
Proceedings of the Thirty-Fifth RAMP Symposium
Tokyo Institute of Technology, Tokyo, November 20–21, 2023

The proximal point algorithm without monotonicity

D. Russell Luke1∗ and Matthew K. Tam2†

Abstract We study the proximal point algorithm in the setting in which the operator of inter-
est is metrically subregular and satisfies a submonoticity property. The latter can be viewed as
a quantified weakening of the standard definition of a monotone operator. Our main result gives
a condition under which, locally, the proximal point algorithm generates at least one sequence
which is linearly convergent to a zero of the underlying operator. General properties of our notion
of submonotonicity are also explored as well as connections to other concepts in the literature.

Keywords submonotone, proximal point algorithm, metric subregularity, almost α-firmly non-
expansive, monotone, hypomonotone

1. Introduction

When cast abstractly, many problems amount to finding the zero of a set-valued map. In-
deed, minimization problems are most often not solved directly, rather one seeks to satisfy
an appropriate optimality condition which is typically phrased in terms of finding a zero of
some generalized derivative operator. One method for finding such zeros is the proximal point
algorithm. When the underlying set-valued map is maximal monotone the algorithm can
be interpreted as the fixed point iteration corresponding map’s resolvent; the latter being
firmly nonexpansive with full domain due to a celebrated result originating from the work
of Minty [16]. A great deal of the literature studying the algorithm, therefore, heavily re-
lies on the aforementioned monotonicity and nonexpansive properties in their analyses. The
interested reader is referred to [3, 6, 22] for further details.

In the absence of monotonicity, the proximal point algorithm has been studied for the
family of so-called hypomonotone mappings and their variants by Pennanen and coauthors
[7, 10, 18] (see also [6, Ch. 6.9]). Roughly speaking, such mappings can be made “locally"
monotone through addition of a regularization term. Here one of the key insights is that hy-
pomonotonicity of the inverse is equivalent to monotonicity of the Yosida regularization of the
original operator; a correspondence which allows for a great deal of structural properties of
the original (nonmonotone) operator to be deduced and upon which the convergence analysis
relies. Following a different direction, dispatching with generalizations of monotonicity com-
pletely, Aragón Artacho, Dontchev and Geoffroy [1] showed that either metric regularity or
strong metric subregularity alone suffices to prove that, locally, the proximal point algorithm
generates at least one convergent sequence which does so with linear rate (and, moreover, that
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for appropriately chosen algorithm parameters, the sequence can be made to converge super-
linearly) without the need for monotonicity or nonexpansivity of surrogates. Their techniques,
however, seem not to apply to maps which are merely metrically subregular.

The goal of this work is therefore to provide conditions for (local) convergence of the prox-
imal point algorithm when the underlying mapping is metrically subregular but its inverse
is not necessarily hypomonotone, thus bridging the gap between the two aforementioned ap-
proaches to analyzing the proximal point algorithm with nonmonotonity. Our main result
(Theorem 12) considers metrically subregular operators that satisfy a new submonotonicity
property for operators whose resolvents are almost α-firmly nonexpansive (3).

The remainder of this work is organized as follows. In Section 2, we set notation and collect
various preliminary results for use in the sequel. Section 3 focuses on the study of our new
generalized monotonicity property which we call submonotonicity. The developed machinery
is then used, in Section 4, to analyze the proximal point algorithm.

2. Preliminaries

The setting is restricted to a Euclidean space denoted by E. The central problem is that of
finding a zero of the multi-valued mapping F : E ⇒ E ;

Find x ∈ E such that 0 ∈ F (x). (1)

Given λ > 0, the resolvent of F is the multi-valued map JλF := (Id +λF )−1. A fundamental
numerical method to solve (1), and the focus of this study, is the multi-valued generalization
of the implicit Euler method, the proximal point algorithm: given an initial point x0 ∈ E,
choose a sequence {λn}n∈N of positive real numbers and a sequence {xn}n∈N such that

xn+1 ∈ JλnF (xn), ∀n ∈ N. (2)

When F is maximal monotone, the resolvent operators {JλnF }n∈N are single-valued and firmly
non-expansive with full domain; that is, they satisfy

∥x − JλnF (x0)∥2 ≤ ∥x − x0∥ − ∥(JλnF (x) − x) − (JλnF (x0) − x0)∥2 ∀x, x0 ∈ E.

