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A Simple Multiresolution Technique for
Diffraction Image Recovery
by D. Russell Luke, PIMS Postdoctoral Fellow, Simon Fraser University

We describe a Fourier-based multiresolution technique to speed up algo-

rithms for recovering diffraction images from noisy and aberrated data.

We use this method to achieve a 17-fold speed up of an adaptive optics

algorithm developed by the author for an early prototype of the James

Webb Space Telescope, due to replace the Hubble Space Telescope in

2011. The technique, simple and frequently rediscovered, is based on win-

dowed Fourier transforms. While a natural strategy for our purposes, the

method is not specific to our setting and can be employed in any appli-

cation that uses a combination of far field scattering data and spatially

dependent physical constraints.

1 Introduction

While a debate is heating up over the fate of the ageing Hubble Space Tele-

scope [1], progress continues on Hubble’s replacement, the James Webb

Space Telescope (JWST) [2]. A central design feature of the JWST is

adaptive optics capabilities that will allow the telescope to fine-tune itself

during observations. To accomplish this, the telescope will combine com-

putational wavefront sensing techniques together with deformable mirrors

to detect and correct for system aberrations. In the past, wavefront sensing

was performed by an intricate labyrinth of hardware. The JWST marks the

beginning of a shift toward computational techniques that are a dividend

of efforts to find and correct for the manufacturing defect that plagued

Hubble’s early days.

The problem of wavefront sensing is just one instance of a common

problem in imaging known as phase retrieval. In broad terms, one is faced

with recovering, from intensity measurements alone, the geometric path

of propagation of a wave that has interacted with some scattering mate-

rial or medium. In mathematical terms, the phase problem amounts to

finding the real and imaginary parts of a complex-valued scalar function

from knowledge of its amplitude before and after being acted upon by a

unitary linear operator. The problem has been around at least since the

1890’s [3], and breakthroughs in the early 1950’s for scattering from pe-

riodic structures [4–6] earned Hauptman and Karle the Nobel Prize in

Chemistry in 1985. The phase problem is far from solved, however, in

any analytical sense for general settings. Nevertheless the problem has

been solved numerically for over three decades [7, 8] even though there is

still no proof that the most popular techniques should work at all, let alone

so well [9, 10]. It is to this happy circumstance that Hubble owes some

of its success, since without phase retrieval algorithms it might have been

impossible to pinpoint fabled flaw in Hubble’s original primary mirror [9].

We show the flavor of this problem by way of a discussion of a Fourier-

based multiresolution technique for decreasing the cpu-time for compu-

tational wavefront sensing from noisy and aberrated data. We use this

method to achieve a 17-fold speed up of an adaptive optics algorithm de-

veloped by the author for an early prototype of the JWST. Though of-

ten forgotten, the technique is a well understood tool based on windowed

Fourier transforms. A natural strategy for our purposes, the method is not

specific to our setting and can be employed in any application that uses a

combination of far field scattering data and spatially dependent physical

constraints. For a more detailed review of diffraction imaging we refer

the reader to [9] and references therein. The extension of these ideas to

obstacle scattering as described in [11] is a topic of current research.

2 Phase retrieval

The forward imaging model is formulated on the space of square inte-

grable functions mapping R
2 to C. The model input u : R

2 → C is an

electromagnetic field generated by the object we are trying to observe. We

call the domain of u the physical domain. The device through which the

wave travels is characterised by a modified Fourier transform Fm of the

form

(1) (Fmu)(ξ) ≡

Z

R2

u(x)ei(2πx·ξ+θ̃m(x)) dx

The function θ̃m : R
2 → R for m = 1, 2, . . . ,M is a phase aberration

that models a known device tuning such as defocus. The model output,

or data, corresponding to the mth tuning of the device are amplitude mea-

surements, ψm : R
2 → R+ , where R+ denotes the non-negative orthant.

Due to the relations between the image ψm and the Fourier transform, we

refer to the domain of the image as the frequency domain. The data ψm

are often referred to as the frequency domain magnitude constraints of the

imaging model.

Just before the wave passes through our instrument, it is assumed that

|u| = A where A : R
2 → R+ and the modulus | · | is the pointwise

Euclidean magnitude. This is known as the entrance pupil constraint. For

convenience, we denote

(2) F0 ≡ I and ψ0 ≡ A

where I is the identity operator. The imaging model is then given by

(3) |Fmu| = ψm, m = 0, 1, . . . ,M.

The inverse problem with which we are concerned is to solve (3) for u

given Fm and ψm. Whatever method one has for solving this problem, the

next section details a strategy for obtaining low resolution estimates first,

and using these as a bootstrap to higher resolution solutions.
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(a)

Figure 1: Multi-Resolution entrance pupil constraints, at (a) 32 x 32 resolution corresponding to the 32 x 32 image data shown in Fig.(2), (b) 128

x 128 resolution corresponding to the 128 x 128 image data, and (c) 512 x 512 resolution.

