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Abstract

For the solution of the scattering problem for time-harmonic elec-
tromagnetic waves with boundary conditions for the normal compo-
nents of both the electric and the magnetic field an integral equation
method proposed by Gülzow in 1988 is reconsidered. It is made more
concise, made symmetric with respect to the electric and magnetic
field, and also extended from the classical Hölder spaces to a contem-
porary Sobolev space setting. For this regime, new reciprocity princi-
ples for scattering of plane waves and dipole fields are established and
a related far field operator is discussed. Finally, the corresponding in-
verse scattering problem to recover the shape of the scatterer from far
field data is discussed with the main emphasis on uniqueness results.

1 Introduction

The propagation of time-harmonic electromagnetic waves in a homogeneous
isotropic medium in R3 is described by the reduced Maxwell equations

curlE − ikH = 0, curlH + ikE = 0. (1.1)

for the electric field E and the magnetic field H and a positive wave number
k. For the scattering of a given electromagnetic wave Ei, H i by a scatterer
described by a bounded domain D ⊂ R3 with boundary ∂D and exterior
unit normal vector ν in addition to the classical boundary conditions such
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as the perfect conductor and the impedance conditions, in 1956 Rumsey [22]
suggested a boundary condition of the form

ν · E = ν ·H = 0 on ∂D (1.2)

for the total wave E = Ei+Es, H = H i+Hs with the scattered wave Es, Hs

required to satisfy the Silver–Müller radiation condition

lim
r→∞

[Hs(x)× x− rEs(x)] = 0 (1.3)

where r = |x| and where the limit is assumed to hold uniformly in all direc-
tions x/|x|. Uniqueness of a solution for a simply connected scatterer D was
settled in 1970 by Yee [24]. Existence of a solution by a boundary integral
equation method was established in 1986 by the author [12] based on well-
posed equations of the second kind and by Gülzow [8], one of the author’s
PhD students, in his thesis by a well-posed hypersingular integral equation
of the first kind. The analysis in [8, 12] also covers the case of multiply
connected scatterers.

The work in [8, 12] has been cited a number of times within the last
decade both in the engineering and the mathematics literature. For brevity
the term DB boundary conditions for (1.2) was introduced by Lindell and
Sihvola [14, 15, 16, 17] who also investigated its relations to metamaterials.
The DB boundary conditions also occurred in the context of electromagnetic
cloaking (see [23, 25]). Weighted more on the analysis side, in 2010 Epstein
and Greengard [4] presented an alternative well-posed integral equation of
the second kind to the DB boundary conditions in the frame work of Debye
sources. In 2011, Markkanen, Ylä-Oijala, and Sihvola [19] provided a fur-
ther integral equation approach based on the Stratton–Chu representation
formulas for the Maxwell equations.

These recent investigations motivated the author, after almost 35 years,
to pick up on this topic again and, in particular, extend some of the analysis
related to inverse scattering problems with the perfect conductor boundary
condition to the case of the DB boundary conditions.

The plan of the paper is as follows. In Section 2 we begin with a careful
description of Gülzows boundary integral equation approach in a classical
Hölder space setting and include some improvements and additions. Then
we proceed in Section 3 with the extension of the analysis into a Sobolev
space setting with the appropriate energy spaces for the Maxwell equations.
This then is followed in Section 4 by the investigation of the scattering of
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plane electromagnetic waves and of electromagnetic dipole fields. The main
result of this section will be two reciprocity principles. One of them will be
used for the analysis of the far field operator which is defined as an integral
operator on the L2 space of tangential fields on the unit sphere with the
kernel given by the electric far field pattern of the scattered wave with the
incident direction and the observation direction as its two variables. The
other reciprocity principle plays a role in Section 5 which has as its topic
uniqueness results for the inverse problem to determine the shape of the
scatterer from far field patterns for plane wave scattering. Reflecting the
previous analysis, in the final Section 6 proposals are made for two types of
solution methods based either on the integral equations of Sections 2 and 3
or on the far field operator as introduced in Section 4.

2 The exterior DB boundary value problem

We begin with a review of uniqueness and existence of the solution to the elec-
tromagnetic scattering problem with DB boundary conditions in the classical
Hölder space setting following the approach by Gülzow and simultaneously
making it more concise. After renaming the unknowns, this scattering prob-
lem is a special case of the following exterior boundary value problem. We
assume that D ⊂ R3 is a bounded domain with a connected C2,α, 0 < α < 1,
boundary ∂D and exterior unit normal vector ν and confine ourselves to the
case where D is simply connected. Then the exterior DB boundary value
problem is finding a solution E,H of the Maxwell equations (1.1) belonging
to C0,α(R3 \D)∩C1(R3 \ D̄) satisfying the Silver–Müller radiation condition
(1.3) and the boundary conditions

ν · E = f and ν ·H = g on ∂D (2.1)

for given functions f, g in C0,α(∂D). Clearly, by Stokes’ integral theorem f, g
have to fulfill ∫

∂D

f ds =

∫
∂D

g ds = 0 (2.2)

as necessary solvability conditions.
The following consequence of the homogeneous DB boundary conditions

will play a central role in the following analysis including also the uniqueness
of a solution. Therefore we promote it to the rank of a lemma.
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Lemma 2.1 Assume that E,H is a solution to the Maxwell equations in
C0,α(D̄)∩C1(D) or in C0,α(R3 \D)∩C1(R3 \ D̄) satisfying ν ·E = ν ·H = 0
on ∂D. Then there exist ϕ, ψ ∈ C1,α(∂D) such that

ν × E = −ν ×Gradϕ and ν ×H = ν ×Gradψ (2.3)

and we have that∫
∂D

ν · (E ×H) ds =

∫
∂D

ν · (E × H̄) ds = 0. (2.4)

Proof. We begin by noting that for the surface divergence Div of tangential
fields on ∂D by the continuity of curlE = ikH up to the boundary we may
use the vector identity

Div(ν × E) = −ν · curlE (2.5)

(see [3, Section 6.3]). On the simply connected surface ∂D, by the Hodge
decomposition (see [9]) we can express

ν × E = Gradχ− ν ×Gradϕ on ∂D

with two scalar functions ϕ, χ ∈ C1,α(∂D) and the surface gradient Grad.
From this, noting that

Div(ν ×Gradϕ) = 0 (2.6)

and using (2.5), the first Maxwell equation and the homogeneous boundary
condition for H we obtain that

Div Gradχ = Div(ν × E) = −ik ν ·H = 0 on ∂D.

