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Abstract. Convex optimization has become ubiquitous in most quanti-
tative disciplines of science, including variational image processing. Prox-
imal splitting algorithms are becoming popular to solve such structured
convex optimization problems. Within this class of algorithms, Douglas–
Rachford (DR) and ADMM are designed to minimize the sum of two
proper lower semi-continuous convex functions whose proximity opera-
tors are easy to compute. The goal of this work is to understand the local
convergence behaviour of DR (resp. ADMM) when the involved functions
(resp. their Legendre-Fenchel conjugates) are moreover partly smooth.
More precisely, when both of the two functions (resp. their conjugates)
are partly smooth relative to their respective manifolds, we show that
DR (resp. ADMM) identifies these manifolds in finite time. Moreover,
when these manifolds are affine or linear, we prove that DR/ADMM
is locally linearly convergent with a rate in terms of the cosine of the
Friedrichs angle between the tangent spaces of the identified manifolds.
This is illustrated by several concrete examples and supported by nu-
merical experiments.

Keywords: Douglas–Rachford splitting, ADMM, Partial Smoothness,
Finite Activity Identification, Local Linear Convergence

1 Introduction

1.1 Problem formulation

In this work, we consider the problem of solving

min
x∈Rn

J(x) +G(x), (1)

? This work has been partly supported by the European Research Council (ERC
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where both J and G are in Γ0(Rn), the class of proper, lower semi-continuous
(lsc) and convex functions. We assume that ri

(
dom(J)

)
∩ri
(
dom(G)

)
6= ∅, where

ri(C) is the relative interior of the nonempty convex set C, and dom(F ) is the
domain of the function F . We also assume that the set of minimizers is non-
empty, and that these two functions are simple, meaning that their respective
proximity operators, proxγJ and proxγG, γ > 0, are easy to compute, either
exactly or to a very good approximation. Problem (1) covers a large number of
problems including those appearing in variational image processing (see Section
6).

An efficient and provably convergent algorithm to solve this class of problems
is the Douglas–Rachford splitting method [16], which reads, in its relaxed form,

vk+1 = proxγG(2xk − zk),

zk+1 = (1− λk)zk + λk
(
zk + vk+1 − xk

)
,

xk+1 = proxγJz
k+1,

(2)

for γ > 0, λk ∈]0, 2] with
∑
k∈N λk(2−λk) = +∞. The fixed-point operator BDR

with respect to zk takes the form

BDR
def.
=

1
2

(rproxγG ◦ rproxγJ + Id),

rproxγJ
def.
= 2proxγJ − Id, rproxγG

def.
= 2proxγG − Id.

The proximity operator of a proper lsc convex function is defined, for γ > 0, as

proxγJ(z) = argminx∈Rn
1
2
||x− z||2 + γJ(x).

Since the set of minimizers of (1) is assumed to be non-empty, so is the Fix(BDR)
since the former is nothing but proxγJ

(
Fix(BDR)

)
. See [3] for a more detailed

account on DR in real Hilbert spaces.

Remark 1 The DR algorithm is not symmetric w.r.t. the order of the functions
J and G. Nevertheless, the convergence claims above hold true of course when
this order is reversed in (2). In turn, all of our statements throughout also ex-
tend to this case with minor adaptations. Note also that the standard DR only
accounts for the sum of 2 functions. But extension to more than 2 functions is
straightforward through a product space trick, see Section 5 for details.

1.2 Contributions

Based on the assumption that both J and G are partly smooth relative to smooth
manifolds, we show that DR identifies in finite time these manifolds. In plain
words, this means that after a finite number of iterations, the iterates (xk, vk) lie
respectively in the partial smoothness manifolds associated to J and G respec-
tively. When these manifolds are affine/linear, we establish local linear conver-
gence of the fixed-point iterates zk of DR. We show that the optimal convergence
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radius is given in terms of the cosine of the Friedrichs angle between the tangent
spaces of the manifolds. We generalize these claims to the minimization of the
sum of more than two functions. We finally exemplify our results with several
experiments from variational signal and image processing.

It is important to note that our results readily apply to the alternating direc-
tion method of multipliers (ADMM), since it is well-known that ADMM is the
DR method applied to the Fenchel dual problem of (1). More precisely, we only
need to assume that the conjugates J∗ and G∗ are partly smooth. Therefore, to
avoid unnecessary lengthy repetitions , we only focus in detail on the primal DR
splitting method.

