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Abstract The inverse problem under consideration is to reconstruct the shape of
an impenetrable two-dimensional obstacle with a generalized impedance bound-
ary condition from the far field pattern for scattering of time-harmonic acoustic or
E-polarized electromagnetic plane waves. We propose an inverse algorithm that ex-
tends the approach suggested by Johansson and Sleeman [10] for the case of the
inverse problem for a sound-soft or perfectly conducting scatterer. It is based on a
system of nonlinear boundary integral equations associated with a single-layer po-
tential approach to solve the forward scattering problem which extends the integral
equation method proposed by Cakoni and Kress [5] for a related boundary value
problem for the Laplace equation. In addition, we also present an algorithm for re-
constructing the impedance function when the shape of the scatterer is known. We
present the mathematical foundations of the methods and exhibit their feasibility by
numerical examples.

1 Introduction

The use of generalized impedance boundary conditions (GIBC) in the mathemati-
cal modeling of wave propagation has gained considerable attention in the literature
over the last decades. This type of boundary conditions is applied to scattering prob-
lems for penetrable obstacles to model them approximately by scattering problems
for impenetrable obstacles in order to reduce the cost of numerical computations.
In this paper, we will consider boundary conditions that generalize the classical
impedance boundary condition, which is also known as Leontovich boundary con-
dition, by adding a term with a second order differential operator. As compared with
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the Leontovich condition, this wider class of impedance conditions provides more
accurate models, for example, for imperfectly conducting obstacles (see [7, 8, 16]).

To formulate the generalized impedance condition and the corresponding scatter-
ing problem, let D be a simply connected bounded domain in R2 with boundary ∂D
of Hölder class C4,α and denote by ν the unit normal vector to ∂D oriented towards
the complement R2 \D. We consider the scattering problem to find the total wave
u = ui +us ∈ H2

loc(R2 \D) satisfying the Helmholtz equation

∆u+ k2u = 0 in R2 \D (1)

with positive wave number k and the generalized impedance boundary condition

∂u
∂ν

+ ik
(

λu− d
ds

µ
du
ds

)
= 0 on ∂D (2)

where d/ds is the tangential derivative and µ ∈C1(∂D) and λ ∈C1(∂D) are com-
plex valued functions. We note that the classical Leontovich condition is contained
in (2) as the special case where µ = 0. The incident wave ui is assumed to be a plane
wave ui(x) = eik x·d with a unit vector d describing the direction of propagation, but
we also can allow other incident waves such as point sources. The scattered wave us

has to satisfy the Sommerfeld radiation condition

lim
r→∞

√
r
(

∂us

∂ r
− ikus

)
= 0, r = |r|, (3)

uniformly with respect to all directions. The derivative for u|∂D ∈ H
3
2 (∂D) with

respect to arc length s in (2) has to be understood in the weak sense, that is, u has to
satisfy ∫

∂D

(
η

∂u
∂ν

+ ikληu+ ikµ
dη

ds
du
ds

)
ds = 0 (4)

for all η ∈ H
3
2 (∂D).

The Sommerfeld radiation condition is equivalent to the asymptotic behavior of
an outgoing cylindrical wave of the form

us(x) =
eik |x|√
|x|

{
u∞(x̂)+O

(
1
|x|

)}
, |x| → ∞, (5)

uniformly for all directions x̂ = x/|x| where the function u∞ defined on the unit cir-
cle S1 is known as the far field pattern of us. Besides the direct scattering problem
to determine the scattered wave us for a given incident wave ui the two inverse scat-
tering problems that we will consider are to determine the boundary ∂D, for given
impedance functions, or the impedance coefficients µ and λ , for a given boundary,
from a knowledge of the far field pattern u∞ on S1 for one or several incident plane
waves. The first problem we will call the inverse shape problem and the second the
inverse impedance problem.
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For further interpretation of the generalized impedance boundary condition we
refer to [1, 2, 3] where the direct and the inverse scattering problem are analyzed
by variational methods. For the solution of a related boundary value problem for
the Laplace equation with the generalized impedance boundary condition of the
form (2), Cakoni and Kress [5] have proposed a single-layer potential approach
that leads to a boundary integral equation or more precisely a boundary integro-
differential equation governed by a pseudo-differential operator of order one. In
Section 2 we will extend this approach to the direct scattering problem (1)–(3). As
to be expected, the single-layer approach fails when k2 is an interior Dirichlet eigen-
value for the negative Laplacian in D and to remedy this deficiency we describe a
modified approach by a combined single- and double-layer approach that leads to a
pseudo-differential operator of order two. For simplicity confining ourselves to the
single-layer potential approach, we then proceed in Section 3 with describing the
numerical solution of the integro-differential equation via trigonometric interpola-
tion quadratures and differentiation that lead to spectral convergence.