By the the Gauß surface divergence theorem we have that∫
∂D

{
χ̄Div Gradχ+ |Gradχ|2

}
ds =

∫
∂D

Div(χ̄Gradχ) ds = 0,

and from this we obtain that χ = const. Thus we have ν×E = −ν×Gradϕ
and analogously ν×H = ν×Gradψ with ψ ∈ C1,α(∂D). As consequence of
(2.6) we have

Div[ψ(ν ×Gradϕ)] = Gradψ · (ν ×Gradϕ) = ν · (Gradϕ×Gradψ)

and the integrals in (2.4) vanish by the Gauß surface divergence theorem. �

We note that instead of appealing to the Hodge decomposition we could
validate the representations in (2.3) also with the help of Stokes’ integral
theorem as done in [12] (which, of course, is connected to the Hodge theory).
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Theorem 2.2 The exterior DB boundary value problem has at most one
solution.

Proof. Assume that E,H solve the homogeneous exterior DB boundary value
problem. Then by (2.4) we have

∫
∂D
ν · (E × H̄) ds = 0 and this implies

E = H = 0 by Theorem 6.11 in [3] as a consequence of the radiation condi-
tion (1.3). �

At this point we mention that in the case of a multiply connected domain
D with topological genus p in order to ensure uniqueness circulations for E
and H have to be prescribed with respect to p closed curves that form a basis
of the first homology group of R3 \D (see [12]).

For the existence analysis, in terms of the fundamental solution

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y,

to the Helmholtz equation in R3 following [3, Section 3.1] we introduce the
classical boundary integral operators in scattering theory given by the single-
and double-layer operators

(Sϕ)(x) := 2

∫
∂D

Φ(x, y)ϕ(y) ds(y) (2.7)

and

(Kϕ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) (2.8)

and the normal derivative of the double-layer potential

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) (2.9)

for x ∈ ∂D. We note that S and K are bounded operators from C0,α(∂D)
into C1,α(∂D) and consequently compact from C1,α(∂D) into C1,α(∂D) by
the compact embedding of C1,α(∂D) into C0,α(∂D). The operator T is
bounded from C1,α(∂D) into C0,α(∂D). The single-layer potential defines
a bounded linear operator from C0,α(∂D) into C1,α(D̄) and into C1,α(R3 \D)
and the double-layer potential is bounded from C1,α(∂D) into C1,α(D̄) and
into C1,α(R3 \D) (see Theorems 3.3 and 3.4 in [3]).
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We consider solutions to the Maxwell equations of the form

E(x) = curl curl

∫
∂D

Φ(x, y) ν(y)ϕ(y) ds(y)

−ik curl

∫
∂D

Φ(x, y) ν(y)ψ(y) ds(y),

H(x) =
1

ik
curlE(x), x ∈ R3 \ ∂D,

(2.10)

with scalar functions ϕ, ψ ∈ C1,α(∂D). (In (2.10) we deviate from the work of
Gülzow [8] by the factor of −ik in front of the curl-term in the representation
of E in order to achieve symmetry in the resulting integral equation system.)
In view of curl curl = −∆ + grad div we note that (2.10) implies

H(x) = −ik curl

∫
∂D

Φ(x, y) ν(y)ϕ(y) ds(y)

− curl curl

∫
∂D

Φ(x, y) ν(y)ψ(y) ds(y), x ∈ R3 \ ∂D.

(2.11)

As linear combinations of derivatives of single- and double-layer potentials
the Cartesian components of E and H satisfy the Sommerfeld radiation con-
dition and consequently the Silver–Müller radiation condition by Theorem
6.8 in [3]. With the aid of

curlx[Φ(x, y)ν(y)ϕ(y)] = −ϕ(y) Grady Φ(x, y)× ν(y)

by Stokes’ integral theorem (see Theorem 2.1 in [2]) we conclude that

curl

∫
∂D

Φ(x, ·) νϕ ds = −
∫
∂D

Φ(x, ·) ν ×Gradϕds. (2.12)

Using divx{Φ(x, y)ν(y)} = − grady Φ(x, y)·ν(x) and curl curl = −∆ + grad div
yields

curl curl

∫
∂D

Φ(x, ·) νϕ ds = k2
∫
∂D

Φ(x, ·) νϕ ds− grad

∫
∂D

∂Φ(x, ·)
∂ν

ϕ ds.

(2.13)
From (2.12) and (2.13) by the mapping properties of the scalar single-and
double layer potentials mentioned above we observe that the linear mapping
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from ϕ, ψ to E,H defined by (2.10) is bounded from C1,α(∂D) × C1,α(∂D)
into C0,α(D̄)× C0,α(D̄) and into C0,α(R3 \D)× C0,α(R3 \D). By the jump
relations for the single- and double-layer potentials together with (2.12) and
(2.13) we obtain the jump relations

ν · E± = −1

2
Tϕ+

k2

2
Qϕ+

ik

2
Pψ,

ν × (E+ − E−) = −ν ×Gradϕ,

(2.14)

where
E±(x) := lim

h→+0
E(x± hν(x)), x ∈ ∂D,

and where we have set

Pϕ := ν · S(ν ×Gradϕ) and Qϕ := ν · S(νϕ). (2.15)

Note that the jump for the tangential component in (2.14) we use the tan-
gential derivative of the jump relation for the double-layer potential. (Al-
ternatively, here we can also apply the jump relation for the curl of vector
potentials from [3, Theorem 6.9].) Analogous, we have

ν ·H± =
ik

2
Pϕ+

1

2
Tψ − k2

2
Qψ,

ν × (H+ −H−) = ν ×Gradψ.

(2.16)

From (2.14) and (2.16) we obtain that E,H as given by (2.10) satisfies the
DB boundary conditions for the exterior problem provided the densities ϕ
and ψ solve the equation

A

(
ϕ

ψ

)
= 2

(
f

g

)
(2.17)

with the operator A : C1,α(∂D) × C1,α(∂D) → C0,α(∂D) × C0,α(∂D) given
by

A :=

(
−T + k2Q ikP

ikP T − k2Q

)
. (2.18)

For j = 0, 1, we define

Cj,α
0 (∂D) :=

{
ϕ ∈ Cj,α(∂D) :

∫
∂D

ϕds = 0

}
.
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By construction the operator A is given by the normal components of curls
on ∂D and consequently, by Stokes’ integral theorem its range is contained
in the subspace Y := C0,α

0 (∂D)× C0,α
0 (∂D). Therefore we may consider the

operator A as an operator from X := C1,α
0 (∂D)×C1,α

0 (∂D) into Y . We note
that the right-hand side of (2.17) belongs to Y by the necessary solvability
conditions (2.2).

