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Chapter 1

Introduction

1.1 Motivation

Solving partial differential equations (PDE) on evolving geometries is a challenging and
useful task. The geometry that has to be treated in applications is often quite com-
plicated. This is for example the case in the simulation of two-phase flows. Here the
interface that separates the two fluids may undergo large deformations. Even topology
changes are possible when droplets emerge. The efficient and accurate simulation of such
phenomena requires the development of novel numerical techniques.

The standard finite element method (FEM) employs a mesh that is fitted to the
geometry. Keeping the mesh conforming to a moving and deforming geometry may
require substantial efforts. Thus, it is interesting to consider unfitted finite element
methods where the mesh is independent of the geometry on which the PDE has to be
solved. Since remeshing procedures are avoided, this approach seems to be a promising
basis for constructing efficient numerical techniques.

Using an unfitted method entails new challenges. Often one chooses to model the
geometry by means of a level set function. This provides a highly accurate, yet implicit
description of the domains on which the integrals arising in the variational formulation
of the PDE have to be calculated. Since the mesh is not fitted to the geometry, an
implementation of such methods thus requires to evaluate integrals on cut elements. The
cut is described only implicitly as the zero set of the level set function. If linear finite
elements are used, then it suffices to compute these integrals with second order accuracy
in order to preserve the accuracy of the whole method. Since this task can be solved
robustly by established methods, most research so far has concentrated on linear finite
elements. However, the extension to higher order elements is not straightforward and
requires new ideas.

In [Leh16] and [LR17], a new approach for high order unfitted finite element methods
has been proposed and analyzed for stationary problems. It is based on a parametric
mapping of the underlying mesh. On simplicial meshes, the image of a piecewise planar
representation of the geometry under this mapping yields a high order accurate descrip-
tion of the geometry. The resulting isoparametric unfitted finite element method has
been shown to allow for error bounds of optimal order.

In this thesis, we start to extend this approach to evolving geometries.
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1.2 Outline of the thesis

As a model problem, we consider a convection diffusion equation on a moving domain.
The first six chapters deal with the development of a higher order isoparametric FEM
for this problem. The main part of the thesis consists of an a priori error analysis for
the derived method (under the assumption of exact geometry handling) and numerical
experiments. In the end, we also outline how the method can be applied to mass transport
problems in two-phase flows and present results of numerical experiments.

The outline of the thesis is as follows:

• In chapter 2 a space-time discretization for the moving domain problem is derived.
For the time stepping we use a discontinuous Galerkin method [Tho97] applied in
an unfitted setting. Here, the space-time domain is partitioned into time slabs. We
define a finite element space on these time slabs and derive a variational formulation
which allows to solve the problem time slab per time slab.

In this chapter it is assumed that all the arising integrals can be calculated exactly.
A description how we achieve higher order geometrical accuracy in practice will be
given in chapter 4.

• In chapter 3 an a priori error analysis for the method from chapter 2, which assumes
exact geometry handling, is carried out. We combine stability, consistency and
continuity to derive a Céa-like result. The formulation of the method involves a
finite element space on the time slabs. For proving an a priori error estimate a
suitable interpolation operator into these spaces is constructed. Making use of the
interpolation results we arrive at an error estimate in a discrete norm which is
anisotropic in the time step and the spatial mesh width.

• The previous two chapters assumed an exact handling of the geometry, which is
unattainable in practice. Thus, chapter 4 deals with the extension of the isopara-
metric method from [LR17] to the instationary case. We derive a space-time version
of the parametric mapping from [LR17]. Then it is shown how the finite element
spaces and the variational formulation on the time slabs need to be adapted in
order to benefit from the higher order accurate geometry description provided by
the parametric mapping. This results in an isoparametric unfitted space-time dis-
cretization.

• Some aspects regarding the implementation of the method are discussed in chapter
5. One of them is how the integration on space-time domains that are implicitely
described by a level set function is carried out. The higher order accurate, isopara-
metric method for stationary problems from [LR17] allows to reduce all the arising
integrals to a reference configuration which is described by a piecewise linear approx-
imation of the level set function. The situation for the extension to the space-time
case is similar.