Our analysis of the two inverse problems is based on a nonlinear boundary in-
tegral equation method in the spirit of Johansson and Sleeman [10] (see also [6,
Section 5.4]) and follows the approach for the Laplace equation as developed by
Cakoni and Kress [5]. We begin in Section 4 with a review on uniqueness and then
proceed in Section 5 with the solution of the inverse shape problem followed by the
solution of the inverse impedance problem in Section 6. In both cases we present
the theoretical basis for the inverse algorithms and illustrate them by a couple of
numerical examples.

2 The Boundary Integral Equation

In this section we describe a boundary integral equation method for solving the
direct obstacle scattering problem and begin by establishing uniqueness of the solu-
tion. Throughout our analysis we will assume that

Reλ ≥ 0, Re µ ≥ 0, |µ|> 0, (6)

where the first two conditions ensure uniqueness and the third condition is required
for our existence analysis.

Theorem 1. Any solution u ∈ H2
loc(R2 \D) to (1)–(2) satisfying the Sommerfeld ra-

diation condition vanishes identically.

Proof. Inserting η = ū|∂D in the weak form (4) of the boundary condition we obtain
that ∫

∂D
ū

∂u
∂ν

ds =−ik
∫

∂D

{
λ |u|2 +µ

∣∣∣∣du
ds

∣∣∣∣2
}

ds.
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Hence in view of our assumption (6) we can conclude that

Im
∫

∂D
ū

∂u
∂ν

ds≤ 0

and from this and the radiation condition the statement of the theorem follows from
Rellich’s lemma, see Theorem 2.13 in [6]. ut

Corollary 1. The scattering problem (1)–(3) has at most one solution.

We recall the fundamental solution of the Helmholtz equation

Φ(x,y) =
i
4

H(1)
0 (k|x− y|), x 6= y,

in R2 in terms of the Hankel function H(1)
0 of the first kind of order zero. Further,

following [6] we introduce the classical boundary integral operators in scattering
theory given by the single- and double-layer operators

(Sϕ)(x) := 2
∫

∂D
Φ(x,y)ϕ(y)ds(y), x ∈ ∂D, (7)

(Kϕ)(x) := 2
∫

∂D

∂Φ(x,y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂D, (8)

and the corresponding normal derivative operators

(K′ϕ)(x) := 2
∫

∂D

∂Φ(x,y)
∂ν(x)

ϕ(y)ds(y), x ∈ ∂D, (9)

(T ϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x,y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂D. (10)

For the subsequent analysis in contemporary Sobolev spaces, we note that for
∂D ∈ C4,α the operators S : H

1
2 (∂D) → H

3
2 (∂D), S,K : H

3
2 (∂D) → H

5
2 (∂D),

T : H
3
2 (∂D)→H

1
2 (∂D) and K′ : H

1
2 (∂D)→H

1
2 (∂D) are all bounded (see [11, 15]).

In a first attempt, extending the approach proposed in [5] for the Laplace equa-
tion, we try to find the solution of (1)–(3) in the form of a single-layer potential for
the scattered wave

us(x) =
∫

∂D
Φ(x,y)ϕ(y)ds(y), x ∈ R2 \D, (11)

with density ϕ ∈ H
1
2 (∂D) and note that the regularity ϕ ∈ H

1
2 (∂D) guarantees that

u ∈ H2
loc(R2 \D) (see [15]). From the asymptotics for the Hankel function H(1)

0 (t)
as t→ ∞, it can be deduced that the far field pattern of us is given by

u∞(x̂) = γ

∫
∂D

e−ik x̂·y
ϕ(y)ds(y), x̂ ∈ S1, (12)
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where

γ =
ei π

4
√

8πk
. (13)

Letting x approach the boundary ∂D from inside R2 \D, from the jump relations
for single-layer potentials (see [6]) we observe that the boundary condition (2) is
satisfied provided ϕ solves the integro-differential equation

ϕ−K′ϕ− ik
(

λ − d
ds

µ
d
ds

)
Sϕ = g (14)

where we set

g := 2
∂ui

∂ν

∣∣∣∣
∂D

+2ik
(

λ − d
ds

µ
d
ds

)
ui|∂D (15)

in terms of the incident wave ui. After defining a bounded linear operator A :
H

1
2 (∂D)→ H−

1
2 (∂D) by

Aϕ := ϕ−K′ϕ− ik
(

λ − d
ds

µ
d
ds

)
Sϕ (16)

we can summarize the above into the following theorem.

Theorem 2. The single-layer potential (11) solves the scattering problem (1)–(3)
provided the density ϕ satisfies the equation

Aϕ = g. (17)

Lemma 1. The operator M : H
3
2 (∂D)→ H−

1
2 (∂D) given by

Mϕ :=
d2ϕ

ds2 +
∫

∂D
ϕ ds (18)

is bounded and has a bounded inverse.

Proof. We parametrize the boundary ∂D with the arc length s as parameter and iden-
tify H p(∂D) with H p

per[0,L] where L is the length of ∂D and H p
per[0,L]⊂ H p[0,L] is

the subspace of L periodic functions (or more precisely bounded linear functionals
if p < 0) (see [12, Section 8.5]). Using the Fourier series representation of Hr

per[0,L]

it can be seen that indeed M : H
3
2 (∂D)→ H−

1
2 (∂D) is an isomorphism. ut

Lemma 2. The operator A− ikµMS : H
1
2 (∂D)→ H−

1
2 (∂D) is compact.