For the operators entering intoA we have that T is bounded from C1,α(∂D)
into C0,α(∂D) and that P and Q are bounded from C1,α(∂D) into C1,α(∂D)
and consequently compact from C1,α(∂D) into C0,α(∂D) due to the compact
imbedding of C1,α(∂D) into C0,α(∂D). The single-layer operator S0 for the
limiting case k = 0 has a bounded inverse S−10 : C0,α(∂D) → C1,α(∂D) and
we have the relation

S0T0 = K2
0 − I (2.19)

with the identity operator I and the limits T0 and K0 of T and K as k tends
to zero (see [13, Section 7.6]). If we define

B :=

(
S0 0

0 S0

)

then the equation (2.18) and

BA

(
ϕ

ψ

)
= 2B

(
f

g

)
(2.20)

are equivalent. Making use of (2.19) we can write

−S0T = I −K2
0 − S0(T − T0).

The operator T − T0 has the same leading singularity as the operator S0

and can be seen to satisfy the assumptions of Theorem 2.7 in [2]. Therefore
T − T0 is bounded from C(∂D) into C0,α(∂D) and consequently compact
from C1,α(∂D) into C0,α(∂D). Hence S0(T − T0) is compact from C1,α(∂D)
into C1,α(∂D). Thus the operator BA : X → B(X) ⊂ C1,α(∂D)×C1,α(∂D)
is of the form identity plus compact and we can apply the Riesz theory, i.e.,
uniqueness for a solution of (2.18) in X applies existence of a solution.

Assume that ϕ, ψ solve the homogeneous from of equation (2.18). Then
the corresponding field (2.10) solves the homogeneous exterior DP boundary
value problem and the uniqueness Theorem 2.2 implies that E = H = 0 in
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R3 \ D̄. By (2.14) and (2.16) we observe that E,H also solve the homoge-
neous DP boundary value problem in D. From [12, Theorem 3.3] we know
that there exists a countable set of positive wave numbers k, called interior
eigenvalues, accumulating only at infinity for which the homogeneous DP
boundary value problem in D has a finite number of nontrivial solutions. If
k is not such an eigenvalue, then we have E = H = 0 in D and (2.14) and
(2.16) imply that Gradϕ = Gradψ = 0 on ∂D. From this, in view of the
definition of C1,α

0 (∂D), we obtain injectivity of A on C1,α
0 (∂D) × C1,α

0 (∂D).
Consequently, when k is not an interior eigenvalue the operator A is an iso-
morphism from C1,α

0 (∂D) × C1,α
0 (∂D) onto C0,α

0 (∂D) × C0,α
0 (∂D) with the

inverse operator A−1 bounded by the open mapping theorem. From this
we can conclude that the exterior DB boundary value problem is uniquely
solvable and that the linear mapping taking the boundary data f, g onto the
unique solution E,H given by (2.10) is bounded from C0,α(∂D)× C0,α(∂D)
into C0,α(R3 \D)× C0,α(R3 \D).

When k is an interior eigenvalue, for a solution ϕ, ψ to the homogeneous
form of equation (2.17) the field (2.10) is an eigenelement in D and from the
jump relations (2.14) and (2.16) we have

ν × E = ν ×Gradϕ and − ν ×H = ν ×Gradψ on ∂D. (2.21)

Conversely, let (E,H) be a nontrivial solution to the homogeneous DP bound-
ary value problem in D. Then by Lemma 2.1 there exist ϕ, ψ ∈ C1,α(∂D)
such that (2.21) holds, and by the Stratton-Chu formulas (see [3, Theorem
6.1]) we can represent

−E(x) = curl

∫
∂D

Φ(x, ·) ν ×Gradϕds− ik
∫
∂D

Φ(x, ·) ν ×Gradψ ds

and

−H(x) = −ik
∫
∂D

Φ(x, ·) ν ×Gradϕds− curl

∫
∂D

Φ(x, ·) ν ×Gradψ ds

for x ∈ D. Letting x approach ∂D and making use of (2.12) and (2.13)
together with ν · E = ν · H = 0 on ∂D it can be seen that ϕ, ψ is in the
null space of A. Thus we have a one-to-one correspondence between the
eigenelements of the interior DB boundary value problem and the elements
of the null space of the operator A.
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We now modify the approach (2.10) for the existence analysis in the case
when k is an interior eigenvalue. The operators S and T are known to be
self-adjoint with respect to the bilinear form

〈ϕ, ψ〉 :=

∫
∂D

ϕψ ds

(see [3, p. 48]). This implies that P and Q also are self-adjoint with respect
to this bilinear form. For Q this is obvious and for P , with the aid of (2.5)
and the Gauß surface divergence theorem, from (2.12) and (2.15) we indeed
obtain∫

∂D

ψPϕds =

∫
∂D

ψDiv[ν × S(νϕ)] ds = −
∫
∂D

Gradψ · [ν × S(νϕ)] ds

=

∫
∂D

S[ν ×Gradψ] · νϕ ds =

∫
∂D

ϕPψ ds.

This all implies that A is self-adjoint with respect to the bilinear form〈(
ϕ1

ψ1

)
,

(
ϕ2

ψ2

)〉
:=

∫
∂D

(ϕ1ψ1 + ϕ2ψ2) ds (2.22)

and that the operators operators BA : X → Y and AB : Y → Y are adjoint
in the dual systems 〈X,B(X)〉 and 〈Y, Y 〉 generated by this bilinear form.

By the Fredholm alternative for compact operators in dual systems (see [13,
Chapter 4] the equation BAχ = Bξ is solvable if and only if the right hand
side Bξ satisfies 〈Bξ, η〉 = 0 for all η in the null space of AB. This implies
that the equation Aχ = ξ is solvable if and only if its right hand side ξ
satisfies 〈ξ, γ〉 = 0 for all γ in the null space of A.

