the Hilbert space XJ with the inner product
(
(xj )1! j !J , (yj )1! j !J

)
+→∑J

j=1 'j 〈xj , yj 〉. Set

A =
{
(x, . . . , x) ∈ X: x ∈ X

}
and B = C1 × · · · × CJ , (22)

and observe that the set C = ⋂J
j=1 Cj in X corresponds to the set C = A ∩ B in X. The

projections of x = (xj )1! j !J ∈ X onto A and B are given by

PAx =
(∑J

j=1'j xj , . . . ,
∑J

j=1'j xj

)
and PBx = (PC1x1, . . . , PCJ xJ ), (23)

respectively. Thus we have explicit formulae for RA = 2PA − I and RB = 2PB − I, where
I denotes the identity operator on X. Let

T = 1
2 (RARB + I), (24)

let x ∈ X, and set y0 = (x, x, . . . , x) ∈ X. Define the sequence (yn)n∈N recursively by

yn+1 = Q(y0, yn, Tyn), (25)

where Q is defined on X3 in a manner analogous to Q on X3 in Definition 3.1. Then
Theorem 3.3 (with "n ≡ 1) implies that (PByn)n∈N converges strongly to PCy0 = (PCx,

. . . , PCx). Consequently, (PAPByn)n∈N converges strongly to PCy0 as well. Since this last
sequence lies in A, we identify it with some sequence (an)n∈N in X via (PAPByn)n∈N =
(an, . . . , an)n∈N. Altogether, the sequence (an)n∈N converges strongly to PCx.
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