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Abstract

We study several generalizations of the AGM continued fraction of Ramanujan inspired by a

series of recent articles in which the validity of the AGM relation and the domain of convergence

of the continued fraction were determined for certain complex parameters [4, 3, 2]. A study of

the AGM continued fraction is equivalent to an analysis of the convergence of certain difference

equations and the stability of dynamical systems. Using the matrix analytical tools developed

in [2], we determine the convergence properties of deterministic difference equations and so

divergence of their corresponding continued fractions.
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1 Introduction

Let a := (an)∞n=1 be a sequence of nonzero complex-valued scalars bounded above and below, and

let b > 1. We denote the continued fraction S1(a, b) by

S1(a, b) :=
1ba2

1

1 +
2ba2

2

1 +
3ba2

3

1 +
. . .

. (1.1)

This is a generalization of a continued fraction studied by Ramanujan. Surprisingly, the original

continued fracton, which can be written as S1(a, 2) where a = (a1, a2, a1, a2, . . . ) for a1 and a2

positive and real, satisfies an AGM relation, in addition to having applications to elliptic-function

theory. Our interest in S1(a, b) stems from investigations into the extent to which the properties

of the original Ramanujan continued fraction can be generalized [4, 3, 2, 5]. Many special cases

of the above continued fraction for particular choices of a have been determined in [3, 2]. In

particular the cases (i) an = const ∈ C, (ii) an = −an+1 ∈ C, (iii) |a2n| = 1, a2n+1 = i, and (iv)

a2n = a2m, a2n+1 = a2m+1 with |an| = |am| ∀ m,n ∈ N.

In the present work we establish the following sufficient conditions for the divergence of S1(a, b)

with cyclic sequences of complex parameters a = (an)∞n=1 of period c < ∞. This is a special case

of the analysis of [5] in which random sequences of complex parameters were considered, but, as

might be expected, the case of finite periodic sequences yields stronger results.

Theorem 1.1 (sufficient conditions for divergence) Let b > 1, and let a := (an) be a se-

quence of nonzero complex parameters satisfying

0 6=
∞∏

n=1

(
1− 1

(2n)ba2
2n

)
< ∞ and 0 6= lim

n→∞

a2

a2n−1
2n a2n−2

2n−1

2n−2∏
j=1

a2
j < ∞.
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Then the Ramanujan continued fraction S1(a, b) defined by Eq.(1.1) diverges with the even/odd

parts of S1(a, b) converging to separate limits in the following cases:

(i) General deterministic parameters:

sup
k

∣∣∣∣∣∣
k∑

j≥n

1
a2

j∏
i=1

a2
2i−1

a2
2i

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j≥n

a2

a2
2j

j∏
i=1

a2
2i

a2
2i−1

∣∣∣∣∣∣ < ∞. (1.2)

(ii) Even periodic parameters: If an = an+c for all n and fixed c even, and |γ| = 1 with γ 6= 1

where

γ :=

 c/2∏
n=1

a2
2n−1

a2
2n

 .

Part (i) of Theorem 1.1 follows closely the stochastic analog [5, Theorem 1.1]. Parts (i) and (ii)

are proven separately in section 4.3.

For simplicity we work with the special case S1(a, 2), which we will denote by either S1(a) or

simply S1. The more general case S1(a, b) for b > 1 is a straight forward generalization (see [5,

Section 5]). Divergence of S1 is equivalent to convergence of the classical convergents pn/qn to the

fraction S1 where both pn and qn satisfy

gn = gn−1 + n2αngn−2 for αn := a2
n, (1.3)

with g standing in for either p or q. We will use αn and a2
n interchangeably throughout.

Anticipating the matrix analysis to follow, we reformulate Eq.(1.3) in terms of 2× 2 matrices:

qn = Qnqn−1 where Qn :=

 1 n2αn

1 0

 and qn :=

 qn

qn−1

 . (1.4)

To analyze the case of cyclic parameters an with periods of length c, we regroup the above recursion
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into blocks of length c

qcn = Q̂nqc(n−1) where Q̂n :=
cn∏

j=c(n−1)+1

Qj . (1.5)

We interpret the matrix product ascending from right to left.

We obtain sufficient conditions for the divergence of S1 through an analysis of rescaled difference

equations derived from Eq.(1.3). Following [2] we consider the renormalized sequences (tn) and

(vn) defined by

tn :=
qn−1

n!
and vn :=

qn

Γ(n + 3/2)a(n+1)
n

. (1.6)

The sequence (tn) yields a well resolved analysis of cyclic parameters an (odd or even), while the

sequence vn is more convenient for a general, though less detailed, analysis.