In order to be able to satisfy this solvability condition we modify the
approach (2.10) as follows. Let Em, Hm, m = 1, . . . , p, be a basis of interior
eigenelements with corresponding elements ϕm, ψm in the null space of A
satisfying ν × Em = ν × Gradϕm and ν × Hm = −ν × Gradψm on ∂D
according to (2.21). Since Em ∈ C0,α(D̄) the volume potentials

Um(x) :=

∫
D

Em(y)Φ(x, y) dy, x ∈ R3

are in C1(R3) and belong to C2(D) with ∆Um + k2Um = −Em in D and
to C2(R3 \ D̄) with ∆Um + k2Um = 0 in R3 \ D̄ (see [6, Section 4.2]). In
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particular, it follows that ν · Um ∈ C0,α(∂D). By Gauß’ integral theorem
using divEm = 0 in D and ν · Em = 0 on ∂D we find

divUm(x) = −
∫
D

Em(y) · grady Φ(x, y) dy −
∫
D

divy{Φ(x, y)Em(y)} dy = 0

for x ∈ R3 \ D̄. Therefore Um and

Vm :=
1

ik
curlUm

solve the Maxwell equations in R3 \ D̄. By Gauß’ integral theorem again and
curlEm = ikHm in D we have that

curlUm(x) = −ik
∫
D

Hm(y)Φ(x, y) dy−
∫
∂D

ν(y)×Em(y) Φ(x, y) ds(y), x ∈ R3,

and from this we observe that also ν · Vm ∈ C0,α(∂D).
We introduce the p× p matrix

w`m :=

〈(
ν · Um
ν · Vm

)
,

(
ϕ`

ψ`

)〉
, `,m = 1, . . . , p, (2.23)

and show that it is invertible. Let βm, ,m = 1, . . . , p, be a solution to the
homogeneous equation

p∑
m=1

w`mβm = 0, ` = 1, . . . , p,

and consider

ϕ :=

p∑
m=1

βmϕm, ψ :=

p∑
m=1

βmψm,

and the corresponding fields E,H,U and V . Then∫
∂D

{ϕν · U + ψ ν · V } ds =

p∑
`,m=1

w`mβmβ` = 0.
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With the aid of Stokes’ theorem, the rules for the spat product, Green’s
vector integral theorem and ∆U + k2U = −Ē in D we compute

k2
∫
∂D

{ϕν · U + ψ ν · V } ds

=

∫
∂D

{ϕν · curl curlU − ikψ ν · curlU} ds

=

∫
∂D

{ν · (curlU ×Gradϕ)− ikν · (U ×Gradψ)} ds

=

∫
∂D

{(ν × E) · curlU − (ν × U) · curlE} ds

=

∫
D

{E∆U − U∆E} dx = −k2
∫
D

|E|2dx.

(Here, for the application of Stokes’ theorem we first integrate over a parallel
surface ∂Dh = {x + ν(x)h : x ∈ ∂D} for sufficiently small h > 0 and then
pass to the limit h→ 0.) From the last two equations we conclude that

p∑
m=1

βmEm = E = 0

in D and this implies βm = 0, m = 1, . . . , p, since the Em are linearly inde-
pendent. Thus the matrix w`m is invertible.

Therefore, by solving the linear system

p∑
m=1

w`mβm =

〈(
f

g

)
,

(
ϕ`

ψ`

)〉
, ` = 1, . . . , p,

we now can determine a unique linear combination

U :=

p∑
m=1

βmUm, V :=

p∑
m=1

βmVm (2.24)

such that the perturbed right-hand side

2

(
f − ν · U
g − ν · V

)
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of (2.17) satisfies the solvability condition for the operator A when k is an
interior eigenvalue. Clearly for U, V given by (2.24) we can estimate

‖ν · U‖0,α + ‖ν · V ‖0,α ≤ C{‖f‖0,α + ‖g‖0,α} (2.25)

for some constant C > 0 given in terms of the inverse of the matrix w`m.
Consequently with a solution ϕ, ψ of the modified equation (2.17) we

obtain a solution to the exterior DB problem by adding the field U, V to the
field given by (2.10). We can make the solution to the modified equation
(2.17) unique by requiring that it belongs to the L2 orthogonal complement
N(A)⊥ in X of the null space of A. By the open mapping theorem the inverse
of this bijective mapping from {χ ∈ X : χ ⊥ N(A)} onto

{F ∈ Y : 〈F,Ψ〉 = 0, Ψ ∈ N(A)}

is bounded.
This way, in view of (2.25) it can be seen that also in the case when k is

an interior eigenvalue, the linear mapping of the boundary data f, g onto the
unique solution E,H of the exterior DB boundary value problem is bounded
from C0,α(∂D)× C0,α(∂D) into C0,α(R3 \D)× C0,α(R3 \D).

So finally we can summarize the results of this section into the following
theorem.

Theorem 2.3 The exterior DB boundary value problem has a unique solu-
tion. The linear mapping from the boundary data onto the solution is bounded
from C0,α(∂D)× C0,α(∂D) into C0,α(R3 \D)× C0,α(R3 \D).

For numerical implementations, unfortunately our approach suffers from
the non-uniqueness issue at the interior eigenvalues. However, it has the
advantage that it only uses the scalar boundary integral operators S and T .
For these, for example, the spectral methods based on spherical harmonics
due to Ganesh, Graham and Sloan [5, 7] are easier to implement than for the
corresponding vector boundary integral operators that occur in the solution
of the perfect conductor scattering problem. To validate this approach for a
particular domain D and wave number k one can utilize a new algorithm for
solving nonlinear eigenvalue problems for integral operators that are analytic
with respect to the eigenvalue parameter, such as the homogeneous form of
the system (2.17) with eigenvalues k, as proposed by Beyn [1]. For the finite
number n of eigenvalues lying in a fixed interval, this method reduces the
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large nonlinear eigenvalue problem to a linear eigenvalue problem of small
size n (see also [3, Section 10.2]).