In this case, for any initial point x0 ∈ E and choice of positive sequence {λn}n∈N bounded
away from zero, there exists a unique sequence of proximal point iterates {xn}n∈N with
xn+1 = JλnF (xn) and, moreover, the sequence converges whenever F −1(0) ̸= ∅ [22, The-
orem 1]. It is worth emphasizing that, without maximal monotonicity of F , the sequence
generated by the proximal point algorithm need not even exist, let alone converge. Linear
convergence of the iterates requires an additional property to firm nonexpansiveness, namely
metric subregularity for set-valued maps.

Definition 1 (linear metric subregularity). A set-valued mapping Φ : E ⇒ E is linearly
metrically subregular on U ⊂ E for ȳ ∈ E relative to Λ ⊂ E if, there exists ρ > 0 such that

dist(x, Φ−1(ȳ) ∩ Λ) ≤ ρ dist(ȳ, Φ(x)) ∀x ∈ U ∩ Λ.

Convergence rates for mappings that are only almost firmly nonexpansive was established
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in [14]. On a closed subset D ⊂ E, a general self-mapping T : D ⇒ D is said to be point-
wise almost α-firmly nonexpansive at x0 ∈ D on D, abbreviated pointwise aα-fne, whenever
α ∈ (0, 1) and there exists ϵ ∈ [0, 1] such that

(∀x ∈ D)(∀x+ ∈ Tx)(∀x+
0 ∈ Tx0) :

∥x+ − x+
0 ∥2 ≤ (1 + ϵ)∥x − x0∥2 − 1−α

α

∥∥∥(x − x+) − (x0 − x+
0 )
∥∥∥2

.
(3)

When the above inequality holds for all x0 ∈ D then T is said to be almost α-firmly nonexpan-
sive (aα-fne) on D. The violation is a value of ϵ for which (3) holds. When the violation is 0,
the qualifier “almost” is dropped and the abbreviation α-fne is used. The definition of point-
wise aα-fne mappings in Euclidean spaces appeared first in this form in [14] as a tool in the
analysis of splitting algorithms in nonconvex and nonsmooth optimization. In normed vector
spaces these mappings, without violation, were first called averaged mappings [2, 5, 9, 11, 15].
These notions have been extended to nonlinear spaces [4] where addition doesn’t always exist,
hence the change in terminology.

Proposition 1 (Corollary 2.3 of [14]). Let T : D ⇒ D for D ⊂ E with Fix T ∩ D nonempty
and closed. Denote (Fix T + δB) ∩ D by Sδ for a nonnegative real number δ and define
Φ := Id −T . Suppose that, for all δ > 0 small enough, there exist ε > 0 and α ∈ (0, 1),
such that

(a) T is pointwise aα-fne at all y ∈ Fix T ∩ D with constant α and violation ε on Sδ, and

(b) Φ is linearly metrically subregular for 0 on Sδ relative to D with constant ρ > 0 satisfying√
1 − α

α(1 + ε) < ρ <

√
1 − α

εα
. (4)

Then, for any x0 ∈ D close enough to Fix T ∩ D, the iterates xn+1 ∈ Txn satisfy

dist (xn, Fix T ∩ D) → 0

and
dist (xn+1, Fix T ∩ D) ≤ c dist (xn, Fix T ∩ D) ∀n ∈ N, (5)

where c :=
√

1 + ε −
(

1−α
ρ2α

)
< 1.

The goal of this study is to establish linear convergence guarantees for mappings F whose
resolvents are only pointwise aα-fne.