To begin, we focus our attention in section 3 on cyclic parameters, that is an+c = an for c ≥ 1 and

all n. In Theorem 3.1 we obtain upper bounds on the asymptotic behavior of (tn) under modest

restrictions on the paramters an, in addition to lower bounds on the separation of the classical

convergents of S1. The broader analysis of infinite sequences based on the sequence (vn), which we

adapt from [5], is treated in section 4. This sequence is independent of the cycle length, though as

we will see, there is a natural binary structure that allows one to obtain efficient formulations of the

asymptotic behavior of the sequence and hence sufficient conditions for the divergence of S1. We

prove Theorem 1.1 in section 4.3. Before presenting these main results, however, we report in section

4.2 partial results from an investigation of exponential sums and related integral representatioins

along lines pursued in [2]. This analysis, while incomplete, provides some intriguing possibilities

for further analysis of generalized Lerch sums. A summary of our most attractive results is given

in Theorem 5. Before proceeding with the analysis, however, we motivate this study in section 2

with some numerical experiments of specific examples.
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2 Numerical Motivation

Following [5], we plot, for different cases of the parameters an in the continued fraction S1, odd

and even iterates of the recurrence

tn =
1
n

tn−1 +
n− 1

n
αn−1tn−2, (2.1)

which follows from the rescaling Eq.(1.6). In [5, Eq.(1.10)] is was shown that for |an| = |am| = b 6= 0

for all n, m ∈ N, the continued fraction S1 diverges if (vn) is bounded. There is an analogous, though

less straight forward, condition for the divergence of S1 with respect to the sequence (tn). We derive

this condition next.

By the standard identity [6, Eq.(1.2.10)], we have

pcn

qcn
− pcn−1

qcn−1
=

(−1)cn−1(cn)!2

qcnqcn−1

cn∏
j=1

a2
j

=
(−1)cn−1(cn)!2

qcnqcn−1

 c∏
j=1

αj

n

, (2.2)

thus
pcn

qcn
− pcn−1

qcn−1
=

(−1)cn−1

tcn+1tcn(cn + 1)

 c∏
j=1

αj

n

. (2.3)

Hence, for |an| = |am| = b 6= 0 for all n, m ∈ N, the continued fraction S1 diverges if

|tn| ≤ O

(
bn

√
n

)
. (2.4)

In our numerical experiments, we consider the case |an| = 1 for all n.

In order to confirm the order of convergence of the iterates required by Eq.(2.4) (indicating the

divergence of S1), we plot
√

ntn. To begin, we reproduce in Fig. 1 the dynamics for periodic (an)

with cycle length 2, and each a1 and a2 being roots of unity. This was also demonstrated in [2]. For
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Figure 1: Dynamics for cycles of length c = 2. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2) = (exp(iπ/4), exp(iπ/6)). Odd iterates are light, even iterates are dark.

cycles of length c = 2n (n ≥ 2), the rates of convergence appear also to be O(1/
√

n) with odd and

even iterates easily distinguishable as shown in Fig. 2. These dynamics are explained principally

in Section 3. As show in the analysis, the behavior of even cycles is remarkably regular.

When cycle lengths of (an) are odd, however, the iterates of Eq.(2.1) display a much richer variety

of behaviors. We show examples of cycles of length 3 with parameter values on the unit circle. The

iterates still appear to obey a regular odd/even behavior, however in the first case Fig. 3 it appears

that the iterates scaled by
√

n are diverging. This indicates that the order of convergence of the

unscaled iterates, if they converge at all, is something greater than O(1/
√

n), which suggests, from

Eq.(2.4), that it is possible that S1 converges for these parameters. On the other hand, for different

parameter choices with cycles of length 3 shown in Fig. 4(a), it appears that the odd iterates scaled

by
√

n are converging, while the even iterates are diverging. In light of Eq.(2.4) it is unclear what

this indicates about the continued fraction S1. We get a different picture if we look instead at the

iterates vn of the corresponding recurrence

vn =
2

an(2n + 1)

(
an−1

an

)n

vn−1 +
4n2

(2n− 1)(2n + 1)

(
an−2

an

)(n−1)

vn−2. (2.5)

As with Eq.(2.1) this recurrence follows directly from the rescaling Eq.(1.6). Fig. 4(b) shows the
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Figure 2: Dynamics for cycles of length c = 4. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with cycle length 4, a1 = a3 = exp(iπ/4), a2 = exp(iπ/6), a4 = exp(i(π/6 + 1/2)). Odd
iterates are light, even iterates are dark.

unscaled iterates vn. It appears from this simulation that the sequence (vn) is indeed bounded,

though the iterates process around a circle of radius slightly larger than 1 in the complex plane.