Proof. The boundedness of the operators S,K′ : H
1
2 (∂D) → H

3
2 (∂D) and K′ :

H
1
2 (∂D)→ H

1
2 (∂D) mentioned above implies that all terms in the sum (16) defin-

ing the operator A are bounded from H
1
2 (∂D) into H

1
2 (∂D) except the term

ϕ 7→ ik
d
ds

µ
d
ds

Sϕ.
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Therefore, after splitting

d
ds

µ
dSϕ

ds
=

d2 Sϕ

ds2 +
dµ

ds
dSϕ

ds

we observe that the operator A− ikµMS : H
1
2 (∂D)→H

1
2 (∂D) is bounded since both

1/µ and λ/µ are in C1(∂D) by our assumptions on µ and λ . Hence the statement of
the theorem follows from the compact embedding of H

1
2 (∂D) into H−

1
2 (∂D). ut

Theorem 3. Provided k2 is not a Dirichlet eigenvalue for the negative Laplacian in
D, for each g∈H−

1
2 (∂D) the equation (17) has a unique solution ϕ ∈H

1
2 (∂D) and

this solution depends continuously on g.

Proof. Since under our assumption on k the operator S : H
1
2 (∂D)→ H

3
2 (∂D) is

an isomorphism, by Lemma 1 and our assumptions on µ the operator ikµMS :
H

1
2 (∂D)→ H−

1
2 (∂D) also is an isomorphism. Therefore, in view of Lemma 2,

by the Riesz theory it suffices to show that the operator A is injective. Assume that
ϕ ∈ H

1
2 (∂D) satisfies Aϕ = 0. Then, by Theorem 2 the single-layer potential u de-

fined by (11) solves the scattering problem for the incident wave ui = 0. Hence, by
the uniqueness Theorem 1 we have u = 0 in R2 \D. Taking the boundary trace of u
it follows that Sϕ = 0 and consequently ϕ = 0. ut

To remedy the failure of the single-layer potential approach at the interior Dirich-
let eigenvalues, as in the case of the classical impedance condition, we modify it into
the form of a combined single- and double-layer potential for the scattered wave

us(x) =
∫

∂D

{
Φ(x,y)+ i

∂Φ(x,y)
∂ν(y)

}
ϕ(y)ds(y), x ∈ R2 \D, (19)

with density ϕ ∈ H
3
2 (∂D). The regularity ϕ ∈ H

3
2 (∂D) implies u ∈ H2

loc(R2 \D).
Letting x approach the boundary ∂D from inside R2 \D, we observe that the bound-
ary condition (2) is satisfied provided ϕ solves the integro-differential equation

ϕ−K′ϕ− iT ϕ− ik
(

λ − d
ds

µ
d
ds

)
(Sϕ + iϕ + iKϕ) = g (20)

with g given by (15). We define a bounded linear operator B : H
3
2 (∂D)→H−

1
2 (∂D)

by

Bϕ := ϕ−K′ϕ− iT ϕ− ik
(

λ − d
ds

µ
d
ds

)
(Sϕ + iϕ + iKϕ) (21)

and then have the following theorem.

Theorem 4. The combined single- and double-layer potential (19) solves the scat-
tering problem (1)–(3) provided the density ϕ satisfies the equation

Bϕ = g. (22)
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Lemma 3. The operator B− kµM : H
3
2 (∂D)→ H−

1
2 (∂D) is compact.

Proof. The boundedness of S,K : H
3
2 (∂D)→ H

5
2 (∂D), K′ : H

1
2 (∂D)→ H

1
2 (∂D)

and T : H
3
2 (∂D)→H

1
2 (∂D) mentioned above implies that all terms in the sum (21)

defining the operator A are bounded from H
3
2 (∂D) into H

1
2 (∂D) except the term

ϕ 7→ k
d
ds

µ
dϕ

ds
.

Therefore, as in the proof of Lemma 2 we can deduce that the operator B− kµM :
H

3
2 (∂D)→ H

1
2 (∂D) is bounded and the statement follows from the compact em-

bedding of H
1
2 (∂D) into H−

1
2 (∂D). ut

Theorem 5. For each g∈H−
1
2 (∂D) the integral equation (22) has a unique solution

ϕ ∈ H
3
2 (∂D) and this solution depends continuously on g.

Proof. By our assumption on µ we have that kµM : H
3
2 (∂D)→ H−

1
2 (∂D) is an

isomorphism. Therefore, in view of Theorem 4 and Lemma 3 by the Riesz theory it
suffices to show that the operator B is injective. Assume that ϕ ∈ H

3
2 (∂D) satisfies

Bϕ = 0. Then, by Theorem 4 the combined single- and double-layer potential u
defined by (19) solves the scattering problem for the incident wave ui = 0. Hence,
by the uniqueness Theorem 1 we have u = 0 in R2 \D. Taking the boundary trace of
u it follows that Sϕ + iϕ + iKϕ = 0. From this proceeding as in the corresponding
existence proof for the scattering problem with Dirichlet boundary condition (see
Theorem 3.11 in [6]) we can conclude that ϕ = 0. ut

Summarizing, we finally have our main result of this section.