For an integral equation approach that does not suffer from the non-
uniqueness issue at the interior eigenvalue we refer to [12]. This method
requires the knowledge of a tangential vector c ∈ C1,α(∂D) with

Div c = −ikg (2.26)

which is immediately available in the scattering problem for an incident wave
Ei, H i via

ikg = −ikν ·H i = ν · curlEi = −Div(ν × Ei)

and also can be constructed in a straightforward manner in the general case
(see [12]). Then an auxiliary problem to find a vector field W and a scalar
function u both satisfying the Helmholtz equation in R3\D̄ and the boundary
condition

ν ×W = c,

ν ·W +
∂u

∂ν
+

∫
∂D

u ds = f,

divW − k2u = 0

on ∂D together with the radiation conditions

lim
r→∞

curlW (x)× x+ x divW (x)− ikrW (x)] = 0,

lim
r→∞

gradu(x) · x− ikru(x)] = 0,

where r = |x| and where the limits are assumed to hold uniformly in all
directions x/|x| as in the Silver-Müller radiation condition (1.3). Then

E := W + gradu, H :=
1

ik
curlE

solve the exterior DB boundary value problem. For the auxiliary problem
in [12] an integral equation approach in a Hölder space setting is presented
with uniquely solvable equations for all wave numbers k > 0. However, there
is a price to pay for that since a system of now three integral equations for
a tangential vector field and two scalar functions on ∂D need to be solved.
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3 The DB problem in Sobolev spaces

In this section we briefly indicate how Theorems 2.2 and 2.3 can be extended
to the case of weak solutions in a Sobolev space setting just by tools from
functional analysis and look for solutions in the appropriate energy space

H1
loc(curl,R3 \ D̄) :=

{
E ∈ L2

loc(R3 \ D̄) : curlE ∈ L2
loc(R3 \ D̄)

}
for the Maxwell equations. For detailed descriptions of this Sobolev space
we refer to [10, 20, 21]. By the corresponding trace theorem the tangential
trace ν × E|∂D of a vector field E ∈ H1

loc(curl,R3 \ D̄) is in the trace space
H−1/2(Div, ∂D) defined by the tangential fields on ∂D whose surface diver-
gence in the weak sense belongs to H−1/2(∂D). In view of the identity (2.5)
for smooth fields, this implies that for solutions E,H ∈ H1(curl,R3 \ D̄)
to the Maxwell equations the normal traces ν · E|∂D and ν · H|∂D are well
defined and belong to H−1/2(∂D). Therefore, the DB boundary condition is
well defined in H1

loc(curl,R3 \ D̄) and, accordingly, for the given boundary
values we assume f, g ∈ H−1/2(∂D).

The proof of the uniqueness Theorem 2.2 carries over to the weak case.
For the existence analysis we seek a solution in the form (2.10) with den-
sity functions ϕ, ψ ∈ H1/2(∂D). The scalar single-layer potential defines a
bounded linear operator from H−1/2(∂D) into H1

loc(R3 \ D̄) and the double-
layer potential is a bounded operator from H1/2(∂D) into H1

loc(R3 \ D̄). In
view of (2.12) and (2.13) this implies that the fields in (2.10) define a bounded
operator fromH1/2(∂D)×H1/2(∂D) intoH1

loc(curl,R3\D̄)×H1
loc(curl,R3\D̄).

For the operators entering into A in the Sobolev space setting we have that T
is bounded from H1/2(∂D) into H−1/2(∂D) and that P and Q are bounded
from H1/2(∂D) into H1/2(∂D) and consequently compact from H1/2(∂D)
into H−1/2(∂D). We note that these mapping properties of the single- and
double-layer potentials in the Sobolev spaces can be obtained by purely func-
tional analytic tools from the corresponding mapping properties in Hölder
spaces as stated in the previous section (see Corollaries 3.7 and 3.8 in [3]).
This all implies that E,H defined by (2.10) with densities ϕ, ψ ∈ H1/2(∂D)
satisfy the DB boundary condition with the normal derivatives understood
as traces in H−1/2(∂D) provided the equation (2.17) is satisfied.

Noting that the single-layer operator S0 also has a bounded inverse as
operator from H−1/2(∂D) into H1/2(∂D) the same procedure as in the case
of the Hölder spaces equivalently transfers the equation into the form identity
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plus compact. We now apply the Riesz-Fredholm theory in the dual system

〈C1,α(∂D)× C1,α(∂D), H1/2(∂D)×H1/2(∂D)〉

with the bilinear form (2.22) for the two operators BA on C1,α(∂D) ×
C1,α(∂D) and AB on H1/2(∂D) × H1/2(∂D). Since the two operators are
adjoint with respect to this dual system, by the Fredholm alternative the
dimensions of their null spaces must coincide. Since B is bijective this im-
plies that the null space of A in C1,α(∂D)× C1,α(∂D) and the null space of
A in H1/2(∂D)×H1/2(∂D) must have the same finite dimension and conse-
quently both null spaces must coincide. With this the existence analysis for
the equation (2.17) can be carried over from the Hölder space setting to the
Sobolev space setting.

Analogously to the previous section we define

Hj
0(∂D) :=

{
ϕ ∈ Hj

0(∂D) :

∫
∂D

ϕds = 0

}
for j = ±1/2. Then, when k is not an interior DB eigenvalue A is an

isomorphism from H
1/2
0 (∂D)×H1/2

0 (∂D) onto H
−1/2
0 (∂D)×H−1/20 (∂D) with

the inverse operator A−1 being bounded. We omit the analysis for the case
when k is an interior eigenvalue and finally summarize our considerations
into the following theorem.

Theorem 3.1 In the Sobolev space H1
loc(R3 \ D̄) the exterior DB boundary

value problem possesses a unique solution. The mapping taking the bound-
ary values onto the solution is bounded from H−1/2(∂D) × H−1/2(∂D) into
H1

loc(R3 \ D̄)×H1
loc(R3 \ D̄).