3. Submonotone mappings

In this section, we introduce a generalized monotonicity property of set-valued maps which, for
lack of a better terminology, we call submonotonicity. This name was given by Spingarn [23]
to mappings that are maximally strictly hypomonotone (see Definition 3 below); subsequent
work [8] studied this in relation to approximate convexity [17]. We repurpose this term for
a differently defined object whose properties we investigate, exploring connections to other
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generalized monotonicity properties in the literature.
Pointwise aα-fne mappings discussed above lead to our notion of submonotone mappings

in the follow way. If F has a resolvent JF that is pointwise aα-fne on U at all y ∈ S with
α = 1/2 and violation ϵ, then F satisfies [14, Proposition 2.3]:

(∀x ∈ U)(∀(u, z) ∈ gph F with z = x − u for u ∈ JF (x))
(∀y ∈ S)(∀(v, w) ∈ gph F with w = y − v for v ∈ JF (y)) :

− ϵ
2 ∥(u + z) − (v + w)∥2 ≤ ⟨u − v, z − w⟩ .

(6)

Conversely, if F satisfies (6), then the resolvent is aα-fne at all y ∈ S on U with constant
α = 1/2 and violation ϵ. The celebrated Minty characterization shows the correspondence
between (maximal) monotonicity of an operator and firm nonexpansivity of its resolvent with
full domain (for a modern treatment, see [3]). With this in mind, we define the following.

Definition 2 (submonotonicity). Let U and V be subsets of E and let τ ≥ 0. A mapping
F : E ⇒ E is said to be submonotone on U in V with violation τ if

(∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :
−τ∥(u + u+) − (v + v+)∥2 ≤ ⟨u − v, u+ − v+⟩.

(7)

The mapping F is said to be maximal submonotone on U in V with violation τ if, for any
operator F̃ : E ⇒ E which is submonotone on U in V with violation τ and has gph F ⊆ gph F̃ ,
it holds that F |U ∩ V = F̃ |U ∩ V .

In terms of the graph of the operators involved, the definition of maximal submono-
tonicity of F (on U in V with violation τ) can be expressed as follows: If an opera-
tor F̃ : E ⇒ E is submonotone on U in V with violation τ and gph F ⊆ gph F̃ , then
gph F ∩ (U × V ) = gph F̃ ∩ (U × V ).

The existence of a maximal extension of a submonotone operator follows from the usual
Zorn’s lemma argument.

Proposition 2 (maximal submonotonicity). Suppose F : E ⇒ E is submonotone on U in
V with violation τ . Then there exists an operator F̃ with gph F ⊆ gph F̃ , that is maximal
submonotone on U in V with violation τ .

The following gives some equivalent forms of submonotonicity. The proof is omitted since
these are just rearrangements of the definition.

Proposition 3 (characterizations of submonotonicity). Let U and V be nonempty subsets of
E, let τ > 0 and let F : E → E. The following assertions are equivalent.

(a) F is submonotone on U in V with violation τ .

(b) (∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :

∥u − v∥2 + ∥u+ − v+∥2 ≤ (1 + 2τ)∥(u + u+) − (v + v+)∥2.
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(c) (∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :

−τ
(
∥u − v∥2 + ∥u+ − v+∥2

)
≤ (1 + 2τ)⟨u − v, u+ − v+⟩.

(d) (∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :

0 ≤ ∥u−u+∥2+∥v−v+∥2+ 2τ

(1 + 2τ)
(
∥u − v∥2 + ∥u+ − v+∥2

)
−∥v−u+∥2−∥u−v+∥2.

Proposition 4 (submonotonicity and inverses). Let U and V be nonempty subsets of E, let
τ > 0 and let F : E ⇒ E. Then F is (maximal) submonotone on U in V with violation τ if
and only if F −1 is (maximal) submonotone on V in U with violation τ .

Next we turn our attention to the structure of the range of a submonotone operator. In
order to give a useful description, we recall that an extended-, real-valued function f is said
to be ρ-weakly convex if the function f + ρ∥ · ∥2 is convex. In particular, a 0-weakly convex
function is convex.

Proposition 5. Let U and V be subsets of E, let τ ≥ 0, and suppose that F : E ⇒ E is
maximal submonotone on U in V with violation τ . Then, for all u ∈ U , F (u) ∩ V can be
expressed as intersection of the lower-level set of a proper, lsc, τ -weakly convex function*1 and
V . Consequently, for every closed subset O of V , the set F (u) ∩ O is closed. For any v ∈ V ,
the analogous statement holds for F −1(v) ∩ U .