Theorem 6. The direct scattering problem (1)–(3) has a unique solution.

In addition to the potential approach for setting up the boundary integral equa-
tions, of course, following the so-called direct approach one can also derive integral
equations based on Green’s representation formula. Passing to the boundary ∂D in
Huygens’ principle (see Theorem 3.14 in [6]) and incorporating the boundary con-
dition (2) we obtain the equation

η−Kη− ikS
(

λ − d
ds

µ
d
ds

)
η = 2ui|∂D (23)

for the boundary trace η := u|∂D of the total field. Obviously, the operator on the
left-hand side of (23) is the adjoint of A with respect to the L2 bilinear form and
therefore, by the Fredholm alternative, the equation (23) also is uniquely solvable,
provided k2 is not a Dirichlet eigenvalue for the negative Laplacian in D.
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3 Numerical Solution

For the numerical solution, for simplicity we confine ourselves to the equation (14).
We employ a collocation method based on numerical quadratures using trigonomet-
ric polynomial approximations as the most efficient method for solving boundary in-
tegral equations for scattering problems in planar domains with smooth boundaries
(see [6]). Here, additionally we need to be concerned with presenting an approxi-
mation for the operator ϕ 7→ d

ds µ
dϕ

ds as the new feature in the integro-differential
equations for the generalized impedance boundary condition. For this, we apply
trigonometric differentiation.

Both for the numerical solution and later on for the presentation of our inverse
algorithm we assume that the boundary curve ∂D is given by a regular 2π periodic
parameterization

∂D = {z(t) : 0≤ t ≤ 2π}. (24)

Then, via ψ = ϕ ◦ z we introduce the parameterized single-layer operator by

(S̃ψ)(t) :=
i
2

∫ 2π

0
H(1)

0 (k|z(t)− z(τ)|) |z′(τ)|ψ(τ)dτ

and the parameterized normal derivative operator by

(K̃′ψ)(t) :=
ik
2

∫ 2π

0

[z′(t)]⊥ · [z(τ)− z(t)]
|z′(t)| |z(t)− z(τ)|

H(1)
1 (k|z(t)− z(τ)|) |z′(τ)|ψ(τ)dτ

for t ∈ [0,2π]. Here we made use of H(1)′
0 = −H(1)

1 with the Hankel function H(1)
1

of order zero and of the first kind. Furthermore, we denote a⊥ := (a2,−a1) for any
vector a = (a1,a2), that is, a⊥ is obtained by rotating a clockwise by 90 degrees.
Then the parameterized form of (14) is given by

ψ− K̃′ψ− ikλ ◦ z S̃ψ +
1
|z′|

d
dt

µ ◦ z
|z′|

d
dt

S̃ψ = g◦ z (25)

We construct approximations via trigonometric interpolation quadratures and
trigonometric differentiation based on equidistant interpolation points t j = jπ/n
for j = 1, . . . ,2n with n ∈ N. For the operators S̃ and K̃′ we make use of approx-
imation S̃n and K̃′n via trigonometric interpolation quadratures that take care of the
logarithmic singularities of the Hankel functions as described in Section 3.5 of [6]
or in [14]. We refrain from repeating the details.

To approximate the operator ϕ 7→ d
ds µ

dϕ

ds we simply use numerical differentia-
tion via trigonometric interpolation, i.e., we approximate the derivative ψ ′ of a 2π

periodic function ψ by the derivative (Pnψ)′ of the unique trigonometric polyno-
mial Pnψ of degree n (without the term sinnt) that interpolates (Pnψ)(t j) = ψ(t j)
for j = 1, . . . ,2n. For the resulting weights we refer to [12, Section 13.5]. We set



Inverse Obstacle Scattering 9

P′nψ := (Pnψ)′ and approximate

1
|z′|

d
dt

µ ◦ z
|z′|

d
dt

S̃ψ ≈ 1
|z′|

P′n
µ ◦ z
|z′|

P′n S̃nψ.

Summarizing, our numerical solution method approximates the integro-differential
equation (25) by

ψn− K̃′nψn− ikλ ◦ z S̃nψn +
1
|z′|

P′n
µ ◦ z
|z′|

P′n S̃nψn = g◦ z (26)

which is solved for the trigonometric polynomial ψn by collocation at the nodal
points t j for j = 1, . . . ,2n.

Since the operators

ϕ 7→ d2

ds2 Sϕ and ϕ 7→ d
ds

S
dϕ

ds

have the same principal part, the error and convergence analysis for numerically
solving the hypersingular equation of the first kind with the operator T, defined in
(10), via Maue’s formula and trigonometric differentiation as carried out in [13]
and based on Theorem 13.12 and Corollary 13.13 in [12], can be transferred to the
approximation (26) with only minor modifications. In particular, such an analysis
would predict spectral convergence in the case of analytic µ,λ and z. However, since
our main emphasis is on the inverse scattering problem we refrain from carrying out
the details. Instead of this we will conclude with a numerical example exhibiting the
spectral convergence. Before doing so we note, that an approximate solution of (20)
including an error analysis can be obtained analogously using the approximations
for S,K,K′ from [6] and the approximation of T via Maue’s formula that we just
mentioned (see [13]).