This indicates that the continued fraction S1 diverges for these parameter values. While it is not

apparent from this example, the iterates vn display the same odd/even behavior as the rescaled

iterates tn. In our final example Fig. 5 we show the remarkable behavior of a length 3 cycle with

well balanced parameters an. We explain exactly what we mean by “well balanced” in Section

4. In the first example, the scaled iterates of Eq.(2.1) appear to line up at specific locations in

the complex plane. In the second example we see concentric orbits familiar from the even cycle

examples.

While finite sequences of parameters display diverse behaviors that depend sensitively on whether

the cycles are odd or even, random sequences are surprisingly robust. This remarkable behavior

has been studied at length in [5].

Our object in the following analysis is to shed light on some of these dynamics.
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Figure 3: Dynamics for cycles of length 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(iπ/4), exp(iπ/4), exp(i(π/4+1/

√
2))). Odd iterates are light, even

iterates are dark.

(a) (b)

Figure 4: Dynamics for cycles of length 3. Shown are the iterates (a) t̃n :=
√

ntn for tn given
by Eq.(2.1) and (b) vn given by Eq.(2.5). In both of these examples the parameter values are
(a1, a2, a3) = (exp(iπ/4),− exp(iπ/4), exp(iπ/4 + 1/

√
2)). Odd iterates are light, even iterates are

dark.

8



Figure 5: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(iπ/2), exp(iπ/6), exp(−iπ/6)). Even iterates are light, odd iterates
are dark.

Figure 6: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(i(π/3 + 0.05)), exp(−i(π/3 + 0.05)), exp(0.05i)). Even iterates are
light, odd iterates are dark.
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3 Cyclic parameters: analysis of the renormalized sequence (tn)
∞
n=1

As with qn defined in Eq.(1.4), let

tn :=

 tn

tn−1

 . (3.1)

Then by Eq.(1.6)

tcn+1 = Tnt(c(n−1)+1) where Tn := [Nn]−1Q̂nNn−1 (3.2)

for

Nn := Diag ((cn + 1)!, (cn)!) . (3.3)

We look first at bounds on the sup-norm of the matrix Tn.

For parameter cycles an = an+c of length c, induction on c shows that

tcn = Tnt(c(n−1)) =
2n− 2
2n− 1

{
Fn + O(n−2)

}
t(c(n−1)). (3.4)

Here, for c even,

Fn :=

 α̃1
1
cn α̃2

1
cn α̃3 α̃4

 (3.5)
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with1

α̃1 :=

c
2
−1∏

j=0

α2j , α̃2 := α1

∑
c−2≥j( c

2−1)−2≥...

···≥j1≥3

c
2
−1∏

i=1

αji , (3.6)

α̃3 :=
∑

c−3≥j( c
2−1)−2≥...

···≥j1≥2

c
2
−1∏

i=1

αji and α̃4 :=

c
2
−1∏

j=0

α2j+1. (3.7)

For c odd, however,

Fn :=

 1
cn α̂1

(
1− 1

2cn

)
α̂2(

1 + 1
2cn

)
α̂3

1
cn α̂4

 (3.8)

with

α̂1 :=
∑

c−2≥j c−1
2

−2≥...

···≥j1−2≥0

c−1
2∏

i=1

αji , α̂2 :=

c−1
2∏

j=0

α2j+1, (3.9)

α̂3 :=

c−1
2∏

j=1

α2j , and α̂4 := α1

∑
c−3≥j c−1

2
−2≥...

···≥j1−2≥1

c−1
2∏

i=1

αji . (3.10)

From Eq.(3.4) we obtain the bound

|tcN | ≤

(
N∏

n=2

2n− 2
2n− 1

(
|Fn|+ O

(
n−2

)))
|tc|. (3.11)

1We define empty products to be equal to 1.

11



By the Wallis/Stirling formula [1] we know that

N∏
n=2

2n− 2
2n− 1

=
√

π

4N
+ O

(
N−3/2

)
. (3.12)

Moreover, the singular values of Fn yield, to leading order,

|Fn| =


1√
2

√
b̃1 + |̃b2|+ O

(
n−2

)
, c even and |α̃1| 6= |α̃4|,

1√
2

√
b̂1 + |̂b2|

(
1 + bb2

2cn|bb2|
)

+ O
(
n−2

)
, c odd and |α̂2| 6= |α̂3|,

(3.13)

where

b̃1 := |α̃1|2 + |α̃4|2, b̃2 := |α̃1|2 − |α̃4|2,

b̂1 := |α̂2|2 + |α̂3|2 and b̂2 := |α̂2|2 − |α̂3|2.