3.1. Relation to other notions of generalized monotonicity
In this section we compare our newly introduced submonotonicity property to other weak-
ening of monotonicity in the literature. The first such property which we discuss is that of
hypomonotonicity which has its origins in [20,21,23].

Definition 3 (hypomonotonicity). Let U and V be subsets of E and κ > 0. A mapping
F : E ⇒ E is said to be hypomonotone in U on V with violation κ if

(∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :
−κ∥u − v∥2 ≤ ⟨u − v, u+ − v+⟩.

(8)

With regard to Definition 3, observe that, by rearranging of (8), it can be seen that
hypomonotonicity F on U for V is equivalent to monotonicity of F + κ Id in U for V .

Remark 6 (monotone operators). Recall that a set-valued map F : E ⇒ E is said to be
monotone on U for V if

(∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :
0 ≤ ⟨u − v, u+ − v+⟩.

(9)

In the case that U = V = E, this is just usual definition of a monotone operator.

*1 If {fi} are ρ-weakly convex then {fi + ρ∥ · ∥2} are convex. The max of convex functions is again convex, and so
maxi fi = maxi{fi + ρ∥ · ∥2} − ρ∥ · ∥2 is ρ-weakly convex.
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Monotonicity is preserved by taking inverses in the sense that (9) is equivalent to mono-
tonicity of F −1 on V in U . As we have already seen in Proposition 4, the analogous statement
is true of the inverse of a submonotone operator. It is, however, clear from (9), that one
can not expect the same to be true for hypomonotone operators in general. The term co-
hypomonotonicity has been used to refer to an operator whose inverse is hypomonotone [7].

On the other hand, hypomonotonicity of an operator is preserved under positive scalar
multiplication; a property which also holds for monotone operator. More precisely, if F is
(hypo-)monotone and λ > 0 then λF is also (hypo-)monotone. As we show in Example 1, the
same this property is generally not satisfied by submonotone mappings.

Proposition 7 (hypo-/sub-monotonicity). Let U and V be subsets of E and consider a set-
valued mapping F : E ⇒ E. The following assertions hold.

(a) If F is hypomonotone on U in V with violation σ ∈ [0, 1/2), then F is submonotone on
U in V with violation τ := σ/(1 − 2σ) ≥ 0, and F −1 is submonotone on V in U with
violation τ .

(b) Let F be hypomonotone on U in V with violation σ1 ≥ 0, and let F −1 be hypomonotone
on V in U with violation σ2 ≥ 0, and σ ∈ [0, 1/2) where

σ :=

σ1σ2/(σ1 + σ2) σ1 ̸= 0 and σ2 ̸= 0,

0 otherwise.

Then F is submonotone on U in V with violation τ := 2σ/(1 − σ).

(c) If F is submonotone on U in V with violation τ and there exists a κ ≥ 0 such that

(∀u ∈ U)(∀v ∈ U)(∀u+ ∈ Fu ∩ V )(∀v+ ∈ Fv ∩ V ) :
∥u+ − v+∥ ≤ κ∥u − v∥;

(10)

then F is hypomonotone on U in V with violation σ := τ(1 + κ2)/(1 + 2τ) ≥ 0.

Remark 8. Regarding condition (10) of Proposition 7, in the case where F (·) ∩ V is at most
single-valued on U , it is clear that condition amounts to Lipschitz continuity of F (·) on V .
For a general set-valued map, the condition is stronger than Lipschitz continuity of F (·) on
V .

We now give two examples to show that the conditions of Proposition 7 cannot be weakened
in general. In particular, Example 1 shows hypomonotonicity need not imply submonotonicity
when the hypomonotonicity violation is greater than 1/2, and Example 2 gives an example of
a (single-valued) non-Lipschitzian submonotone map that is not hypomonotone.