• In chapter 6 the method is tested for two different moving domains. The results
of the numerical experiments are compared to the a priori error estimate derived
in chapter 3. The observed rates are better than guaranteed by the derived error
estimate.
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• Chapter 7 illustrates how the method can be applied to mass transport problems
in two-phase flows. The conditions at the fluid interface are imposed by means of
the Nitsche technique (see [Nit71],[HH02] and [RN09]). We derive the method but
do not provide an analysis.

• In chapter 8 numerical experiments for two-phase interface problems are presented.
As test cases a moving plane and a moving circle are considered.

• We conclude in chapter 9 with a summary of the thesis. Open problems will be
discussed and we propose directions for further research.
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Chapter 2

Space-time discretization for a
moving domain problem assuming
exact geometry handling

This chapter starts by introducing the main model problem which is considered in this
thesis. Then we derive a variational formulation for this problem. Time and space
variables are treated similarly in this formulation. Moreover, our method is unfitted, i.e.
the geometry does not fit to the mesh. We assume an exact handling of the geometry in
this chapter. This includes that all the arising integrals can be calculated exactly. This
assumption will be dropped in chapter 4, where it is described how we achieve higher
order geometrical accuracy in practice. To this end, we use an isoparametric finite element
method and an adapted variational formulation. These aspects will be introduced later
in chapter 4.

2.1 Model problem

Let Ω(t) ⊂ Rd for d ∈ {1, 2, 3} be a time-dependent domain whose evolution is driven
by a divergence-free convection field w (see Figure 2.1). This domain Ω(t) contains a
quantity whose concentration is modelled by a scalar field u(x, t). We assume that the
concentration fulfills a convection-diffusion equation inside Ω(t). Moreover, we suppose
that the quantity contained inside the time-dependent domain does not flow out over the
boundary, ∇u · n∂Ω(t) = 0, where n∂Ω(t) denotes the outer normal vector to Ω(t). Given
the evolution of the domain Ω(t) and the initial concentration u0(x) at t = 0 the task is
then to compute the concentration u(x, t) for t > 0. So the problem is:

∂tu−∆u+ w · ∇u = f in Ω(t), t ∈ [0, T ],

∇ ·w = 0 in Ω(t), t ∈ [0, T ],

∇u · n∂Ω = 0 on ∂Ω(t), t ∈ [0, T ],

u(·, t = 0) = u0 in Ω(t = 0).

(2.1)

Remark 1. In principle it is possible that the quantity contained inside Ω(t) exerts a
pressure on ∂Ω(t). Furthermore, one could take the surface tension as a counteracting
force into account. This is for example the case in an osmotic cell swelling problem,
where the evolution of the cell is determined by these two forces. In this thesis we neglect
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Ω(t2)

Ω(t1)
Ω̃

∂Ω(t1)

∂Ω(t2)
w

Figure 2.1: The domain moving from t1 to t2 with t2 > t1.

these complications and assume that the velocity of the boundary in normal direction Vn
is solely determined by the given convection field, that is Vn = w · n.

2.2 Space-time discretization

The problem will be treated by an unfitted space-time DG method. In order to avoid
d + 1-dimensional complexity for the arising algebraic systems, the space-time domain
will be divided into so called time slabs. To this end, let 0 < t1 < . . . < tN−1 < tN
be a partition of the time domain into time intervals In = (tn−1, tn]. For simplicity of
presentation, the time intervals are of constant size ∆t = tn − tn−1. We introduce the
time slab Qn := ∪t∈InΩ(t)× {t}. The whole space-time domain is then given by the
union over the time slabs Q = ∪Nn=1Q

n. The spatial domain at a fixed time Ω(tn) will
sometimes be abbreviated by Ωn = Ω(tn). Further, we define the space-time boundary
Γ∗ := ∪t∈(0,T ]∂Ω(t)× {t} and its restriction to the time slab Γn∗ := ∪t∈In∂Ω(t)× {t}.

Next we will derive a variational formulation on the time slabs Qn which allows to
solve the problem time slab per time slab. This leads to the variational structure of a
time-stepping scheme. This requires a finite element space Wn on the time slabs Qn. To
define this space some preparations are necessary.