1.3 Relation to prior work

There are problem instances in the literature where DR was proved to converge
locally linearly. For instance, in [16, Proposition 4], it was assumed that the ”in-
ternal” function is strongly convex with a Lipschitz continuous gradient. This
local linear convergence result was further investigated in [22,24] under smooth-
ness and strong convexity assumptions. On the other hand, for the Basis Pursuit
(BP) problem, i.e. `1 minimization with an affine constraint, is considered in [9]
and an eventual local linear convergence is shown in the absence of strong con-
vexity. The author in [23] analyzes the local convergence behaviour of ADMM
for quadratic or linear programs, and shows local linear convergence if the opti-
mal solution is unique and the strict complementarity holds. This turns out to
be a special case of our framework. For the case of two subspaces, linear con-
vergence of DR with the optimal rate being the cosine of the Friedrichs angle
between the subspaces is proved in [2]. Our results generalize those of [9,23,2]
to a much larger class of problems. For the non-convex case, [4] considered DR
method for a feasibility problem of a sphere intersecting a line or more generally
a proper affine subset. Such feasibility problems with an affine subspace and a
super-regular set (in the sense of [14]) with strongly regular intersection was con-
sidered in [11], and was generalized later to two (ε, δ)-regular sets with linearly
regular intersection [25], see also [18] for an even more general setting. However,
even in the convex case, the rate provided in [18] is nowhere near the optimal
rate given by the Friedrichs angle.

1.4 Notations

For a nonempty convex set C ⊂ Rn, aff(C) is its affine hull, par(C) is the
subspace parallel to it. Denote PC the orthogonal projector onto C and NC
its normal cone. For J ∈ Γ0(Rn), denote ∂J its subdifferential and proxJ its
proximity operator. Define the model subspace

Tx
def.
= par

(
∂J(x)

)⊥
.

It is obvious that PTx

(
∂J(x)

)
is a singleton, and therefore defined as

ex
def.
= PTx

(
∂J(x)

)
= Paff(∂J(x))(0).
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Suppose M ⊂ Rn is a C2-manifold around x, denote TM(x) the tangent space
of M at x ∈ Rn.

2 Partly Smooth Functions

2.1 Definition and main properties

Partial smoothness of functions was originally defined in [13], our definition
hereafter specializes it to the case of proper lsc convex functions.

Definition 1 (Partly smooth function) Let J ∈ Γ0(Rn), and x ∈ Rn such
that ∂J(x) 6= ∅. J is partly smooth at x relative to a set M containing x if

(1) (Smoothness) M is a C2-manifold around x, J |M is C2 near x;
(2) (Sharpness) The tangent space TM(x) is Tx;
(3) (Continuity) The set–valued mapping ∂J is continuous at x relative to M.

The class of partly smooth functions at x relative to M is denoted as PSx(M).
When M is an affine manifold, then M = x + Tx, and we denote this subclass
as PSAx(x+ Tx). When M is a linear manifold, then M = Tx, and we denote
this subclass as PSLx(Tx).

Capitalizing on the results of [13], it can be shown that, under mild transver-
sality conditions, the set of lsc convex and partly smooth functions is closed
under addition and pre-composition by a linear operator. Moreover, absolutely
permutation-invariant convex and partly smooth functions of the singular values
of a real matrix, i.e. spectral functions, are convex and partly smooth spectral
functions of the matrix [7].

Examples of partly smooth functions that have become very popular recently
in the signal processing, optimization, statistics and machine learning literature
are `1, `1,2, `∞, total variation (TV) and nuclear norm regularizations. In fact,
the nuclear norm is partly smooth at a matrix x relative to the manifold M =
{x′ : rank(x′) = rank(x)}. The first four regularizers are all part of the class
PSLx(Tx).

We now define a subclass of partly smooth functions where the manifold is
affine or linear and the vector ex is locally constant.

Definition 2 J belongs to the class PSSx(x+ Tx) (resp. PSSx(Tx)) if and only
if J ∈ PSAx(x+ Tx) (resp. J ∈ PSLx(Tx)) and ex is constant near x, i.e. there
exists a neighbourhood U of x such that ∀x′ ∈ (x+ Tx) ∩ U (resp. x′ ∈ Tx ∩ U)

ex′ = ex.