For c even, then, if |α̃1| 6= |α̃4|, the behavior of the product of matrix norms is

N∏
n=2

(
|Fn|+ O

(
n−2

))
= O

(
max (|α̃1|, |α̃4|)N

)
, c even. (3.14)

For c odd with b̂2 < 0 we have

N∏
n=2

(
|Fn|+ O

(
n−2

))
= O

(
|α̂3|N

N1/2c

)
, c odd. (3.15)

If, on the other hand, b̂2 > 0, we see from Eq.(3.13) that the matrix product is unbounded as

N → ∞ and we lose any predictive power from this analysis. The behavior of the product of

matrix norms apparently depends more intricately on the values of the sequence (an) due to the

O
(
n−1

)
term in Eq.(3.13). This also holds for the case |α̃1| = |α̃4| or |α̂2| = |α̂3| for c even or odd
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respectively since, in this case,

|Fn| =


|α̃1|+ 1

2cn

√
|α̃1|2 + |α̃2|2 + |α̃3|2 + 2Re

( eα1eα2eα3eα4

)
+ O

(
n−2

)
, |α̃1| = |α̃4|

|α̂2|+ 1
2cn

√
|α̂1|2 + |α̂2|2 + |α̂4|2 + 2Re

( bα1bα2bα4bα3

)
+ O

(
n−2

)
, |α̂2| = |α̂3|.

(3.16)

A straight forward calculation shows that the O(n−1) term in Eq.(3.16) disappears only when Fn

is the trivial zero matrix, hence there are no nontrivial sequences (an) for which the product of

matrices converges.

We summarize this discussion with the following theorem which generalizes [2, Theorem 5.1].

Theorem 3.1 (convergence/divergence rates for cyclic parameters) Let the coefficients of

the continued fraction S1(a) be given by a = (a1, a2, . . . , ac) ∈ Cc. For c even with |α̃1| 6= |α̃4|, and

α̃j defined by Eq.(3.6)-Eq.(3.7), any solution of the recurrence Eq.(2.3) has the asymptotic behavior

|tcn| ≤ O

(
max(|α̃1|, |α̃4|)n

√
n

)
,

and the convergents to S1(a) satisfy, for γ > 0 constant,

∣∣∣∣p2cn

q2cn
− p2cn−1

q2cn−1

∣∣∣∣ ≥ γ min
(∣∣∣∣ α̃4

α̃1

∣∣∣∣ , ∣∣∣∣ α̃1

α̃4

∣∣∣∣)n

.

For c odd and |α̂2| < |α̂3| where α̂j are defined by Eq.(3.9)-Eq.(3.10), any solution of recurrence

Eq.(2.3) has the asymptotic behavior

|tcn| ≤ O

(
|α̂2|n

n(c+1)/(2c)

)
,

and the convergents to S1(a) satisfy, for γ > 0 constant,

∣∣∣∣p2cn

q2cn
− p2cn−1

q2cn−1

∣∣∣∣ ≥ γ

(
|α̂3|
|α̂2|

)n

n1/c.
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4 General deterministic parameters: analysis of the renormalized

sequence (vn)
∞
n=1

The analysis of the previous section provides upper bounds on the rate of convergence of the

sequence (tn) for |α̃1| 6= |α̃4| in the case of cycles of even length, and for odd-length cycles when

|α̂2| > |α̂3|. The case |α̃1| = |α̃4| for periodic (an), and, more generally, the case of infinite sequences

(an) requires different analytical tools which we study in this section.

4.1 Matrix Products

Define

vn :=

 vn

vn−1

 . (4.1)

Then by Eq.(1.6)

vn = Ynvn−1 where Yn := G−1
n QnGn−1 (4.2)

for

Gn := Diag
(

Γ
(

n +
3
2

)
a(n+1)

n ,Γ
(

n +
1
2

)
an

n−1

)
. (4.3)

We pursue here a matrix analysis of S1 based on the renormalized sequence (vn).

Though the basic framework of our analysis makes no use of the notion of a cycle, the sequence

(vn) still exhibits an odd/even behavior which we can isolate by looking at every second iterate of

(vn) or, equivalently, by studying the matrix Ŷn defined by

Ŷn := Y2nY2n−1, (4.4)

where Yn is given in Eq.(4.2). The next theorem establishes the relation between the convergence of

the infinite product of matrices Ŷn and the divergence of S1. This is a restatement of [5, Theorem
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4.1], to which we refer the interested reader for proof and further discussion.