Let Ω̃ be a larger, time independent, polygonal background domain that contains Ω(t)
for all times t. The time slabs Qn are then contained in Q̃n = Ω̃× In and Q is a subset
of Q̃ = ∪Nn=1Q̃

n. Let T̃h
n

be a shape-regular triangulation of the background domain
Ω̃. In this thesis we will only work with simplicial meshes. The index n indicates that
the triangulation is in principle allowed to change between the time slabs. However, for
ease of presentation, we restrict here to the case of a fixed triangulation T̃h

n
= T̃h on

every time slab n = 1, . . . , N . The extension to non-matching triangulations poses no
major difficulties. The elements T of the spatial mesh and the time interval In form the
space-time prisms Qn

T = T × In. Let V ks
h be a standard finite element space of order ks

on the mesh T̃h, i.e.

V ks
h := {v ∈ H1(Ω̃) | v�T ∈ Pks(T ) ∀ T ∈ T̃h},
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Figure 2.2: Sketch of different domains on the time slab: Here we denote by ω(Qn) the
space-time prisms that are involved in the stabilization term, i.e. ω(Qn) = ∪F∈F∗,nR

ωF×In.

where Pks(T ) denotes the space of polynomials up to degree ks on the simplex T .
We define an extension operator E that extends the domain Qn onto a domain with

a tensor product structure within each time slab

E(Qn) := {x ∈ T for some T ∈ T̃h with Qn
T ∩Qn 6= ∅}. (2.2)

Let then E(Q) = ∪Nn=1(E(Qn)).
We further introduce an operator which restricts the domain Qn onto a domain with

a tensor product structure within each time slab

I(Qn) := Qn \ E((Q̃× In) \Qn).

Then we introduce purely spatial counterparts

I(Ωn) such that I(Ωn)× In = I(Qn),

E(Ωn) such that E(Ωn)× In = E(Qn).

Here E(Ωn) might extend into regions where elements are not touched by Ωn at time tn.
The different domains on the time slab are sketched in Figure 2.2 for the spatially one-
dimensional case. Figure 2.4 provides an illustration of E(Ωn) for two spatial dimensions.

Now we define the ansatz space Wh = {v : E(Q)→ R | v�E(Qn) ∈ Wn} with Wn defined
as

Wn := {v : E(Qn)→ R | v(x, t) =
kt∑
m=0

tmφm, φm ∈ V ks
h (E(Ωn))}. (2.3)

Here V ks
h (E(Ωn)) denotes the restriction of V ks

h to the so called active mesh E(Ωn). Note
that Wh contains functions that may be discontinuous between the time slabs.
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tn

tn−1

Γ∗
Γ∗

Qn+1

Qn

Qn−1

t

un+

un−1
+

un−1
−

Figure 2.3: DG in time: The functions in Wh may be discontinuous between the time
slabs. This means that the limit un−1

− coming from below might not agree with the limit
un−1

+ coming above on Ωn−1.

To derive the variational formulation, we multiply the PDE with a function v ∈ Wn

and integrate overQn. Due to homogeneous Neumann boundary conditions an integration
by parts of the diffusion term then leads to:

(∂tu+ w · ∇u, v)Qn + (∇u,∇v)Qn = (f, v)Qn .

This equation, posed for all v ∈ Wn, is not sufficient to specify the solution on the time
slab since it does not involve an initial condition. There are different ways to include
information from the previous time slab. One of them is to recognize that the time
derivative acts as a convection term in the space-time domain Qn. In this sense Ωn−1 ×
{tn−1} is the inflow boundary of Qn where inflow information has to be provided. Here
one adds upwind stabilization to impose weak continuity in time :

(
JuKn−1, vn−1

+

)
Ωn−1 .

The terms vn−1
± are defined as the limits in time from above respectively below vn−1

± :=
lims→0 v(·, tn−1 ± s). An illustration is given in Figure 2.3. The bracket denotes the
jump over the time boundary JuKn−1 := un−1

+ − un−1
− . The term un−1

− is known from the
previous time slab and can be shifted to the right hand side. This leads to the variational
formulation:

Find u ∈ Wn such that

(∂tu+ w · ∇u, v)Qn +(∇u,∇v)Qn +
(
un−1

+ , vn−1
+

)
Ωn−1 = (f, v)Qn +

(
un−1
− , vn−1

+

)
Ωn−1 (2.4)

for all v ∈ Wn holds.
The equation will be treated by an unfitted method. That is, the mesh is not fitted to

∂Ω(t). A major advantage of this approach is that one can work with a simple background
mesh that does not need to be changed during the time evolution. In particular, possibly
expensive remeshing procedures are avoided.