For numerical examples we consider scattering by an apple-shaped obstacle with
parametric representation

z(t) =
0.5+0.4cos t +0.1sin2t

1+0.7cos t
(cos t,sin t), 0≤ t ≤ 2π, (27)

(see Fig. 1) and by a peanut-shaped obstacle with parametric representation

z(t) =
√

cos2 t +0.25sin2 t (cos t,sin t), 0≤ t ≤ 2π, (28)

(see Fig. 2). As impedance functions we choose

λ (z(t)) =
1

1−0.1sin2t
and µ(z(t)) =

1
1+0.3cos t

(29)

for t ∈ [0,2π] and note that for both examples we can interpret the impedance func-
tions as given in a neighborhood of ∂D depending only on the polar angle.
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After approximately solving the integro-differential equation for the density ϕ

the far field pattern is obtained from (12) by the composite trapezoidal rule. Rather
than presenting tables with the far field pattern for plane wave incidence we find it
more convenient to just illustrate the spectral convergence by Table 1 which shows
the maximum norm (over the collocation points) of the error En := ‖u∞− u∞,n‖∞

between the exact and the approximate far field pattern for a point source us =
i
4 H(1]

0 (k|x−x0|) located at some x0 ∈D which has far field pattern u∞(x̂)= γ e−ik x̂·x0 .
In the examples we chose x0 = (0.1,0.2).

2n En,apple En,peanut

k = 2 16 5.02e-04 5.32e-05
32 3.55e-05 1.33e-07
64 5.52e-08 8.19e-14

128 1.16e-13 1.45e-14

k = 8 16 1.00e-02 1.00e-01
32 2.43e-05 1.95e-05
64 1.38e-08 3.71e-14

128 5.86e-14 8.94e-15

Table 1 Error decay for apple-shaped and peanut-shaped scatterer.

4 Inverse Scattering: Uniqueness

We now turn our attention to the inverse scattering problems. The most general
inverse scattering problem is the inverse shape and impedance problem to determine
∂D, µ and λ from a knowledge of one (or finitely many) far field patterns u∞ of
solutions u to (1)–(3). In this paper we will be only concerned with two less general
cases, namely the inverse shape problem and the inverse impedance problem. The
inverse shape problem consists in determining ∂D from one (or finitely many) far
field patterns knowing the impedance coefficients µ and λ . With the roles reversed,
the inverse impedance problem requires to determine the impedance functions µ

and λ from one (or finitely many) far field patterns for a known shape ∂D.
The first question to ask is what is the minimum amount of data, i.e., the minimal

number of far field patterns, to guaranty the uniqueness of the solution for the inverse
impedance problem or the inverse shape problem. The following theorem shows
that three far field patterns uniquely determine both impedance functions λ and µ

provided that ∂D is known.

Theorem 7. For a given shape ∂D, three far field patterns corresponding to the
scattering of three plane waves with different incident directions uniquely determine
the impedance functions µ and λ .
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Proof. Plane waves with different directions clearly are linearly independent. Con-
sequently the corresponding total waves u1,u2,u3 are also linearly independent.
Therefore, the proof of Theorem in [5] for the case of the Laplace equation can
be carried over without any changes to the Helmholtz equation since it only uses the
differential equation on the boundary as given by the generalized impedance bound-
ary condition. ut

Extending the counter example given in [5] for the Laplace case, the following
example illustrates non-uniqueness issues for the inverse impedance problem using
two far field patterns. Let D be a disc of radius R centered at the origin, let µ and
λ be constants satisfying (6), and consider the two incident waves given in polar
coordinates by ui(r,θ) = Jn(kr)e±inθ in terms of the Bessel function Jn of order
n ∈ N. Then the corresponding total wave is given by

u(r,θ) =
(

Jn(kr)−anH(1)
n (kr)

)
e±inθ

with the Hankel function H(1)
n of the first kind of order n and

an =
kR2J′n(kR)+ ik(n2µ +λR2)Jn(kR)

kR2H(1)′
n (kR)+ ik(n2µ +λR2)H(1)

n (kR)
. (30)

We note that the uniqueness Theorem 1 ensures that the denominator in (30) is dif-
ferent from zero. Clearly, there are infinitely many combinations of positive real
numbers µ and λ giving the same value for an, that is, the same two linearly inde-
pendent total fields.

The following uniqueness result for the full inverse shape and impedance prob-
lem was obtained by Bourgeois, Chaulet and Haddar [2].

Theorem 8. Both the shape and the impedance functions of a scattering obstacle
with generalized impedance condition are uniquely determined by the far field pat-
terns for an infinite number of incident waves with different incident directions and
one fixed wave number.