The class of functions that conform with this definition is that of locally polyhe-
dral functions [21, Section 6.5], which includes for instance the `1, `∞ norms and
the anisotropic TV semi-norm that are widely used in signal and image process-
ing, computer vision, machine learning and statistics. The indicator function of
a polyhedral set is also in PSSx(x+ Tx) at each x in the relative interior of one
of its faces relative to the affine hull of that face, i.e. x+Tx = aff(Face of x). Ob-
serve that for polyhedral functions, in fact, the subdifferential itself is constant
along the partial smoothness subspace.
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2.2 Proximity operator

This part shows that the proximity operator of a partly smooth function can be
given in an implicit form.

Proposition 1 Let p
def.
= proxγJ(x) ∈ M. Assume that J ∈ PSp(M). Then for

any point x near p, we have

p = PM(x)− γep + o
(
||x− p||

)
.

In particular, if J ∈ PSAp(p + Tp) (resp. J ∈ PSLp(Tp)), then for any x ∈ Rn,
we have

p = Pp+Tp
(x)− γep (resp. p = PTp

(x)− γep).

Proof. We start with the following lemma whose proof can be found in [15].

Lemma 1 Suppose that J ∈ PSp(M). Then any point x near p has a unique
projection PM(x), PM is C1 around p, and thus

PM(x)− p = PTp
(x− p) + o

(
||x− p||

)
.

Let’s now turn to the proof of our proposition. We have the equivalent char-
acterization

p = proxγJ(x) ⇐⇒ x− p ∈ γ∂J(p). (3)

Projecting (3) on Tp and using Lemma 1, we get

PTp
(x− p) = PM(x)− p+ o

(
||x− p||

)
= γep,

which is the desired result.
When J ∈ PSAp(p + Tp), observe that Pp+Tp

(x) = p + PTp
(x − p) for any

x ∈ Rn. Thus projecting again the monotone inclusion (3) on Tp, we get

PTp
(x− p) = Pp+Tp

(x)− p = γep,

whence the claim follows. The linear case is immediate.

3 Activity Identification with Douglas–Rachford

In this section, we present the finite time activity identification of the DR
method.

Theorem 1 (Finite activity identification) Suppose that the DR scheme (2)
is used to create a sequence (zk, xk, vk). Then (zk, xk, vk) converges to (z?, x?, x?),
where z? ∈ Fix(BDR) and x? is a global minimizer of (1). Assume that J ∈
PSx?(MJ) and G ∈ PSx?(MG), and

z? ∈ x? + γ
(
ri
(
∂J(x?)

)
∩ ri
(
−∂G(x?)

))
. (4)

Then,
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(1) The DR scheme has the finite activity identification property, i.e. for all k
sufficiently large, (xk, vk) ∈MJ ×MG.

(2) If G ∈ PSAx?(x? + TGx?) (resp. G ∈ PSLx?(TGx?)), then vk ∈ x? + TGx? (resp.
vk ∈ TGx?). In both cases TGvk = TGx? for all k sufficiently large.

(3) If J ∈ PSAx?(x? + T Jx?) (resp. J ∈ PSLx?(T Jx?)), then xk ∈ x? + T Jx? (resp.
xk ∈ T Jx?). In both cases T Jxk = T Jx? for all k sufficiently large.

Proof. Standard arguments using that BDR is firmly non-expansive allow to
show that the iterates zk converge globally to a fixed point z? ∈ Fix(BDR),
by interpreting DR as a relaxed Krasnosel’skĭı-Mann iteration. Moreover, the

shadow point x?
def.
= proxγJ(z?) is a solution of (1), see e.g. [3]. In turn, using

non-expansiveness of proxγJ , and as we are in finite dimension, we conclude also

that the sequence xk converges to x?. This entails that vk converges to x? (by
non-expansiveness of proxγG).

Now (4) is equivalent to

z?−x?

γ ∈ ri
(
∂J(x?)

)
and x?−z?

γ ∈ ri
(
∂G(x?)

)
. (5)

(1) The update of xk+1 and vk+1 in (2) is equivalent to the monotone inclusions

zk+1−xk+1

γ ∈ ∂J(xk+1) and 2xk−zk−vk+1

γ ∈ ∂G(vk+1) .

It then follows that

dist
(
z?−x?

γ , ∂J(xk+1)
)
6 1

γ

(
||zk+1 − z?||+ ||xk+1 − x?||

)
→ 0

and

dist
(
x?−z?
γ , ∂G(vk+1)

)
6 1

γ

(
||zk − z?||+ 2||xk − x?||+ ||vk+1 − x?||

)
→ 0.