Unfortunately, the unfitted approach also gives rise to some difficulties. One of them
is how to control the norm of the solution on the elements which are cut by the boundary
∂Ω(t). Certain inverse inequalities that are known from the fitted case are not valid
anymore in this situation. In order to resolve this difficulty we will add a stabilization term
jnh (u, v) to the variational formulation. It will allow us to regain control of the solution on
the whole computational domain and essentially carry over the inverse inequalities from
the fitted case. To this end, it is necessary to introduce some further notation.

Let F = {F} be the set of spatial facets of T̃h. The relevant facets for the stabilization
are then given by

F∗,nR := {F ∈ F : F = T1 ∩ T2, T1 ∈ E(Ωn) \ I(Ωn), T2 ∈ E(Ωn)}.
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The corresponding facet-patches are defined as

ωF := T1 ∪ T2, F ⊂ ∂Ti, i = 1, 2. (2.5)

An illustration is given in Figure 2.2 for d = 1 and in Figure 2.4 for d = 2.
Then, we define the stabilization term

jnh (u, v) :=

tn∫
tn−1

γ̃J(∆t, h)
∑

F∈F∗,nR

∫
ωF

1

h2
JuKωF

JvKωF
dx dt, (2.6)

for discrete functions u, v ∈ Wh. Here, JuKωF
is used to denote the jump on the facet patch

and is defined in the following way: Let ωF = T1 ∪ T2 and denote by ui the restriction
of u to the element Ti for i = 1, 2. These polynomials have a canonical extension to the
neighboring elements, e.g. the polynomial u1(x) can be evaluated at x ∈ T2. This allows
to define

JuKωF
(x) := v1(x)− v2(x) for x ∈ ωF .

The scaling factor γ̃J(∆t, h) := γJ ·
(
1 + ∆t

h

)
will be motivated in chapter 3. Its main

function is to compensate for an anisotropic choice of the spatial mesh width and the
time step. For ∆t ∼ h we have γ̃J(∆t, h) = O(1).

Remark 2 (Relation of stabilization term to literature). There are (at least) two ways
discussed in the literature on unfitted methods to gain control of the norm on cut elements.
The most popular one is a stabilization based on penalizing jumps of normal derivatives
over element facets (e.g. [BH12]). The relation between this stabilization and the one used
here will be discussed in Remark 6. Another option is a local projection type stabilization
which goes back to [BB01] for the fitted case. In the context of unfitted methods it is for
example applied in [Bur10] (section 4) and [BH14]. This stabilization consists of a sum
of integrals over patches ωl (not necessarily associated to a facet) of the form∫

ωl

h−2
ωl

(u− Pωl
u)v dx

for discrete functions u and v. Here, Pωl
u is an L2- projection onto a polynomial on the

patch ωl and hωl
≈ O(h) the diameter of the patch. The stabilization used in this thesis is

similar because it also involves integrals over (facet) patches. However, we do not compare
the functions to their projection, but rather there restrictions to the individual elements
which form the facet patch. Nevertheless, an L2 projection onto the facet patch will show
up later in the analysis while bounding the approximation error of our stabilization (see
Proposition 3.26).

The discrete variational problem on the whole space-time domain is obtained by sum-
ming up over the time slabs:

Find u ∈ Wh such that for all v ∈ Wh there holds

B(u, v) + J(u, v) = f(v) (2.7)

with

B(u, v) :=
N∑
n=1

(∂tu+ w · ∇u, v)Qn +
N∑
n=1

(∇u,∇v)Qn

+
N−1∑
n=1

(
JuKn, vn+

)
Ωn +

(
u0

+, v
0
+

)
Ω0 ,

(2.8)
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J(u, v) :=
N∑
n=1

jnh (u, v),

and

f(v) :=
N∑
n=1

(f, v)Qn +
(
u0, v

0
+

)
Ω0 .

It is useful to define the abbreviations

d(u, v) :=
N∑
n=1

(∂tu+ w · ∇u, v)Qn ,

b(u, v) :=
N−1∑
n=1

(
JuKn, vn+

)
Ωn +

(
u0

+, v
0
+

)
Ω0 ,

a(u, v) :=
N∑
n=1

(∇u,∇v)Qn .

We also introduce variants which we will use later

d′(u, v) :=
N∑
n=1

(u,−∂tv −w · ∇v)Qn ,

b′(u, v) := −
N−1∑
n=1

(
un−, JvK

n
)

Ωn +
(
uN− , v

N
−
)

ΩN .