4 Direct DB scattering

We now turn to the scattering of an electromagnetic wave given by a solution
Ei, H i of the Maxwell equations that is C2 smooth in some domain containing
D̄. Combining the Stratton–Chu formulas for the scattered wave Es, Hs

and for the incident wave Ei, H i (and noting that for the incident wave the
Stratton–Chu formula yields zero for points x ∈ R3 \ D̄) for the total wave
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E = Ei + Es, H = H i +Hs we obtain

Es(x) = curl

∫
∂D

ν(y)× E(y) Φ(x, y) ds(y)

− 1

ik
curl curl

∫
∂D

ν(y)×H(y) Φ(x, y) ds(y)

(4.1)

and

Hs(x) =
1

ik
curl curl

∫
∂D

ν(y)× E(y) Φ(x, y) ds(y)

+ curl

∫
∂D

ν(y)×H(y) Φ(x, y) ds(y)

(4.2)

for x ∈ R3 \ D̄. From Lemma 2.1 we know that the boundary condition
ν · E = ν · H = 0 on ∂D implies that ν × E = −ν × Gradϕ and ν × H =
ν × Gradψ with some ϕ, ψ ∈ C1,α(∂D). Inserting this into (4.1) and (4.2)
yields

E(x)− Ei(x) = curl curl

∫
∂D

Φ(x, y) ν(y)ϕ(y) ds(y)

−ik curl

∫
∂D

Φ(x, y) ν(y)ψ(y) ds(y)

(4.3)

and

H(x)−H i(x) = −ik curl

∫
∂D

Φ(x, y) ν(y)ϕ(y) ds(y)

− curl curl

∫
∂D

Φ(x, y) ν(y)ψ(y) ds(y)

(4.4)

for x ∈ R3 \ D̄. Taking the normal component on the boundary ∂D, this
so-called direct approach via the representation formulas leads to the system

A

(
ϕ

ψ

)
= −2

(
ν · Ei

ν ·H i

)
. (4.5)

As typical for the approach via integral equations of the first kind (4.5)
coincides with (2.17) in the particular case of the scattering problem.
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We recall that every solution E,H to the Maxwell equations in R3 \ D̄
satisfying the Silver–Müller radiation condition has the asymptotic form

E(x) =
eik|x|

|x|

{
E∞(x̂) +O

(
1

|x|

)}

H(x) =
eik|x|

|x|

{
H∞(x̂) +O

(
1

|x|

)} (4.6)

as |x| → ∞ uniformly in all directions x̂ = x/|x| where the vector fields
E∞ and H∞ defined on the unit sphere S2 are known as the electric far field
pattern and magnetic far field pattern, respectively. They satisfy

H∞ = ν × E∞ and ν · E∞ = ν ·H∞ = 0 (4.7)

with the unit outward normal ν on S2 (see [3, Theorem 6.9]). There is a
one-to-one correspondence between solutions to the Maxwell equations and
their far field patterns in the sense that a vanishing far field pattern E∞ = 0
on S2 by Rellich’s lemma implies that E = H = 0 in R3 \ D̄ (see [3, Theorem
6.10]). For the far field of (2.10) we note that

E∞(x̂) =
k2

4π
x̂×

∫
∂D

e−ik x̂·y {(ν(y)× x̂)ϕ(y) + ν(y)ψ(y)} ds(y) (4.8)

and

H∞(x̂) =
k2

4π
x̂×

∫
∂D

e−ik x̂·y {ν(y)ϕ(y)− (ν(y)× x̂)ψ(y)} ds(y) (4.9)

for x̂ ∈ S2. Observing that ν(x̂) = x̂ for x̂ ∈ S2 we see that (4.7) is satisfied.
We now consider the scattering of electromagnetic plane waves with in-

cident direction d ∈ S2 and polarization vector p. they are described by the
matrices Ei(x, d) and H i(x, d) that are defined by their multiplication with
the polarization vector as

Ei(x, d)p :=
i

k
curl curl p eik x·d = ik (d× p)× d eik x·d,

H i(x, d)p := curl p eik x·d = ik d× p eik x·d.
(4.10)

Because of the linearity of the direct scattering problem with respect to
the incident field, we can express the scattered waves by matrices Es(x, d)
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and Hs(x, d), the total waves by matrices E(x, d) and H(x, d), and the far
field patterns by E∞(x̂, d) and H∞(x̂, d), respectively. The latter map the
polarization vector p onto the far field patterns E∞(x̂, d)p and H∞(x̂, d)p,
respectively.

Analogously to Theorem 6.30 in [3] we can establish the following reci-
procity result for DB scattering.

Theorem 4.1 The electric far field pattern for the scattering of plane elec-
tromagnetic waves by a DB scatterer satisfies the reciprocity relation

E∞(x̂, d) = [E∞(−d,−x̂)]>, x̂, d ∈ S2. (4.11)

Proof. As in the proof of Theorem 6.30 in [3] from the Gauß integral the-
orem, the Maxwell equations for the incident and the scattered fields, the
radiation condition for the scattered field and the far field representation of
Theorem 6.9 in [3] we find

4π
{
q · E∞(x̂, d)p− p · E∞(−d,−x̂)q

}
=

∫
∂D

{
ν × E(· , d)p ·H(· ,−x̂)q + ν ×H(· , d)p · E(· ,−x̂)q

}
ds

(4.12)

in terms of the total fields E and H. From this the reciprocity relation (4.11)
follows with the aid of Lemma 2.1. �

For the scattering of an electric dipole of the form

Ei
e(x, z)p :=

i

k
curlx curlx pΦ(x, z),

H i
e(x, z)p := curlx pΦ(x, z)

(4.13)

with a polarization vector p ∈ R3 we denote the scattered fields by Es
e(x, z)

and Hs
e (x, z), the total fields by Ee(x, z) and He(x, z) and the far field pat-

terns of the scattered wave by Es
e,∞(x̂, z) and Hs

e,∞(x̂, z).
Analogous to the previous proof, following the proof of Theorem 6.31

in [3] with the aid Lemma 2.1 we can establish the following result connecting
scattering of plane waves and dipole fields.

Theorem 4.2 For scattering of electric dipoles and plane waves we have the
mixed reciprocity relation

4πEs
e,∞(−d, z) = [Es(z, d)]>, z ∈ R3 \ D̄, d ∈ S2. (4.14)
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These reciprocity principles can play a role in a future investigation of
the inverse scattering problem for the DB boundary condition as they did
for the perfect conductor case. We illustrate this by the following analysis
on the far field operator where we define

L2
t (S2) :=

{
g ∈ L2(S2) : ν · g = 0

}
as the space of all tangential L2 vector fields on S2. We note that fields of
the form (4.16) occurring in the following theorem are called electromagnetic
Herglotz pairs.

Theorem 4.3 The far field operator F : L2
t (S2)→ L2

t (S2) defined by

(Fg)(x̂) :=

∫
S2
E∞(x̂, d)g(d) ds(d), x̂ ∈ S2, (4.15)

is injective and has dense range if and only if there exists a solution E,H
of the Maxwell equations in D which satisfies the homogeneous DB boundary
condition on ∂D and is of the form

E(x) =

∫
S2
eik x·da(d) ds(d), H(x) =

1

ik
curlE(x), x ∈ R3, (4.16)

for some a ∈ L2
t (S2).