Example 1 (small hypomonotone violation implies submonotone). Let α > 0, let U := [0, α],
V := R and consider the function F (x) := −x2. Then, for all (u, u+) ∈ gph F ∩ (U × V ) and
(v, v+) ∈ gph F ∩ (U × V ), we have

⟨u − v, u+ − v+⟩ = (u − v)(−u2 + v2) = −(u + v)∥u − v∥2 ≥ −2α∥u − v∥2, (11)
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which shows that F is hypomonotone on U in V with violation 2α.
We claim, however, that F is submonotone only if α < 1/2. To this end, observe that

∥(u + u+) − (v + v+)∥2 = ∥(u − v) − (u2 − v2)∥2 = (1 − (u + v))2∥u − v∥2. (12)

Whenever u + v ̸= 1, combining (11) and (12) yields

− (u + v)
(1 − (u + v))2 ∥(u + u+) − (v + v+)∥2 = ⟨u − v, u+ − v+⟩. (13)

On one hand, if α < 1/2, then u + v ≤ 2α and (1 − 2α)2 ≤ (1 − (u + v))2. We then have that

τ := 2α

(1 − 2α)2 ≥ (u + v)
(1 − (u + v))2 ,

and hence that F is submonotone on U in V with violation τ .
On the other hand, that α ≥ 1/2 and there exists a τ ≥ 0 such that F is submonotone

on U in V with violation τ . Let {un}, {vn} be two sequences contained in [0, 1/2) which both
converge to 1/2. Then, using (13), we have

τ ≥ (un + vn)
(1 − (un + vn))2 → +∞,

which contradictions the finiteness of τ , and we conclude that F is not submonotone on U for
V for any violation constant.

Example 2 (submonotone but not hypomonotone). Let U := [0, 1/16], let V := R and con-
sider the function F (x) = −

√
x defined for x ≥ 0 which is not Lipschitz at 0. Then, for all

(u, u+) ∈ gph F ∩ (U × V ) and (v, v+) ∈ gph F ∩ (U × V ) such that
√

u +
√

v ̸= 0, we have

⟨u − v, u+ − v+⟩ = (u − v)(−
√

u +
√

v) = − 1√
u +

√
v

∥u − v∥2. (14)

Observe that 1/(
√

u +
√

v) → +∞ as u, v → 0, and hence F cannot be hypomonotone on U

in V for any violation constant. However, we claim that F is submonotone on U in V with
violation τ := 2. To show this, first observe that for

√
u +

√
v ̸= 0, we have

∥(u + u+) − (v + v+)∥2 = ∥(u − v) − (
√

u −
√

v)∥2

=
∥∥∥∥∥(u − v) − 1√

u +
√

v
(u − v)

∥∥∥∥∥
2

=
(

(
√

u +
√

v) − 1√
u +

√
v

)2

∥u − v∥2.

(15)

Since
√

u +
√

v ≤ 1/2, it holds that
√

u +
√

v ≤ 1/2 and 1/4 ≤ (
√

u +
√

v − 1)2. Consequently,
we have

τ := 2 = 1/2
1/4 ≥

√
u +

√
v

(
√

u +
√

v − 1)2 = 1√
u +

√
v

( √
u +

√
v√

u +
√

v − 1

)2

.

By combining (14) and (15), whenever
√

u +
√

v ̸= 0, we deduce that

−τ∥(u + u+) − (v + v+)∥2 ≤ ⟨u − v, u+ − v+⟩. (16)

Moreover, if
√

u +
√

v = 0 then u = v = 0, and so (16) remains true in this case. Altogether,
this shows that F is submonotone on U in V violation τ = 2, as was claimed.
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4. The proximal point algorithm

To begin, we establish the implication of metric subregularity of a scaled multi-valued mapping
λF for the resolvent residual mapping Φ defined in Proposition 1.

Lemma 9. Let F : E ⇒ E, F −1(0) ∩ D ̸= ∅ closed for D ⊂ E with JλF : D → D

and λ > 0. If F is metrically subregular for 0 on U relative to D with constant ρ, and
U ′ := {x ∈ D | JλF (x) ⊂ U ∩ D} ≠ ∅, then Φλ := Id −JλF is metrically subregular for 0 on
U ′ relative to D with constant λ+ρ

λ .