Figure 2: Multi-resolution image data.  Three levels of multiresolution windowing operations are depicted for each diversity image.  Frame (a)
shows close-ups of each of the three resolution levels.  The centre 32 x 32 pixels of each diversity image, together with the corresponding low-
resolution entrance pupil constraint Fig.  (1.a) are used to generate the approximate solution shown in Fig.  (3.a).  This solution is used to initialize
the same problem with the centre 128 x 128 pixels and the corresponding mid-resolution entrance pupil constraint (Fig. (1.b)) as data.  The
solution to this problem, shown in Fig. (3.b), is used to initialize the full resolution problem.  The progress of the error metric versus iteration of
the multiresolution implementation is shown in Fig. (5).

(b) (c)

(a) (b) (c)

3 A multiresolution strategy

We motivate this method with a discussion of filtering, and show
the corresponding interpretation as a multiresolution analysis.

Noise often dominates high frequency components of an im-
age ψm(ξ). A common technique for reducing or filtering noise
is to truncate the images and set all high frequency components to
zero, that is, to set ψm(ξ) = 0 for ‖ξ‖∞ > a, for some cutoff
a > 0. For the imaging model given by Eq. (3), the image ψm

is the magnitude of the modified Fourier transform of the field u.
Thus the filtering operation just described amounts to multiplying
the Fourier transform of u by a window or characteristic function
of the box of length 2a in the frequency domain. Suppose the do-
main is sampled on square pixels of length ∆x. Let Xn denote
the indicator function for the n × n box of pixels centred at zero,
where, for convenience, n is a multiple of 2. For a sampled image
ψm centred at zero we have the following system of equations for
the windowed image

(4) Xn � |Fmu| = Xn � ψm, m = 1, . . . ,M.

where � represents the discrete Hadamard matrix product and
Fm (m = 1, . . . ,M) are the discrete counterparts of the contin-
uous operators defined in Eq. (1). Note that the window is not

applied to the physical domain equation (m = 0) given by Eq. (2)
and Eq. (3). This has to do with the relation between the trunca-
tion of high frequency Fourier modes and blurring in the physical
domain. This discussed in more detail below.

The multiresolution approach relies on our ability to write the
left hand side of Eq. (4) as a localized average of nearby pixels of
ueiθ̃m . Since the Hadamard product commutes with the pointwise
modulus function we can write the windowed function on the right-
hand side of Eq. (4) as Xn � |Fmu| = |Xn �Fmu| . For m ≥ 1,
by the Discrete Convolution Theorem, we have

|Xn �Fmu| =

∣

∣

∣

∣

(

X∨

n ∗
(

ueiθ̃m

))∧

∣

∣

∣

∣

m = 1, . . . ,M.

Here ∧ and ∨ indicate the discrete Fourier transform and its inverse
respectively.

In 2-dimensions, the Fourier transform of the window function
is a product of sinc functions of each of the components separately.
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Figure 3: Aberrated wavefront for the segmented pupil recovered from 3 diversity point source images on successively finer grids.  The real part
of the low resolution wavefront (a) is generated from a truncation of the image data to the centre 32 x 32 pixels.  This solution is used as a first
guess for the next resolution, 128 x 128.  The 128 x 128 pixel resolution solution (b) is used as a first guess for the full resolution problem whose
solution is shown in (c).

Figure 4: Noisy point-spread function (a) for a segmented pupil on a 512 x 512 grid.  The recovered point-spread function (b) was first filtered
with a Fourier window filter before processing by the wavefront reconstruction algorithm.  Frame (c) shows the true, unaberrated point-spread
function.

(a) (b) (c)

(a) (b) (c)

For x ∈ R
2

sinc ((n∆x)x) ≡
sin ((πn∆x)x1)

(πn∆x)x1

×
sin((πn∆x)x2)

(πn∆x)x2

=
1

n∆x
X∨

n .

Convolution against a sinc function, X∨

n , can be approximated by a lo-

calized discrete linear operator, An, that averages blocks of adjacent pix-

els. For the moment we leave the definition of An ambiguous – many

different averaging operators are possible. For m ≥ 1 the convolu-

tion on the right hand side of Eq. (4) can therefore be approximated by

X∨

n ∗
“

ueiθ̃m

”

≈ An

“

ueiθ̃m

”

. This yields the following approximation

of Eq. (4)

(5)
˛

˛

˛

“

An

“

ue
iθ̃m

””

∧
˛

˛

˛ ≈ Xn � ψm, m = 1, . . . ,M.