Proof. We begin by noting the following consequence of the linearity and
well-posedness of the DB scattering problem. For g ∈ L2

t (S2) the solution to
the DB scattering problem for the incident wave

Ẽi(x) =

∫
S2
Ei(x, d)g(d) ds(d), H̃ i(x) =

∫
S2
H i(x, d)g(d) ds(d)

is given by

Ẽs(x) =

∫
S2
Es(x, d)g(d) ds(d), H̃s(x) =

∫
S2
Hs(x, d)g(d) ds(d)

for x ∈ R3 \ D̄ and has the far field pattern

Ẽ∞(x̂) =

∫
S2
E∞(x̂, d)g(d) ds(d), H̃∞(x̂) =

∫
S2
H∞(x̂, d)g(d) ds(d)
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for x̂ ∈ S2. From the reciprocity relation (4.11) it can seen be that the L2

adjoint F ∗ : L2
t (S2)→ L2

t (S2) of F is given by

F ∗g = RFRḡ, (4.17)

where R : L2
t (S2)→ L2

t (S2) is defined by

(Rg)(d) := g(−d).

Hence the operator F is injective if and only if its adjoint F ∗ is injective.
Observing the property N(F ∗)⊥ = F (L2

t (S2)) for bounded operators F in a
Hilbert space it suffices to characterize the null space of F .

From the one-to-one correspondence of Herglotz pairs and their kernel
functions (see [3, Theorem 3.27] and the remark at the beginning of the
proof we have that the existence of a nontrivial g ∈ L2

t (S2) is equivalent
to the existence of a nontrivial Herglotz pair Ẽi, H̃ i (with kernel a = ikg)
for which the electric far field pattern of the corresponding scattered field
Ẽs has vanishing far field pattern Ẽ∞ = 0 on S2. The latter is equiva-
lent to Ẽs = H̃s = 0 in R3 \ D̄. This in turn, by the boundary condition
ν ·Ẽi+ν ·Ẽs = ν ·H̃ i+ν ·H̃s = 0 on ∂D and the uniqueness of the solution to
the exterior DB boundary value problem, is equivalent to ν · Ẽi = ν · H̃ i = 0
on ∂D and the proof is finished. �

Let

un(x) := jn(k|x|)Yn
(
x

|x|

)
where jn is a spherical Bessel function and Yn a spherical harmonic of order
n. In [3, p. 264] it is shown that the electromagnetic spherical wave functions

En := curl {xun(x)} and Hn :=
1

ik
curlEn

provide an electromagnetic Herglotz pair (and the same is true for E = Hn

and H = −En). We have

En(x) = gradun(x)× x

and consequently
ν · En = 0
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and

ik ν ·Hn = (ν · curlEn) = −Div ν × En = RDiv Gradun = −Rn(n+ 1)un

on spheres of radius R centered at the origin. Therefore, if kR is equal to a
zero of the spherical Bessel function jn then k is an interior eigenvalue and
the corresponding eigenfields are Herglotz pairs.

We conclude the analysis of the far field operator with the following result
for which the proof is completely analogous to that of Theorem 6.39 in [3]
for the perfect conductor case with the application of the perfect conduc-
tor boundary condition replaced by Lemma 2.1 similar as in the proof of
Theorem 4.1.

Theorem 4.4 The far field operator F is compact and normal, i.e.,

FF ∗ = F ∗F,

and hence has an infinite number of eigenvalues. Further, the operator

I +
1

2π
F

is unitary.

5 Inverse DB scattering: uniqueness

In the direct scattering problem as discussed in the previous sections, given
the boundary of the scatterer and the incident wave, we want to find the
scattered wave and in particular its behavior at large distances of the scat-
terer which is characterized by the far field pattern. The inverse scattering
problem we want to consider now is to determine the boundary of the scat-
terer from the knowledge of the far field pattern for the scattering of plane
electromagnetic waves of the form (4.10) as incident fields. Our main result
of this section will be the following uniqueness result as analogue of the cor-
responding theorem for scattering from a perfect conductor (see [3, Theorem
7.1]).

Theorem 5.1 Assume that D1 and D2 are two scatterers with DB boundary
condition such that for a fixed wave number k for all plane waves of the form
(4.10) the electric far field patterns for both scatterers coincide for all incident
directions d and all polarizations p. Then D1 = D2.
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Our proof will consist of two parts. In the first step, from the coincidence
of the scattered waves for two scatterers D1 and D2 for all incident plane
waves of the form (4.10) we will deduce that the scattered waves also coincide
for all dipole fields of the form (4.13) with sources located in a point z in
R3 \ (D̄1 ∪ D̄2) as incident waves. Then in the second step, assuming that
D1 6= D2 (and without loss of generality that D1 \ (D̄1 ∩ D̄2) is nonempty),
we will arrive at a contradiction by letting the dipole location z tend to a
boundary point of ∂D1 which does not belong to D̄2. For the first part of the
proof we will provide two alternatives: one proof via approximation of dipole
fields by plane waves in the spirit of the original idea of the uniqueness proof
for acoustic waves by Kirsch and Kress [11] and another and simpler proof
via the mixed reciprocity principle of Theorem 4.2. We will start with the
first possibility where we will need the following lemma.

Lemma 5.2 Let B be a bounded domain with a connected C2 boundary ∂B,
and for z 6∈ B let E1

e , H
1
e be the electric dipole field as given by (4.13) with

polarization p ∈ R3. Then there exists a sequence En, Hn in the span of
electromagnetic plane waves

V := span{Ei(·, d)p,H i(·, d), p) : d ∈ S2, p ∈ R3}

such that En → E, Hn → H, n→∞, uniformly on compact subsets of B.