By assumption, J ∈ Γ0(Rn) and G ∈ Γ0(Rn), and thus are sub-differentially
continuous at every point in their respective domains [20, Example 13.30],
and in particular at x?. It then follows that J(xk) → J(x?) and G(vk) →
G(x?). Altogether, this shows that the conditions of [10, Theorem 5.3] are
fulfilled for J and G, and the finite identification claim follows.

(2) In this case, we have either vk ∈ x? + TGx? (resp. vk ∈ TGx?). Since G(v) is
partly smooth at x? relative to x? + TGx? (resp. TGx?), the sharpness property
holds at all nearby points in x? + TGx? (resp. TGx?) [13, Proposition 2.10].
Thus for k large enough, i.e. vk sufficiently close to x?, we have indeed
Tx?+TG

x?
(vk) = TGx? = TGvk as claimed.

(3) Similar to (2).

Remark 2

1. Condition (4) can be interpreted as a non-degeneracy assumption. It can be
viewed as a geometric generalization of the strict complementarity of non-
linear programming. Such a condition is almost necessary for the finite iden-
tification of the partial smoothness active manifolds [8].

2. When the minimizer is unique, using the fixed-point set characterization of
DR, it can be shown that condition (4) is also equivalent to z? ∈ ri

(
Fix(BDR)

)
.
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4 Local Linear Convergence of Douglas–Rachford

Let us first recall the principal angles and the Friedrichs angle between two sub-
spaces A and B, which are crucial for our quantitative analysis of the convergence

rates. Without loss of generality, let 1 6 p
def.
= dim(A) 6 q

def.
= dim(B) 6 n− 1.

Definition 3 (Principal angles) The principal angles θk ∈ [0, π2 ], k = 1, . . . , p

between A and B are defined by, with u0 = v0
def.
= 0

cos θk
def.
= 〈uk, vk〉 = max〈u, v〉 s.t. u ∈ A, v ∈ B, ||u|| = 1, ||v|| = 1,

〈u, vi〉 = 〈ui, v〉 = 0, i = 0, . . . , k − 1,

The principal angles θk are unique with 0 6 θ1 6 θ2 6 . . . 6 θp 6 π/2.

Definition 4 (Friedrichs angle) The Friedrichs angle θF ∈]0, π2 ] between A
and B is

cos θF (A,B)
def.
= max〈u, v〉 s.t. u ∈ A∩(A∩B)⊥, ||u|| = 1, v ∈ B∩(A∩B)⊥, ||v|| = 1.

The following relation between the Friedrichs and principal angles is of paramount
importance to our analysis, whose proof can be found in [1, Proposition 3.3].

Lemma 2 (Principal angles and Friedrichs angle) The Friedrichs angle is

exactly θd+1 where d
def.
= dim(A ∩B). Moreover, θF (A,B) > 0.

Remark 3 One approach to obtain the principal angles is through the singular
value decomposition (SVD). For instance, let X ∈ Rn×p and Y ∈ Rn×q form
the orthonormal bases for the subspaces A and B respectively. Let UΣV T be the
SVD of XTY ∈ Rp×q, then cos θk = σk, k = 1, 2, ..., p and σk corresponds to the
k’th largest singular value in Σ.

We now turn to local linear convergence properties of DR. Let’s denote SJx? =(
T Jx?

)⊥
and similarly for SGx? .

Theorem 2 (Local linear convergence) Suppose that the DR scheme (2) is
used with λk ≡ λ ∈]0, 2[ to create a sequence (zk, xk, vk) which converges to a
pair (z?, x?, x?) such that J ∈ PSSx?(T Jx?) and G ∈ PSSx?(TGx?), and (4) holds.
Then, there exists K > 0 such that for all k > K,

||zk − z?|| 6 ρk−K ||zK − z?||, (6)

with the optimal rate ρ =
√

(1− λ)2 + λ(2− λ) cos2 θF
(
T Jx? , TGx?

)
∈ [0, 1[.

This result is only valid for the class PSS. Extending this to general partly
smooth functions will be left to a future work.



8 J. Liang, J. Fadili, G. Peyré and R. Luke

Remark 4 It can be observed that the best rate is obtained for λ = 1. This
has been also pointed out in [9] for basis-pursuit. This assertion is however only
on the local convergence behaviour and does not mean that the DR will globally
converge faster for λi ≡ 1. Note also that the above result can be straightforwardly
generalized to the case of varying λk.