Lemma 2.1 (Rewriting the bilinear form). For u, v ∈ Wh +H1(Q) there holds

d(u, v) + b(u, v) = d′(u, v) + b′(u, v)

and thus
B(u, v) = d′(u, v) + b′(u, v) + a(u, v). (2.9)

Proof. The alternative representation of the bilinear form is derived by integration by
parts of the space-time convection (∇, ∂t).

For the time derivative one obtains

(∂tu, v)Qn = −(u, ∂tv)Qn +
(
un−, v

n
−
)

Ωn −
(
un−1

+ , vn−1
+

)
Ωn−1 −

tn∫
tn−1

∫
∂Ω(t)

Vnuv dsdt,

where Vn denotes the velocity of the boundary in normal direction.
For the convection term one has

(w · ∇u, v)Qn = −(u,∇ · (wv))Qn +

tn∫
tn−1

∫
∂Ω(t)

w · nuv dsdt

= −(u,w · ∇v)Qn +

tn∫
tn−1

∫
∂Ω(t)

w · nuv dsdt,

9



where it was used that ∇ · (wv) = v∇ ·w + w · ∇v = w · ∇v since w is divergence free.
Now one has that the velocity of the boundary in normal direction coincides with the

convection field: w ·n−Vn = 0, cf. Remark 1. So these two terms cancel and we obtain:

(∂tu+ w · ∇u, v)Qn = (u,−∂tv −w · ∇v)Qn +
(
un−, v

n
−
)

Ωn −
(
un−1

+ , vn−1
+

)
Ωn−1 .

Summation over n = 1, . . . , N leads to

d(u, v) =
N∑
n=1

{
(
un−, v

n
−
)

Ωn −
(
un−1

+ , vn−1
+

)
Ωn−1}+ d′(u, v).

Writing

b(u, v) =
N−1∑
n=1

(
un+ − un−, vn+

)
Ωn +

(
u0

+, v
0
+

)
Ω0

=
N∑
n=1

(
un−1

+ , vn−1
+

)
Ωn−1 −

N−1∑
n=1

(
un−, v

n
+

)
Ωn

and adding this to the expression for d(u, v) from above yields:

b(u, v) + d(u, v) = −
N−1∑
n=1

(
un−, v

n
+ − vn−

)
Ωn +

(
uN− , v

N
−
)

ΩN + d′(u, v)

= b′(u, v) + d′(u, v).

Remark 3 (Mass conservation). Lemma 2.1 can be employed to show that the space-time
DG method is globally mass conserving. Using the characterization of B from (2.9) and
testing with v = 1 in the variational formulation yields:∫

ΩN

u−(·, tN) dx =

∫
Ω0

u0 dx+

∫
Q

f dx. (2.10)

A local version of this mass balance on each time slab is obtained by testing with a function
v that is constant on the time slab Qn and vanishes everywhere else:∫

Ωn

u−(·, tn) dx =

∫
Ωn−1

u−(·, tn−1) dx+

∫
Qn

f dx. (2.11)
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Figure 2.4: The topmost sketch shows the domain Ω(t) at times t = tn−1 and t = tn. In
the middle, one can see the spatial domain E(Ωn) which forms the extended time slab
E(Ωn) × In = E(Qn). The facet patches involved in the stabilization term jnh are shown
in the lowermost sketch. 11



Chapter 3

Error analysis of a space-time
discretization for a moving domain
problem assuming exact geometry
handling

This chapter contains an error analysis for a modified version of the method introduced
in chapter 2. It is assumed that all the arising integrals can be calculated exactly.

The analysis proceeds by an approach that is similar to the error analysis of DG
schemes for linear transport equations. See for example the procedure for the linear
model problem arising from DG methods described in section 1.3 of [DPE12]. First we
define discrete norms. Then we calculate the consistency error and show boundedness
and (discrete) stability. To this end, we need certain inverse estimates that are not auto-
matically guaranteed for unfitted problems. At this point the ghost penalty stabilization
comes into play. It basically allows to carry over the inverse estimates that are known
for the discretization of PDEs on fitted tensor product domains.

Based on the derived properties of the bilinear form we prove a Céa-like result. In
order to carry on, we need to bound the best approximation error of the solution in the
employed space-time finite element spaces. This requires suitable interpolation opera-
tors. We construct these and derive their stability and approximation properties. The
approximation results are then applied to prove an error bound for the method that is
anisotropic in the time step and spatial mesh width as well as the spatial and temporal
polynomial degrees.