Proof. We make use of the result of Lemma 3.3 in [11] which states that for
every solution u ∈ C2(B) of the Helmholtz equation there exists a sequence
un in the span of acoustic plane waves

U := span{eik x·d : d ∈ S2}

such that un → u, n→∞, with uniform convergence on compact subsets of
B including the derivatives up to second order. (The lemma in [11] actually
only states convergence up to the first derivatives, but inspection of the proof
shows that we also have convergence for the second and third derivatives.)
Choosing u = Φ(·, z) we obtain

En :=
i

k
curl curl pun → E, Hn :=

1

ik
curlEn → H, n→∞,

which ends the proof. �
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For the proof of Theorem 5.1 we assume that D1 6= D2. Then by Rel-
lich’s lemma we conclude that the scattered waves Es(· ; d, p) coincide for all
directions d and all polarizations p in the unbounded component G of the
complement of D̄1 ∪ D̄2. Choose z ∈ G and consider as incident fields the
dipole fields Ei

e(x, z), H
i
e(x, z), with scattered fields Es

e(x, z), H
s
e (x, z) and far

field patterns Es
e,∞(x̂, z), Hs

e,∞(x̂, z). To show that

Ẽs
1 = Ẽs

2 H̃s
1 = H̃s

2 in G (5.1)

we choose a bounded simply connected C2 domain B with connected bound-
ary ∂B such that D̄1 ∪ D̄2 ⊂ B and that z 6∈ B̄. Then, by Lemma 5.2, there
exists a sequence En, Hn in V such that

En → Ẽi, Hn → H̃ i, n→∞, (5.2)

uniformly on D̄1 ∪ D̄2. Since the En, Hn are linear combinations of plane
waves, the corresponding scattered waves Es

n,1, H
s
n,1 and Es

n,2, H
s
n,2 for the

obstacles D1 and D2 satisfying the boundary conditions

ν · [Es
n,j + En] = ν · [Hs

n,j +Hn] = 0 on ∂Dj, j = 1, 2, (5.3)

coincide in G, that is,

Es
n,1 = Es

n,2 and Hs
n,1 = Hs

n,2 in G. (5.4)

The well-posedness of the exterior DB problem from Theorem 2.3, the bound-
ary conditions (5.3) and the convergence (5.2) imply that

Es
n,j → Ẽs

j , Hs
n,j → H̃s

j , n→∞,

uniformly on compact subsets of G for j = 1, 2. From this and (5.4) the
statement (5.1) follows.

The alternative for proving (5.1) via the mixed reciprocity principle is
straightforward. Coincidence of the far field patterns for plane wave incidence
by Rellich’s lemma implies coincidence of the corresponding scattered fields.
By (4.14) this implies coincidence of the far field patterns for dipole field
incidence and from this in turn again be Rellich’s lemma (5.1) follows.

For the second part of the proof, without loss of generality we assume
there exists x∗ ∈ ∂G such that x∗ ∈ ∂D1 and x∗ 6∈ D̄2. Then we can choose
h > 0 such that the sequence

xm := x∗ +
h

m
ν(x∗), m = 1, 2, . . . , (5.5)
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is contained in G. Consider the fields in (5.1) with z replaced by xm and
polarization p = ν(x∗). Since x∗ 6∈ D̄2, for scattering from D2 we have

‖ν · [H̃ i
e(·;xm)ν(x∗)]− ν · [H̃ i

e(·;x∗)ν(x∗)]‖C1,α(∂D2
→ 0, m→∞,

and the same convergence for Ẽi
e. Therefore, by the well-posedness from

Theorem 2.3 we have that

lim
m→∞

ν(x∗) · [H̃s
n,2(x

∗, xm)ν(x∗)] = ν(x∗) · [H̃s
2(x∗, x∗)ν(x∗)]. (5.6)

On the other hand, from the boundary condition corresponding to the ob-
stacle D1 we find that

|ν(x∗)·[H̃s
2(x∗, xm)ν(x∗)]| = | curl{Φ(x∗, xm)ν(x∗)}| = |1− ik|x

∗ − xm| |
4π|x∗ − xm|2

→∞

as m → ∞. This is a contradiction to (5.1) and (5.6). Therefore D1 = D2

and the proof is complete. �

In addition this uniqueness result for one wave number it is also possible
to prove a uniqueness theorem for fixed incident direction and polarization.

Theorem 5.3 Assume that D1 and D2 are two scatterers with DB boundary
condition such that for plane waves with one fixed incident direction and
polarization the electric far field patterns of both scatterers coincide for all
wave numbers contained in some open interval in (0,∞). Then D1 = D2.

The proof is the same as that for the corresponding result on the perfect
conductor boundary condition in [3, Theorem 7.2]. In the application of
Green’s vector theorem at the end of that proof one has to apply again the
Hodge decomposition and use Lemma 2.1.

For uniqueness with only a few waves we have the following result.

Theorem 5.4 A convex polyhedron with DB boundary condition is uniquely
determined by the electric far field patterns for two incident plane wave of
the same wave number with two pairs of incident directions d1, d2 and polar-
izations p1, p2 such that the planes spanned by d1 × p1 and d2 × p2 are not
parallel.
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The proof is the same as that for the corresponding result on sound soft
acoustic scattering in [3, Theorem 5.5]. The condition of the theorem ensures
that for each plane P in R3 at least one of the two plane waves Ei(·; d1)p1 and
Ei(·; d2)p2 has nonzero normal component on P . It is to be expected that
the theorem remains valid without the simplifying assumption of convexity
as in the perfect conductor case (see [18]).

6 Outlook on solving the inverse problem

Despite the lack of a general uniqueness result for one or a few incident
fields analogous to inverse scattering for the perfect conductor boundary
condition one approach for solving the inverse problem for DB scatterers
can be based on the two equations (4.5) and (4.8) for the unknowns ϕ, ψ
and ∂D, given the incident field Ei, Hi and the (measured) far field pattern
E∞. We call the first equation the field equation and the second the data
equation. The equations are linear with respect to ϕ, ψ and nonlinear with
respect to the main unknown ∂D. There are two immediate options for an
iterative solution. In a first method, given an approximation of the unknown
boundary ∂D one can solve the field equation (4.5) for ϕ and ψ. Then
keeping ϕ and ψ fixed, the ill-posed data equation (4.8) is linearized with
respect to ∂D in order to update the boundary approximation. These two
steps are then iterated. In a second approach, the two equations are solved
by Newton iterations, that is, by linearizing both equations with respect to
all three unknowns. For details on the corresponding methods for the inverse
scattering problem in acoustics and for a perfect conductor we refer to [3].

A different approach using many incident fields are sampling methods
such as the linear sampling method and the factorization method. These are
based on the far field operator F of Section 4 and described, for example,
in [3] for the perfect conductor case.
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