Proof. We give the proof for the affine case, the linear one is similar. Combining
Theorem 1(2)-(3), Proposition 1 and the definition of the class PSSx(Tx), we get

xk = PTJ
x?
zk − γeJx? + PSJ

x?
x?,

vk+1 = 2PTG
x?
xk − PTG

x?
zk − γeGx? + PSG

x?
x?

= 2PTG
x?

PTJ
x?
zk − PTG

x?
zk − γeGx? − 2γPTG

x?
eJx? + 2PTG

x?
PSJ

x?
x? + PSG

x?
x?.

Similarly, we have

x? = PTJ
x?
z? − γeJx? + PSJ

x?
x?,

x? = 2PTG
x?

PTJ
x?
z? − PTG

x?
z? − γeGx? − 2γPTG

x?
eJx? + 2PTG

x?
PSJ

x?
x? + PSG

x?
x?.

Cobining and rearranging the terms, we get

(zk + vk+1 − xk)− z?

= (zk + vk+1 − xk)− (z? + x? − x?) =
(
Id− PTJ

x?
+ 2PTG

x?
PTJ

x?
− PTG

x?

)
(zk − z?)

= (PSJ
x?
− 2PTG

x?
PSJ

x?
+ PTG

x?
)(zk − z?) = (PSG

x?
PSJ

x?
+ PTG

x?
PTJ

x?
)(zk − z?),

whence we obtain

zk+1 − z? = M(zk − z?) = Mk+1−K(zK − z?),

where
M = (1− λ)Id + λ(PSG

x?
PSJ

x?
+ PTG

x?
PTJ

x?
).

It is immediate to check that M is normal and convergent for λ ∈ [0, 2[, and
according to [1, Theorem 3.10] and Lemma 2, the optimal rate ρ is in terms of
the Friedrichs angle as given by the theorem.

5 Sum of more than two functions

We now want to tackle the problem of solving

min
x∈Rn

∑m

i=1Ji(x), (7)

where each Ji ∈ Γ0(Rn). We assume that all the relative interiors of their do-
mains have a non-empty intersection, that the set of minimizers is non-empty,
and that these functions are simple.
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In fact, problem (7) can be equivalently reformulated as (1) in a product
space, see e.g. [6,19]. Let H = Rn × · · · × Rn︸ ︷︷ ︸

m times

endowed with the scalar inner-

product and norm

∀x,y ∈H, 〈〈x,y〉〉 =
∑m

i=1〈xi, yi〉, ||x|| =
√∑m

i=1||xi||2.

Let S = {x = (xi)i ∈H : x1 = · · · = xm} and its orthogonal complement S⊥ ={
x = (xi)i ∈H :

∑m
i=1 xi = 0

}
. Now define the canonical isometry,

C : Rn → S, x 7→ (x, · · · , x),

then we have PS(z) = C
(

1
m

∑m

i=1 zi
)
.

Problem (7) is now equivalent to

min
x∈H

J(x) + G(x), where J(x) =
∑m

i=1Ji(xi) and G(x) = ιS(x). (8)

Obviously, J is separable and therefore,

proxγJ (x) =
(
proxγJi(xi)

)
i
.

We have the following result.

Corollary 1 Suppose that the DR scheme is used to solve (8) and creates a
sequence (zk,xk,vk). Then (zk,xk,vk) converges to (z?,x?,x?), where x? =
C(x?), and x? is a minimizer of (7). Suppose that Ji ∈ PSx?(MJi) and

z? ∈ x? + γri
(
∂J(x?)

)
∩ S⊥. (9)

Then,

(1) the DR scheme has the finite activity identification property, i.e. for all k
sufficiently large, xk ∈ ×iMJi .

(2) Assume that Ji ∈ PSSx?(x?+T Jix? ) (or Ji ∈ PSSx?(T Jix? )) and DR is run with
λk ≡ λ ∈]0, 2[. Then, there exists K > 0 such that for all k > K,

||zk − z?|| 6 ρk−K ||zK − z?||,

with the optimal rate ρ =
√

(1− λ)2 + λ(2− λ) cos2 θF
(×iT

Ji
x? ,S

)
∈ [0, 1[.

Proof.

(1) By the separability rule, J ∈ PSx?(×iMJi
x?), see [13, Proposition 4.5]. We

also have ∂G(x?) = NS(x?) = S⊥. Thus G ∈ PSx?(S), i.e. TG
x? = S. Then

(9) is simply a specialization of condition (4) to problem (8). The claim then
follows from Theorem 1(i).