3.1 Notation and assumptions

The analysis is based on assumptions A1-A5 which will now be introduced. The first
assumption A1 is related to the use of an unfitted discretization. In order to accomodate
for this assumption, the set of facet patches {ωF | F ∈ F∗,nR } that are used for the
stabilization needs to be expanded. We will first state the assumption and then provide
some explanation in a subsequent remark.

A.1 There exists a mapping (between elements) B : E(Ωn)→ I(Ωn) such that:

– The number of elements T ∈ E(Ωn) that map to a specific element T0 ∈ I(Ωn)
can be bounded independently of h and ∆t, i.e. #(B−1(T0)) ≤ C.

12
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t
tn

tn−1

Γ∗

Γ∗

⊂ E(Ωn) \ I(Ωn) I(Ωn)

x

t
tn

tn−1

Γ∗

Γ∗

⊂ E(Ωn) \ I(Ωn) I(Ωn)

Figure 3.1: Illustration of assumption A.1: The upper sketch shows a basic mesh while
the lower one features a spatial refinement. Elements with the same pattern are mapped
to each other under B : E(Ωn)\I(Ωn)→ I(Ωn). The facets for the stabilization term are
marked in orange.

– For T ∈ E(Ωn)\I(Ωn) let {Ti}Mi=0 be the set of elements that need to be crossed
in order to traverse from TM = T to T0 = B(T ). Then the facets {Ti∩Tj | i, j =
1, . . . ,M ; i 6= j} are contained in F∗,nR . That is, the stabilization encompasses
all facets that are passed while walking from T to T0.

– The thickness of the layer of cut elements is bounded as

#{T ∈ E(Ωn) \ I(Ωn)} ≤ CB

(
1 +

∆t

h

)
(3.1)

with CB independent of h and ∆t.

Remark 4. This assumption arises because we use an unfitted discretization. Here
one needs to control the norm on cut elements T ∈ E(Ωn) \ I(Ωn). Combining
this assumption with the employed stabilization will allow us to bound the norm on
a cut element T against the norm on an uncut element B(T ) = T0 ∈ I(Ωn) plus
stabilization terms. The stabilization needs to be applied on all the facet patches
that need to be crossed in order to traverse from T to T0.

In the analysis, we need bounds on the number of elements #(B−1(T0)) that map
to an element T0 ∈ I(Ωn) and on the thickness of the layer of cut elements #{T ∈
E(Ωn) \ I(Ωn)}. These assumptions are illustrated in Figure 3.1: The upper sketch
shows a given cut situation on a coarse mesh while the lower sketch illustrates the
behavior under mesh refinement. With respect to assumption A.1 the following two
observations can be made:

– On the coarse mesh the boundary Γ∗ on the left cuts through the two elements
with a blue pattern. But on the finer mesh the number of elements that are cut
by this part of the boundary has increased to four. Hence, it is not plausible
to impose a uniform bound on the number of elements that are cut by the
boundary. Requesting a bound of the form (3.1), which imlies an increase with
shrinking mesh size, is a more realistic assumption.

13



– On the other hand, we require a uniform bound on the number of elements
that map under B : E(Ωn) \ I(Ωn)→ I(Ωn) to the same element T0 ∈ I(Ωn).
This assumption is also illustrated in Figure 3.1. Here, the elements T ∈
E(Ωn) \ I(Ωn) and their images B(T ) ∈ I(Ωn) have been drawn with the same
pattern. For example, the element with the blue dots, which is cut by Γ∗, on
the coarse mesh maps to the element with the green dots in I(Ωn). Both on the
coarse and the fine mesh the Figure shows a one-to-one correspondence between
cut elements and their images in I(Ωn). This illustrates that the assumption
#(B−1(T0)) ≤ C for T0 ∈ I(Ωn) is not unrealistic. As mentioned above, this
assumption will be used to bound the norm on a cut element T ∈ E(Ωn)\I(Ωn)
against the norm on B(T ) ∈ I(Ωn). In order to realize this bound, we need
to take into account all the facets that have to be crossed to walk from T to
B(T ) and collect the corresponding stabilization terms. Hoewever, these facets
are not necessarily included in the original definition of the set F∗,nR given
in Chapter 2. For example, on the coarse mesh, only the facet between the
element with the blue dots and the element with the green horizontal lines
would be included in F∗,nR , not the one between the element with the green
horizontal lines and its right neighbor. In practice, this means that we have
to expand the stabilization to a small band inside the domain which includes
approximately as many elements as are cut by the boundary in order to realize
assumption A.1. With respect to the numerical experiments in Chapter 6, we
already mention that this enrichment of F∗,nR has not been applied. Instead
we stick to the original definition of F∗,nR given in Chapter 2 for all numerical
computations.