The main idea of the proof in [6, Theorem 5.5] for the case µ = 0 remains valid.
We only need to convince ourselves that the mixed reciprocity relation for scattering
of point sources and plane waves, see [6, Theorem 3.16] extends from the case
µ = 0 to the general case as consequence of the weak form (4) of the generalized
impedance condition.

We conclude this short section on uniqueness for the inverse problem with outlin-
ing the proof for the identifiability of a disc and its constant impedance coefficients
from the far field pattern for one incident plane wave.

Theorem 9. A disc with constant impedance coefficients is uniquely determined by
the far field pattern for one incident plane wave.
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Proof. Using polar coordinates the Jacobi–Anger expansion (see [6]) reads

eik x·d =
∞

∑
n=−∞

in Jn(kr)einθ , x ∈ R2, (31)

where θ is the angle between x and d. From this it can be seen that the scattered
wave us for scattering from a disc of radius R centered at the origin has the form

us(x) =
∞

∑
n=−∞

an in H(1)
n (kr)einθ , r > R, (32)

with the coefficients an from (30). Using the asymptotics of the Bessel and Hankel
functions for large n (see [6]) uniform convergence can be established for the series
(32) in compact subsets of R2 \0. In particular, this implies that the scattered wave
us has an extension as solution to the Helmholtz equation across the boundary into
the interior of the disc with the exception of the center.

Now assume that two discs D1 and D2 with centers z1 and z2 have the same far
field pattern u∞,1 = u∞,2 for scattering of one incident plane wave. Then by Rellich’s
lemma (see [6]) the scattered waves coincide us

1 = us
2 in R2 \ (D1∪D2) and we can

identify us = us
1 = us

2 in R2 \ (D1 ∪D2). Now assume that z1 6= z2. Then us
1 has an

extension into R2 \ {z1} and us
2 an extension into R2 \ {z2}. Therefore, us can be

extended from R2 \ (D1 ∪D2) into all of R2, that is, us is an entire solution to the
Helmholtz equation. Consequently, since us also satisfies the radiation condition it
must vanish identically us = 0 in all of R2. Therefore the incident field ui(x) = eik x·d

must satisfy the generalized impedance condition on D1 with radius R1. Elementary
differentiations show that this implies

R2
1 cosθ +R2

1λ + k2
µ sin2

θ + ikµ cosθ = 0

for all θ ∈ [0,2π]. However this is a contradiction and therefore z1 = z2.
In order to show that D1 and D2 have the same radius and the same impedance

coefficients, we observe that by symmetry, or by inspection of the explicit solution
given above, the far field pattern for scattering of plane waves from a disc with
constant impedance coefficients depends only on the angle between the observation
direction and the incident direction. Hence, knowledge of the far field pattern for
one incident direction implies knowledge of the far field pattern for all incident
directions. Now the statement follows from the above Theorem 8. ut

5 Solution of the Inverse Shape Problem

We now proceed describing an iterative algorithm for approximately solving the
inverse shape problem by extending the method proposed by Johansson and Slee-
man [10] for sound-soft or perfectly conducting obstacles. After introducing the far
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field operator
S∞ : H

1
2 (∂D)→ L2(S1)

by

(S∞ϕ)(x̂) := γ

∫
∂D

e−ik x̂·y
ϕ(y)ds(y), x̂ ∈ S1, (33)

from (11) and (12) we observe that the far field pattern for the solution to the scat-
tering problem (1)–(3) is given by

u∞ = S∞ϕ (34)

in terms of the solution to (14). We note that S∞ is compact and state the follow-
ing theorem as theoretical basis of our inverse algorithm. For this we note that the
operators and the right-hand side g depend on the boundary curve ∂D.

Theorem 10. For a given incident field ui and a given far field pattern u∞, assume
that ∂D and the density ϕ satisfy the system

ϕ−K′ϕ− ik
(

λ − d
ds

µ
d
ds

)
Sϕ = g (35)

and
S∞ϕ = u∞ (36)

where g is given in terms of the incident field by (15). Then ∂D solves the inverse
shape problem.

The ill-posedness of the inverse shape problem is reflected through the ill-posed-
ness of the second equation (36), the far field equation that we denote as data equa-
tion). Note that the system (35)–(36) is linear with respect to the density ϕ and
nonlinear with respect to the boundary ∂D. This opens up a variety of approaches to
solve (35)–(36) by linearization and iteration. In this paper, we are going to proceed
as follows. Given an approximation for the unknown ∂D we solve the equation (35)
that we denote as field equation for the unknown density ϕ . Then, keeping ϕ fixed
we linearize the data equation (36) with respect to the boundary ∂D to update the
approximation.