Remark 10. The assumption {x ∈ D | JλF (x) ⊂ U ∩ D} ≠ ∅ is satisfied in particular if U

is a neighborhood including Fix JλF , but of course, the statement above is only interesting for
points that are not fixed points.

The next result is a generalization of the classical property of convergence for Fejér mono-
tone sequences. A sequence of points {xn}n∈N is said to be linearly monotone with respect to
S with rate κ ∈ [0, 1] if

(∀n ∈ N) dist(xn+1, S) ≤ κ dist(xn, S). (17)

This was introduced in [13] for more general gauges. Fejér monotone sequences, in contrast,
satisfy

dist(xn+1, x) ≤ dist(xn, x) ∀x ∈ S, ∀n ∈ N.

It is easy to see that any Fejér monotone sequence is linearly monotone, but the converse is
not true (see [13, Example 1]).

Lemma 11 (convergence of linearly monotone sequences). Let {xn}n∈N be a sequence on E.
Suppose that, for some closed subset S ⊂ E and some δ > 0, we have

(a) ∥xn+1 − xn∥ ≤ δ dist(xn, S) for all n ∈ N, and

(b) {xn}n∈N is linearly monotone relative to S with rate κ < 1.

Then {xn} converges linearly monotonically to a point x ∈ S with rate O( κn

1−κ).

In the context of the above result, it is worth mentioning a similar result in [19, Prop. 2.11].
We are now ready to state the following local convergence result for the proximal point

algorithm.

Theorem 12 (local convergence). Let F : E ⇒ E, D ⊂ E, with x̄ ∈ F −1(0) ∩ D, and
JλF : D ⇒ D for λ > 0. Suppose the following assumptions hold.

(a) There exists a neighborhood W of x such that W ′ := {x ∈ D | JλF (x) ⊂ W ∩ D} ≠ ∅ and
F is metrically subregular for 0 on W relative to D with constant ρ.

(b) There exists neighborhoods U and U ′ of x̄, and V of 0 such that

(i) λF is maximal submonotone on U in V with violation τ , and
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(ii) U ′ ⊆ (I + λF )(U) where F maps x 7→ F (x) ∩ (V/λ);

where the constants satisfy τ (1 + ρ/λ)2 < 1/2.

Then, there exist δ > 0 and ρ > ρ such that, for any x0 ∈ Bδ(x̄) ∩ D, there exists a se-
quence {xn}n∈N, given by xn+1 ∈ JλF (xn) for all n ∈ N, that converges R-linearly to a point
x̂ ∈ F −1(0) ∩ Bδ(x̄) ∩ D. Moreover,

∥xn − x̂∥ ≤ 4δ
√

1 + 2τ dist(x0, F −1(0) ∩ Bδ(x̄) ∩ D)
1 − κ

κn where κ :=
√

1 + 2τ −
(

λ

λ + ρ

)2
< 1.

Corollary 13 (maximal monotonicity). Let F : E ⇒ E with x̄ ∈ F −1(0) and let λ > 0.
Suppose the following assumptions hold.

(a) F is metrically subregular at x̄ for 0 with modulus ρ, and

(b) F is maximal monotone.

Then, there exist δ > 0 and ρ > ρ such that, for any x0 ∈ Bδ(x̄), the sequence {xn}n∈N,
given by xn+1 = JλF (xn) for all n ∈ N, converges R-linearly to a point x̂ ∈ F −1(0) ∩ Bδ(x̄).
Furthermore, it holds that

∥xn − x̂∥ ≤ κn∥x0 − x̄∥
1 − κ

where κ :=
√

1 −
(

λ

λ + ρ

)2
< 1.

Remark 14. In the setting of Corollary 13, Leventhal [12, Th. 3.1] showed that sequence of
distances to the zeros set satisfies

dist(xn+1, F −1(0)) ≤ r dist(xn, F −1(0)) where r :=
√

λ2

λ2 + ρ2 . (18)

In light of our development, the sequence {xn} is therefore linearly monotone with respect to
F −1(0) with rate r, and so by Lemma 11 xn → x̂ at least R-linearly with rate r.
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