Finally, we define the scaling factor γ̃J(∆t, h) in equation (2.6) as γ̃J(∆t, h) =
γJ
(
1 + ∆t

h

)
with γJ > 0 independent of ∆t and h. This accounts for the factor

obtained by the bound (3.1).

A.2 We assume ‖w‖∞ is bounded.

A.3 There exists a constant CG > 0 such that h2

∆t
≤ CG.

A.4 The time step is bounded by a constant ∆t ≤ Co.

A.5 The domain Ω(t) for all times t and accordingly the space-time domain Qn are
sufficiently smooth, so that a linear continuous Soobolev extension operator

En : Hk(Qn)→ Hk(E(Qn)), k ∈ N,

exists.

Remark 5. In view of the fact that the spatial triangulation is required to be sufficiently
fine to resolve the moving domain, the assumption A.3 appears to be rather mild. A
reasonable choice for the constant in A.4 is Co = 1.

In the analysis below, we labelled some constants, which we would like to keep track
of, according to the Lemma in which they originate. For example, C3.3 is the constant
corresponding to Lemma 3.3.
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T1

v1 = v�T1
v2 = v�T2

T2
F

Figure 3.2: Sketch of the macro element T̄ = T1 ∪ T2.

3.2 Near best-approximation in a discrete norm

3.2.1 Norms and inverse estimates

We introduce discrete norms. The first norm is

|||u|||2 :=
N∑
n=1

∆t(∂tu, ∂tu)Qn + J|u|K2 +
N∑
n=1

(∇u,∇u)Qn

with

J|u|K2 :=
N−1∑
n=1

(JuKn, JuKn)Ωn +
(
u0

+, u
0
+

)
Ω0 +

(
uN− , u

N
−
)

ΩN .

Let ‖u‖2
J := J(u, u) be the semi-norm induced by the ghost penalty term. Then we define

the norm
|||u|||2j := |||u|||2 + ‖u‖2

J ,

which offers additional control on the ghost penalty term.This norm is mainly used. For
continuity we will also consider another discrete norm:

|||u|||2∗ :=
N∑
n=1

(
1

∆t
u, u

)
Qn

+ J|u|K2
∗ +

N∑
n=1

(∇u,∇u)Qn

with

J|u|K2
∗ :=

N∑
n=1

(
un−, u

n
−
)

Ωn .

Also for this norm there is a corresponding version which includes the ghost penalty term:

|||u|||2∗,j := |||u|||2∗ + ‖u‖2
J .

The following Lemma shows the main mechanism behind the stabilizing effect of the
ghost penalty terms. It is a modification of the classical ghost penalty result found in
Lemma 5.1 of [MLLR14].

Lemma 3.1 (Ghost penalty mechanism). Let T1, T2 ∈ T̃h be two elements sharing a
common face F (illustrated in Figure 3.2). Moreover, assume that v is a piecewise poly-
nomial function of degree at most ks ∈ N, possibly discontinuous and defined relative to
the macro element T̄ = T1 ∪ T2. Denote by vi the restriction of v to Ti for i = 1, 2.
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Then there is a constant C > 0 which only depends on the shape regularity of T̃h and the
polynomial order of v such that:

‖v‖2
T1
≤ C

(
‖JvKωF

‖2
T1

+ ‖v‖2
T2

)
(3.2)

holds true.

Proof. Consider a point x ∈ T1. We have

v1(x) = (v1 − v2)(x) + v2(x) = JvKωF
(x) + v2(x),

where v2 is the canonical extension of the polynomial defined on T2 to T1. Integrating
over T1 yields:

‖v1‖2
T1
≤ 2

(
‖JvKωF

‖2
T1

+ ‖v2‖2
T1

)
.