To describe this in more detail, we also need the parameterized version

S̃∞ : H
1
2 [0,2π]→ L2(S1)

of the far field operator given by

(S̃∞ψ)(x̂) := γ

∫ 2π

0
e−ik x̂·z(τ) |z′(τ)|ψ(τ)dτ, x̂ ∈ S1. (37)

Then the parameterized form of (35)–(36) is given by

ψ− K̃′ψ− ikλ ◦ z S̃ψ +
1
|z′|

d
dt

µ ◦ z
|z′|

d
dt

S̃ψ = g◦ z (38)
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and
S̃∞(ψ,z) = u∞ (39)

where ψ = ϕ ◦ z.
The Fréchet derivative S̃′∞ of the operator S̃∞ with respect to the boundary curve

z in the direction ζ is given by

S̃′∞(ψ;ζ )(x̂) := γ

∫ 2π

0
e−ik x̂·z(τ)

[
−ik x̂ ·ζ (τ) |z′(τ)|+ z′(τ) ·ζ ′(τ)

|z′(τ)|

]
ψ(τ)dτ

for x̂∈ S1. Then the linearization of (39) at z with respect to the direction ζ becomes

S̃∞ψ + S̃′∞(ψ;ζ ) = u∞ (40)

and is a linear equation for the update ζ .
Now, given an approximation for the boundary curve ∂D with parameterization

z, each iteration step of the proposed inverse algorithm consists of two parts.

1. We solve the well-posed field equation (38) for ψ . This can be done through the
numerical method described in Section 3.

2. Then we solve the ill-posed linearized equation (40) for ζ and obtain an updated
approximation for ∂D with the parameterization z+ ζ . Since the kernels of the
integral operators in (40) are smooth, for its numerical approximation the com-
posite trapezoidal rule can be employed. Because of the ill-posedness the solution
of (40) requires stabilization, for example, by Tikhonov regularization.

These two steps are now iterated until some stopping criterion is satisfied.
In principle, the parameterization of the update is not unique. To cope with this

ambiguity, one possibility that we pursued in our numerical examples is to allow
only parameterizations of the form

z(t) = r(t)(cos t,sin t), 0≤ t ≤ 2π, (41)

with a non-negative function r representing the radial distance of ∂D from the ori-
gin. Consequently, the perturbations are of the form

ζ (t) = q(t)(cos t,sin t), 0≤ t ≤ 2π, (42)

with a real function q. In the approximations we assume r and its update q to have
the form of a trigonometric polynomial of degree J, in particular,

q(t) =
J

∑
j=0

a j cos jt +
J

∑
j=1

b j sin jt. (43)

Then the update equation (40) is solved in the least squares sense, penalized via
Tikhonov regularization, for the unknown coefficients a0, . . . ,aJ and b1, . . . ,bJ of
the trigonometric polynomial representing the update q. As experienced in the ap-
plication of the above approach for related problems, it is advantageous to use an
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H p Sobolev penalty term rather than an L2 penalty in the Tikhonov regularization,
i.e, to interpret S̃′∞ as an ill-posed linear operator S̃′∞ : H p[0,2π]→ L2(S1) for some
small p ∈ N.

As a theoretical basis for the application of Tikhonov regularization from [9] we
cite that, after the restriction to star-like boundaries of the form (42, the operator S̃′∞
is injective if k2

0 is not a Neumann eigenvalue for the negative Laplacian in D.
The above algorithm has a straightforward extension for the case of more than

one incident wave. Assume that ui
1, . . . ,u

i
M are M incident waves with different inci-

dent directions and u∞,1, . . . ,u∞,M the corresponding far field patterns for scattering
from ∂D. Given an approximation z for the boundary we first solve the field equa-
tions (38) for the M different incident fields to obtain M densities ψ1, . . . ,ψM . Then
we solve the linearized equations

S̃∞ψm + S̃′∞(ψm;ζ ) = u∞,m, m = 1, . . . ,M, (44)

for the update ζ by interpreting them as one ill-posed equation with an operator
from H p[0,2π] into (L2(S1))M and applying Tikhonov regularization.

The numerical examples are intended as proof of concept and not as indications
of an already fully developed method. In particular, the regularization parameters
and the number of iterations are chosen by trial and error instead of, for example,
a discrepancy principle. In all examples, to avoid committing an inverse crime the
synthetic far field data are obtained by solving the integral equation for the combined
single- and double-layer approach whereas the inverse solver is based on the single-
layer approach.
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Fig. 1 Reconstruction of the apple (27) for exact data after 30 iterations (left) and for 5% noise
after 10 iterations (right).

For both examples the impedance functions are given by (29). The number of
quadrature points is 2n = 64 both on the boundary curve and on the circle for the
far field pattern. The wave number is k = 2. The degree of the polynomials (43) is
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chosen as J = 4 and the regularization parameter for an H2 regularization of the
linearized data equation (40) is α = 0.05× 0.9m for the m-th iteration step. For
the perturbed data, random noise is added point wise with relative error in the L2

norm. The iterations are started with an initial guess given by a circle of radius 0.6
centered at the origin. In both examples we used two incident waves, for the apple
shape the incident directions are d = (±1,0) and for the peanut shape d = (0,±1).
In the figures the exact ∂D is given as dotted (magenta), the reconstruction as full
(red) and the initial guess as dashed (blue) curve.
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Fig. 2 Reconstruction of the peanut (28) for exact data after 30 iterations (left) and for 5% noise
after 10 iterations (right).