Theorem 4.1 (odd and even convergents of continued fractions) If the matrix

Yn :=
n∏

j=1

Ŷn (4.5)

converges to a finite matrix Y∞ with nonzero eigenvalues, then for the standard initial conditions

(u−1, u0, v−1, v0) =
(

1√
π

, 0, 0,
2

a0
√

π

)
, (4.6)

the even and odd parts of S1(a) are given by

S(even)
1 (a) =

a0y
∞
1,2

2y∞1,1

, and S(odd)
1 (a) =

a0y
∞
2,2

2y∞2,1

(4.7)

where y∞i,j is the i, jth element of Y∞. These limits are not equal, thus S1 diverges. The separation

of odd and even limits is given explicitly by

S(even)
1 (a)− S(odd)

1 (a) = − a2
0

2a2y∞1,1y
∞
2,1

det(Y∞). (4.8)

What remains, then, is to determine the conditions under which Yn converges as n → ∞.

Following [5] we extract the leading-order behavior. Implicit in the discussion to this point is that

the coefficients an are nonzero and bounded. Thus, for each n, the components ŷ
(n)
ij of Ŷn are

bounded, so we can expand Ŷn in powers of n−1 to get

Yn = Un + O(n−2), (4.9)

where

Un =

 n∏
j=2

Kj

 n∏
j=2

(
I +

1
2j

Ŵj

)
(4.10)
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for

Kn =


(

α2n−2

α2n

)n−1/2
0

0
(

α2n−3

α2n−1

)n−1

 (4.11)

and

Ŵn =
1

a2n

 0 ωn

ω−1
n 0

 , with ωn =
a2n

a2

n∏
j=1

α2j−1

α2j
. (4.12)

Remark 4.2 At this point one can easily see how the parity of the cycle lengths (odd or even)

might have a profound impact on the dynamics of the recursion for the classical convergents of S1.

For cycle length c even we have

ωn =
a2n mod c

a2

n mod c/2∏
j=1

α2j−1

α2j

 c/2∏
j=1

α2j−1

α2j

b2n/cc

(c even). (4.13)

For odd-length cycles, on the other hand, the power disappears through cancellation:

ωn =
a2n mod c

a2

n mod c∏
j=1

α2j−1

α2j
(c odd). (4.14)

We will return to this in the next sections.

To ease the computations, we focus our attention on the rotated product

Ûn :=

 n∏
j=2

Kj

−1

Un =
n∏

j=2

(
I +

1
2j

Ŵj

)
. (4.15)

The justification for this follows next.

Theorem 4.3 (invertible matrix products) Let (An) and (Cn) be sequences of m×m complex

matrices. Suppose that (i)
(∏n

j=1 Cj
∏n

j=1 Aj

)
converges to the invertible matrix L1 as n →∞, and

(ii)
∏n

j=1 Cn converges to an invertible matrix L2. Then, as n →∞, the matrix product
∏n

j=1 An

converges to L−1
2 L1. Moreover, if (Bn) is a sequence of m × m complex matrices satisfying (iii)
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∑∞
j=1 |Bj | < ∞, then

∏n
j=1(Aj + Bj) converges to a finite complex matrix.

Proof. By assumption (i), given any ε there is an N1 such that n ≥ N1 implies that

∣∣∣∣∣∣
n∏

j=1

Cj

n∏
j=1

Aj − L1

∣∣∣∣∣∣ < ε

2M

where M ≥ maxk≥N1

∣∣∣∣(∏k
j=1 Cj

)−1
∣∣∣∣ (which exists by (ii)). The Cauchy-Schwarz inequality then

yields ∣∣∣∣∣∣
n∏

j=1

Aj −

 n∏
j=1

Cj

−1

L1

∣∣∣∣∣∣ < ε

2
. (4.16)

On the other hand, by (ii) and [2, Lemma 6.3b], (Cj) is tail Cauchy, that is,
∏q

j=p+1 Cj → I as

q > p →∞, thus there is an N2 such that n ≥ N2 implies

∣∣L−1
2

∣∣ ∣∣∣∣∣∣
∞∏

j=n+1

Cj − I

∣∣∣∣∣∣ |L1| <
ε

2
.

Here, the Cauchy-Schwarz inequality gives

∣∣∣∣∣∣
 n∏

j=1

Cj

−1

L1 − L−1
2 L1

∣∣∣∣∣∣ < ε

2
. (4.17)

For n ≥ N = max{N1, N2}, adding Eq.(4.16) to Eq.(4.17) and applying the triangle inequality

establishes the first statement of the theorem. This fact, along with assumption (iii) and [2,

Theorem 6.1] yields the second statement and completes the proof. �

The application to continued fractions is an immediate corollary.