The filtering operation applied to the images ψm (m = 1, . . . ,M)

cannot be directly applied to the physical domain constraint represented

by the “image” ψ0. The analog in the physical domain is an averaging

operation. To see this consider the (discrete) Fourier dual of the physical

constraint |u|∧ = ψ∧

0 . Now, apply the window Xn to get Xn � |u|∧ =

Xn � ψ∧

0 . Again, by the Discrete Convolution Theorem the Fourier dual

of the windowing operation, i.e. the filtering operation in the physical do-

main, is given by X∨

n ∗ |u| = X∨

n ∗ ψ0. We approximate the right hand

side of this equation by X∨

n ∗ |u| ≈ An |u|. This yields the approximate

physical domain relation corresponding to the application of a window in

the Fourier domain,

(6) An |u| ≈ X∨

n ∗ ψ0.

Equations (5) and (6) constitute a low resolution imaging system. The

averaging operator An blurs information in adjacent pixels of the wave-

front estimate u, smoothing out edges as well as noise. It is not neces-

sary, therefore, to maintain a high pixelization for the wavefront estimate

u since fine detail is lost by averaging. In Eq. (5) only the centre n pixels

of the image are kept in the calculation. Our implementations rely on the

Fast Fourier Transform Algorithm (FFT) to calculate the discrete Fourier

transforms. These require square arrays with dimensions that are powers

of 2. Our computations take advantage of the lower resolution image by

using a pixelization of u that is consistent with the size of the window Xn.

This dramatically reduces the dimensionality of the optimization problem

and thus computation time. It cannot be expected that the solution to the

low resolution problem will be as good as the high resolution, however,

we use the low resolution solutions as a bootstrap to higher resolution esti-

mates. Ideally, all of the hard work is done at low resolution and relatively

few iterations are necessary to achieve a solution at the highest resolution.

This is indeed what we achieve (see Fig. (5)).

4 Numerical Results

The aperture design for one of several prototype telescopes studied at

NASA’s Goddard Space Flight Center for the JWST is shown in Fig. (1).
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Figure 5: Error metric and correspond-
ing norm of the gradient versus iteration
for a multiresolution implementation of
the limited memory BFGS algorithm
with trust regions applied to an extended
least squares problem discussed in [9,
Sec. 5.3 and Alg. 6.2].  The flat region
of the iterations is handled at low reso-
lutions.  Only when the estimate is in
the neighbourhood of a solution does
the algorithm switch to higher resolu-
tion calculations.

In Fig. (2.a) a series of windowing operations is depicted for the three

512 × 512 diversity images. First, the centre 32 × 32 pixels of each di-

versity image are kept, and the remaining pixels are set to zero, that is for

m = 1, 2, 3, we set
fψm = X32 � ψm.

The corresponding physical domain operation is to smooth the entrance

pupil constraint by convolution with the sinc function. This is achieved by

setting
fψ0 =

`
X32 � ψ∧

0

´
∨

.

The resulting entrance pupil constraint is depicted in Fig. (1.a). For

m = 1, 2, 3, the dimension reduction of the images fψm is straight for-

ward. One simply ignores the zero pixels outside of the window. In the

physical domain the reduction of dimension is achieved by assigning sin-

gle values to blocks of 16×16 adjacent pixels. In our implementations the

value that is assigned is the average of the 16
2 pixels. The corresponding

wavefront reconstruction problem is 1/16 the original problem size. The

solution corresponding to this resolution is depicted in Fig. (3).

The next step is to use the solution depicted in Fig. (3) as an initial

guess for the next resolution, which in this example is 128 × 128 pixels.

To do this, one simply divides the pixels of the low resolution solution into

16 sub-pixels. the image and physical domain data are treated the same as

with the 32× 32 case. The solution to the 128× 128 problem is then used

as the initial guess for the full resolution problem. The conjugate of the

phase recovered in Fig. (3.c) is generated via deformable mirrors in the

telescope in order to achieve the nearly diffraction limited point spread

function shown in Fig. (4.b).
In Fig. (5) the squared set distance error versus iteration for a mul-

tiresolution implementation of a limited memory BFGS algorithm with
trust regions to solve an extended least squares problem developed by the
author [9, Sec. 5.3 and Alg.6.2] is shown. Notice that the flat region of
the error metric indicating algorithm stagnation (typical for this problem)
is encountered at low resolution. The higher resolution runs are started in
a neighbourhood of the solution and very few iterations are required for

convergence. All of the hard work is accomplished cheaply at low res-
olutions. Starting from an initial phase guess of zero, the multiresolution
implementations reduced cpu-time by a factor of 17 over the full resolution
run.
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