6 Solution of the Inverse Impedance Problem

Turning to the solution of the inverse impedance problem, we note that we can
understand the data equation (36) as its main basis. Knowing the boundary ∂D,
assuming again that k2 is not a Dirichlet eigenvalue for the negative Laplacian in D
we can represent us from u∞ as a single-layer potential with density ϕ on ∂D. In
order to attain the given far field pattern the density has to satisfy

S∞ϕ = u∞. (45)

Once the density ϕ is known, the values of u and ∂ν u, i.e., the Cauchy data of u on
the boundary can be obtained through the jump relations

u|∂D = ui|∂D +
1
2

Sϕ (46)
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and
∂u
∂ν

∣∣∣∣
∂D

=
∂ui

∂ν

∣∣∣∣
∂D

+
1
2

K′ϕ− 1
2

ϕ. (47)

For the numerical solution of (45) and the evaluation of (46) and (47) the approxi-
mations of the integral operators described in Section 3 are available. The derivative
of u|∂D with respect to s can be obtained by trigonometric differentiation. Knowing
the Cauchy data on ∂D we now can recover the impedance functions µ and λ from
the boundary condition (2).

The uniqueness result of Theorem 7 suggests that we need three incident plane
waves with different directions leading to three far field patterns u∞,1,u∞,2,u∞,3 to
reconstruct λ and µ . Solving the corresponding data equations (45) by Tikhonov
regularization and using (46) and (47), we obtain three Cauchy pairs u1,∂ν u1 and
u2,∂ν u2 and u3,∂ν u3 for which we can exploit the boundary condition to construct
µ and λ . For this we proceed somewhat differently than in [5] and mimic the idea
of the proof of Theorem 7.

Multiplying the impedance condition (2) for u1 by u2 and the impedance condi-
tion for u2 by u1 and subtract we obtain

ik
d
ds

µ

(
u1

du2

ds
−u2

du1

ds

)
= u1

∂u2

∂ν
−u2

∂u1

∂ν
on ∂D.

From this it follows that

ikµ

(
u1

du2

ds
−u2

du1

ds

)
= I

{
u1

∂u2

∂ν
−u2

∂u1

∂ν

}
+C12 on ∂D (48)

where C12 is a complex constant and I denotes integration over ∂D from a fixed
x0 ∈ ∂D to x ∈ ∂D. Proceeding the same way with the two other possible com-
binations of u2 and u3 and of u3 and u1 we obtain two analogous equations with
two more constants C23 and C31. We approximate the unknown (parameterized)
impedance function µ by a trigonometric polynomial of degree J and collocate the
parametrized three equations of the form (48) at the 2n collocation points t j = jπ/n,
j = 1, . . . ,2n. The resulting linear system of 6n equations for the (2J + 1) Fourier
coefficients of µapprox and the three integration constants C12,C23,C31 then is solved
in the least squares sense.

Having reconstructed µ , the remaining coefficient λ can be obtained from the
impedance condition for any of the three functions u1, u2, or u3. For symmetry, ap-
proximating the unknown function λ also by a trigonometric polynomial of degree
J we collocate the boundary condition (2) for all three solutions u1, u2, and u3 and
solve the resulting linear system of 6n equations for the (2J+1) Fourier coefficients
of λapprox in the least squares sense.

For both our numerical examples the impedance functions are given by (29).
The wave number is k = 1 and the three incident directions are d = (1,0) and d =
(cos2π/3,±sin2π/3). As in the examples of Section 4 the number of quadrature
points is 2n= 64 on each curve. The integration I is approximated by trigonometric
interpolation quadrature. The degree of the polynomials for the approximation of
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the impedance functions is chosen as J = 2 . We approximate the density ϕ via H2

Tikhonov regularization of (45) by a trigonometric polynomial of degree Jϕ = 12.
The regularization parameter α is chosen by trial and error as αexact = 10−10 and
αnoise = 10−5.
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Fig. 3 Reconstruction of the impedance functions for the ellipse (49) for exact data (left) and 1%
noise (right).

Fig. 3 and Fig. 4 show the reconstruction of the impedances for an ellipse with
parametrization

z(t) = (cos t,0.7sin t), 0≤ t ≤ 2π, (49)

and for the peanut (28). The exact µ is given as dotted (magenta) curve and the
reconstruction as full (red) curve, the exact λ is dashed-dotted (green) and the re-
construction dashed (blue). In general, the examples and our further numerical ex-
periments indicate that the simultaneous reconstruction of both impedance functions
is very sensitive to noise.
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Fig. 4 Reconstruction of the impedance functions for the peanut (28) for exact data (left) and 1%
noise (right).
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In conclusion, we note that we have presented a method for the reconstruction
of the shape (for known impedance functions) and a method for the reconstruction
of the impedance functions (for known shape). Further research is required for the
solution of the full inverse problem by simultaneous linearization of the system (35)
and (36) with respect to both the shape and the impedance analogous to [4].
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