Corollary 4.4 If Ûn → Û∞ and
∏n

j=2 Kj → K∞ where both Û∞ and K∞ are nonsingular, then

Un → K−1
∞ Û∞ and Yn → Y∞, a finite matrix.
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Remark 4.5 (parameter qualifications) Before proceeding we summarize our strategy and the

parameter restrictions. The leading order behavior of the matrix expansions in powers of n−1

is guaranteed by the boundedness assumptions on the parameters an with which we began this

work. Subsequent restrictions were added in order to constrain the matrix products describing the

dynamics of the related difference equation. The strongest restrictions on the sequences (an) come

from the invertibility assumption in Theorem 4.1 and that of Û∞ and K∞ in Theorem 4.4. The first

of these, that det(Y∞) 6= 0 is discussed in [5, Remark 4.2] and is needed to assure the separation of

the odd and even convergents of S1. The assumptions on the invertibility of
∏n

j=1 Kj → K∞ and

Û∞ were shown in [5, Remark 4.4] to be equivalent, respectively, to

0 6= lim
n→∞

α
1/2
2

α
n−1/2
2n αn−1

2n−1

2n−2∏
j=1

αj < ∞ (4.18)

0 6=
∞∏

j=2

(
1− 1

(2ja2j)2

)
< ∞. (4.19)

4.2 Exponential-sums

The problem of determining the convergence or divergence of S1 has been reduced to determining

the convergence or divergence of Ûn defined by Eq.(4.15). In [2] an exponential sum analysis was

applied to such matrix products for the case of cycles of length c = 2 in order to obtain detailed

results about the convergence of Ûn. Though this analysis does not appear to be tractable in

general, we set out the formal basis from which useful special cases may be gleaned.

To begin, note that even products of Ŵj are diagonal matrices, and odd products are skew

matrices. To wit, we have

2n+1∏
j=1

Ŵj =

2n+1∏
j=1

1
a2j


 0

∏2n+1
j=1 ω

(−1j+1)
j∏2n+1

j=1 (ω−1
j )(−1j+1) 0

 (4.20)
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while
2n∏

j=1

Ŵj =

 2n∏
j=1

1
a2j


 ∏2n

j=1 ω
(−1j)
j 0

0
∏2n

j=1(ω
−1
j )(−1j)

 . (4.21)

Let ωn = (ω1, . . . , ωn) and

Tj(n, ωn) :=
n∑

mj>···>m1≥1

(
j∏

k=1

ω
(−1(j mod 2)+k)
mk

mka2mk

)
(4.22)

where the sum is empty (0) if j > n and, by definition, T0(n, ωn) := 1. In general we have

Ûn = I +
n∑

j=1

 n∑
mj>···>m1≥1

(
j∏

k=1

1
2mk

Ŵmk

) =

 An(ωn) Bn(ωn)

Bn(ω−1
n ) An(ω−1

n )

 ,

where

An(ωn) :=
∞∑

j=0

2−2jT2j(n, ωn) and Bn(ωn) :=
∞∑

j=0

2−2jT2j+1(n, ωn).

This formulation is difficult to work with in general, though for some special cases it yields explicit

bounds on matrix elements as the next example illustrates.

Example 4.6 Let an = an+2 (n = 1, 2, . . . ). From Eq.(4.12) we have

ωn =
a2n

a2

n∏
j=1

α2j−1

α2j
=
(

α1

α2

)n

which we will write as ωn. Thus

Tj(n, ω) =
1

aj
2

n∑
mj>···>m1≥1

(
j∏

k=1

ω(−1(j mod 2)+k)mk

mk

)
.
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This form of the exponential sum, it turns out, is tractable. Indeed, this can be rewritten as

(4.23)

Tj(n, ω) =(
j∏

k=1

ω(−1(j mod 2)+k)

)∫ 1

0
· · ·
∫ 1

0
dx1 · · · dxjSj(n;ω(−1(j mod 2)+1)x1, . . . , ω

(−1(j mod 2)+j)xj),

where

Sj(n; z1, . . . , zj) =
n∑

mj>···>m1≥1

z
mj
n z

mj−1

j−1 . . . zm1
1 .

In particular,

Sj(∞; z1, . . . , zj) =
zj−1
j

1− zj

zj−2
j−1

1− zjzj−1
· · · 1

1− zjzj−1 · · · z1
.