(2) This is a direct consequence of Theorem 2 and (i).
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6 Numerical experiments

Here, we illustrate our theoretical results on several concrete examples. This
section is by no means exhaustive, and we only focus on the problems that we
consider as representative in variational signal/image processing.

Affinely-constrained Polyhedral Minimization Let us now consider the affine-
constrained minimization problem

min
x∈Rn

J(x) subject to y = Ax, (10)

where A ∈ Rm×n, and J is finite-valued polyhedral. We assume that the problem
is feasible, i.e. the observation y ∈ Im(A). By identifying G with the indicator
function of the affine constraint, it is immediate to see that G = ιKer(A)(·), which
is polyhedral, hence belongs to PSS, and is simple.

Problem (10) is of important interest in various areas, including signal and
image processing to find regularized solutions to linear equations. Typically, J is
a regularization term intended to promote solutions conforming to some notion
of simplicity/low-dimensional structure. One can think of instance of the active
area of compressed sensing (CS) and sparse recovery.

We here solve (10) with J being either `1, `∞, and anisotropic TV regular-
izers. For all these cases, J ∈ Γ0(Rn), is simple and J ∈ PSSx?(Tx?), where Tx?

can be easily computed, see e.g. [21]. In these experiments, A is drawn randomly
from the standard Gaussian ensemble, i.e. CS scenario, detailed settings are

(a) `1-norm: m = 32 and n = 128, x0 is 8-sparse;
(b) `∞-norm: m = 120 and n = 128, x0 has 10 saturating entries;
(c) TV semi-norm: m = 32 and n = 128, (∇x0) is 8-sparse;

Figure 1(a)-(c) displays the global profile of ||zk − z?|| as a function of k, and
the starting point of the solid line is the iteration number at which the partial
smooth manifolds (here subspaces) are identified. One can easily see the linear
convergence behaviour and that our rate estimate is indeed optimal.

TV based Image Inpainting In this image processing example, we observe y =
Ax0, where A is a binary mask operator. We aim at inpainting the missing
regions from the observations y. This can be achieved by solving (10) with J
the 2D anisotropic TV. The corresponding convergence profile is depicted in
Figure 1(d).

Uniform Noise Removal For this problem, we assume that we observe y = x0+ε,
where x0 is a piecewise-smooth vector, and ε is a realization of a random vector
whose entries are iid ∼ U([−a, a]), a > 0. It is then natural to solve the problem

min
x∈Rn

||x||TV subject to ||y − x||∞ 6 a. (11)

G is now identified with the indicator function of the `∞-ball constraint, which
is polyhedral and simple. The local convergence profile is shown in Figure 1(e)
where we set a = 1 and n = 100. Again, the rate estimate is extremely tight.
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(b) CS `∞-norm
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(c) CS TV semi-norm
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(f) Outliers removal

Fig. 1. Observed (dashed) and predicted (solid) convergence profiles of DR (2) in terms
of ||zk−z?||. (a) CS with `1. (b) CS with `∞. (c) CS with TV. (d) TV image inpainting.
(e) Uniform noise removal by solving (11). (f) Outliers removal by solving (12). The
starting point of the solid line is the iteration at which the manifolds are identified.

Outliers Removal Consider solving

min
x∈Rn

||y − x||1 + λ||x||TV, (12)

where λ > 0 is the tradeoff parameter. This problem has been proposed by [17]
for outliers removal. We take J = λ|| · ||TV and G = ||y−·||1, which is again simple
and polyhedral. For this example we have n = 100, and y − x is 10-sparse, the
corresponding local convergence profile is depicted in Figure 1(f).

7 Conclusion

In this paper, we first showed that the DR splitting has the finite manifold identi-
fication under partial smoothness. When the involved manifolds are affine/linear
and the generalized signs are locally constant, we proved local linear convergence
of DR and provided a very tight rate estimate as illustrated by several numeri-
cal experiments. Our future work will focus on extending the linear convergence
result to more general partly smooth functions.
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19. Raguet, H., Fadili, J.M., Peyré, G.: Generalized Forward–Backward splitting.
SIAM Im. Sciences, 6(3):1199–1226, (2013).

20. Rockafellar, R.T., Wets, R.: Variational analysis, V317. Springer Verlag, (1998).
21. Vaiter, S., Golbabaee, M., Fadili, M.J., Peyré, G.: Model selection with low com-
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