Using these identities, it can been shown that if |ω| = 1 with ω 6= 1, then the matrix Un = Ûn

converges as N →∞ with explicit bounds on the limit U∞ (see [2, Theorem 7.5]). �

An interesting open problem is to find an integral representation similar to Eq.(4.23) for general-

ized Lerch sums of the form Eq.(4.22) with parameters ω = (ω1, . . . , ωn) involving more complicated

behavior. Given the simplicity of wn given by Eq.(4.12), it seems quite likely that tractable refor-

mulations can be extracted from Eq.(4.22).

4.3 General Matrix Analysis

Given the difficulty of working with generalized exponential sums of the form Eq.(4.22), we pursue

a more general approach. The following is a special, deterministic case of [5, Theorem 4.5].
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Theorem 4.7 (matrix products) Let the sequences (ζj) and (ζ ′j) satisfy

sup
k

∣∣∣∣∣∣
k∑

j≥n

ζj

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j≥n

ζ ′j

∣∣∣∣∣∣ < ∞, (4.24)

and let (ηj) be a real nonnegative square summable sequence decreasing monotonically to 0. Then

the matrix product
n∏

j=1

I + ηj

 0 ζj

ζ ′j 0


 (4.25)

converges to a finite matrix as n →∞. If, in addition,

∣∣1− η2
j ζ

′
jζj

∣∣ ≥ m > 0 ∀ j, (4.26)

then the matrix product converges invertibly.

Remark 4.8 Compare this result to a similar result by Trench [7, Theorem 4] which states that for

any sequence of m×m matrices (An) the product
∏∞

n=1 (I + An) converges invertibly if
∑∞ |An| <

∞. Condition Eq.(4.24) is less restrictive than the requirement that the corresponding matrix norms

be summable, however our result is not as general. In light of other sufficient conditions developed

by Trench [7, Theorems 5-6] it would be interesting to see if the techniques presented here can be

applied to more general matrix products.

Odd cycles/arbitrary sequences: proof of Theorem 1.1(i), b = 2. Consider the case of

odd-length cycles or, more generally, arbitrary sequences (an). Here, for c ∈ N ∪ {∞} not even,

ζn = ζn mod c :=
1

a2n mod c
ωn =

1
a2

n mod c∏
j=1

α2j−1

α2j

 . (4.27)
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For the inverse, we have

ζ ′n = ζ ′n mod c :=
1

a2n mod c
ω−1

n =
a2

α2n mod c

n mod c∏
j=1

α2j−1

α2j

−1

. (4.28)

(see Eq.(4.14)). If ζn and ζ ′n satisfy

sup
k

∣∣∣∣∣
k∑

n=1

ζn

∣∣∣∣∣ < ∞, and sup
k

∣∣∣∣∣
k∑

n=1

ζ ′n

∣∣∣∣∣ < ∞, (4.29)

then Theorems 4.1, 4.4, and 4.7 yield part (ii) of Theorem 1.1 for b = 2. �

Example 4.9 Condition Eq.(1.2), while nontrivial, is not difficult to satisfy. It is certainly satisfied

by any sequence (ζn) which processes “evenly” around the unit circle in the complex plane, or, in

the case of random sequences, any bounded (ζn) with mean equal to zero2. We have already seen

instances of such sequences in Section 2. For example, for the case of (an) with odd-length cycles,

say c = 3, then

ζ1 =
a2

1

a3
2

, ζ2 =
a2

3

a3
2

and ζ3 =
1
a2

while

ζ ′1 =
a2

a2
1

, ζ ′2 =
a3

2

a2
1a

2
3

and ζ ′1 =
a2

a2
3

.

The parameters ai then must satisfy

a2
1 + a2

2 + a2
3 = 0.

In Fig. 5 the parameters for iteration Eq.(2.1) with a cycle length 3 are (a1, a2, a3) =
2Note that the case of random ζn is more delicate since the partial sums Eq.(4.29) are not bounded above.
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Figure 7: Sequence of partial sums given by Eq.(4.30) for a cycle length 3 with parameters
(a1, a2, a3) = (exp(iπ/2), exp(iπ/6), exp(−iπ/6)) corresponding to Fig. 5. The dark line corresponds
to the partial sums of 1

a2j
ωj and the light line to the partial sums of 1

a2j
ω−1

j .

(exp(iπ/2), exp(iπ/6), exp(−iπ/6)) The dynamics of the corresponding sequence of partial sums,

 n∑
j=1

1
2ja2j

ωj

 and

 n∑
j=1

1
2ja2j

ω−1
j

 , (4.30)

is depicted in Fig. 7. In Fig. 6 the parameters are a1 = π/3 + 0.05, a2 = −π/3 + 0.05, and

a3 = 0.05. The dynamics of the corresponding sequence of partial sums are similar to those shown

in Fig. 7.

Even cycles: proof of Theorem 1.1(ii), b = 2. Let aj = aj+c for all j and c finite and even.

Define ωn by Eq.(4.13), and define

ζk :=
1

a2k
ωk = γb2k/ccξk where ξk = ξk mod c/2 :=

1
a2

k mod c/2∏
j=1

α2j−1

α2j


and

γ :=

 c/2∏
j=1

α2j−1

α2j

 .
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Similarly, define

ζ ′k :=
1

a2k
ω−1

k = γ−b2k/ccξ′k where ξ′k = ξ′k mod c/2 :=
a2

α2k mod c

k mod c/2∏
j=1

α2j−1

α2j

−1

.

The next Lemma yields the specialization (ii) of Theorem 1.1 for b = 2.

Lemma 4.10 Let ξj , ξ
′
j ∈ C satisfy |ξj | ≤ z < ∞ , |ξ′j | ≤ z′ < ∞ ∀ j and let |γ| = 1 with γ 6= 1.

Then for any positive d ∈ N, we have

sup
k

∣∣∣∣∣∣
k∑

j=0

γbj/dcξj

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j=0

γ−bj/dcξ′j

∣∣∣∣∣∣ < ∞.

Proof. This follows immediately for d finite and γ 6= 1 since |ξj | ≤ z < ∞ and |ξ′j | ≤ z′ < ∞ for all

j and γ±j is a (nonstationary) rotation around the unit disk in C. �

If |γ| = 1 with γ 6= 1 and if (an) satisfies Eq.(4.18)-(4.19) then Theorems 4.1, 4.4, and 4.7,

together with Lemma 4.10 complete the proof of Theorem 1.1(ii) with b = 2. �

Example 4.11 The dynamics of the sequence of partial sums corresponding to iteration Eq.(2.1)

for a cycle length 4 with parameters (a1, a2, a3, a4) = (exp(iπ/4), exp(iπ/6), exp(iπ/4), exp(i(π/6 +

1/2))) (see Fig. 2) is depicted in Fig. 8.

5 Concluding Remarks and Open Problems

While the principal application of interest in this work has been the determination of the divergence

of continued fractions, our analysis touches on many different areas of mathematics, from difference
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Figure 8: Sequence of partial sums given by Eq.(4.30) for a cycle length 4 with parameters
(a1, a2, a3, a4) = (exp(iπ/4), exp(iπ/6), exp(iπ/4), exp(i(π/6 + 1/2))) corresponding to Fig. 2. The
light line corresponds to the partial sums of 1

a2j
ωj and the dark line to the partial sums of 1

a2j
ω−1

j .

equations, to dynamical systems, to matrix theory. We noted in Section 4.2 a direction for further

research is to find an integral representation similar to Eq.(4.23) for generalized Lerch sums of the

form Eq.(4.22) with parameters ω = (ω1, . . . , ωn) involving more complicated behavior. While the

continued fractions we considered here lead only to 2 term difference equations such as Eq.(1.3),

one could conceive of more general difference equations in and of themselves, for example recursions

of the form

qn = (n + 1−m)αn

 n

n−m

 qn−m−1 +
m−1∑
j=0

 n

n− j

 qn−(j+1)

and their corresponding renormalized difference equations

tn+1 =
n + 1−m

n + 1
αntn−m +

1
n + 1

m−1∑
j=0

tn−(j+1).

Such generalizations would lead to an (m+1)× (m+1) matrix analysis analogous to that pursued

here. One possibly far reaching issue is whether or not the general recurrence relations above admit

generating functions. If so, what can be said about these generating functions, the sequences they

encode and the functions they characterize?
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Finally, the attentive reader will note that we have left out any mention of the parameter values

corresponding to the simulations shown in Fig. 3 and Fig. 4. It is easy to verify that for the

parameter values in these examples the partial sums corresponding to Eq.(4.29) are not bounded.

However, condition Eq.(4.29) is only sufficient, thus we cannot determine from our analysis whether

or not the continued fraction S1 converges for these parameter values. Our analysis, while quite

general, still leaves undetermined the necessary conditions for the matrix products Yn to converge.
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1. We define empty products to be equal to 1.

2. The reason we cannot immediately extend these results to random sequences is because the

partial sums Eq.(4.29) are not bounded above for such sequences.
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