Due to shape regularity the norms ‖·‖T1
and ‖·‖T2

are equivalent: ‖v2‖T1
≤ C ‖v2‖T2

.
Thus,

‖v1‖2
T1
≤ C

(
‖JvKωF

‖2
T1

+ ‖v2‖2
T2

)
which completes the proof.

Remark 6 (Comparison with ‘derivative-jump’-based ghost penalty). Let us investigate
the proof of Lemma 5.1 from [MLLR14] while keeping the notation from the proof of
Lemma 3.1 above. The authors proceed in this proof by writing the polynomials vi(x) at
a point x ∈ T1 in terms of their Taylor series around xF . Here, xF denotes the normal
projection of x onto the plane defined by the face F . This yields

vi(x) =
∑
|α|≤ks

Dαvi(xF )

α!
(‖x− xF‖n)α,

where α = (α1, . . . , αd) is a multiindex and nα = nα1
1 · nα2

2 · . . . · n
αd
d with n = (x −

xF )/ ‖x− xF‖ being the normal vector of the face F pointing towards T1. Then the two
Taylor expansions are subtracted which gives

v1(x) = v2(x) +
∑
|α|≤ks

JDαv(xF )K
α!

(‖x− xF‖n)α, (3.3)

where JDαv(xF )K = Dαv1(xF ) − Dαv2(xF ) denotes the jump over the facet F . Now an
integration over T1 with respect to x is performed, the expressions are squared and the
Cauchy-Schwarz inequality is used:

‖v1‖2
T1
≤ C

‖v2‖2
T1

+ +
∑
|α|≤ks

∫
T1

(JDαv(xF (x))Knα)2 h2|α| dx

 .

After a change of variables and an application of shape regularity the authors arrive at

‖v1‖2
T1
≤ C

‖v2‖2
T1

+
∑
j≤ks

∫
F

J∂jnv(y)K2h2j+1 dy

 ,
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with ∂jnv(y) =
∑
|α|=j

Dαv(y)nα. Using that the norms ‖v2‖2
T1

and ‖v2‖2
T2

are equivalent by

shape regularity this leads to the key result of the ghost penalty mechanism

‖v‖2
T1
≤ C

(
‖v‖2

T2
+
∑
j≤ks

h2j+1
(
J∂jnv(y)K, J∂jnv(y)K

)
F

)
. (3.4)

If we perform a minor modification of this argument by bringing v2(x) in (3.3) to the
other side we arrive at

‖v1 − v2‖2
T1
≤ C

∑
j≤ks

h2j+1
(
J∂jnv(y)K, J∂jnv(y)K

)
F
.

Then ∫
ωF

JvK2
ωF
dx = ‖v1 − v2‖2

T1
+ ‖v2 − v1‖2

T2

≤ 2C
∑
j≤ks

h2j+1
(
J∂jnv(y)K, J∂jnv(y)K

)
F
.

Thus, the stabilization used in this thesis is bounded from above by the ‘derivative-jump’-
based ghost penalty stabilization which is prevalent in the literature, see e.g. [BH12],
[MLLR14], [BHL15], [BHLZ16].

Compared to the ‘derivative-jump’-based stabilization it has certain computational ad-
vantages especially for higher order methods. To regain control over cut elements, the
‘derivative-jump’-based stabilization needs to take into account the normal derivatives
over the facets up to order ks as seen in equation (3.4). Thus, the computational effort
increases with the polynomial degree of the ansatz functions. Moreover, the ‘derivative-
jump’-based stabilization usually associates a different stabilization parameter to each
j = 0, . . . , ks. Then one faces the task to determine an optimal choice of all these pa-
rameters. The stabilization employed in this thesis is not affected by these problems: It
is the same for all polynomial degrees. Hence, there are less terms to assemble than for
the ‘derivative-jump’-based stabilization if the polynomial degree exceeds one. Also there
is just a single stabilization parameter to choose. This makes it particularly suited for
higher order methods.

A further discussion of implementational and practical aspects of ‘derivative-jump’-
based and ‘projection’-based ghost penalty can be found in section 3.4.3.3 of [Sch17].

Lemma 3.1 allows to bound the norm of a discrete function on the extended time slab
E(Qn) by its norm on I(Qn) and the corresponding stabilization terms.

Lemma 3.2. There exists a constant C > 0 such that for every u ∈ Wh ⊕ ∇Wh there
holds

‖u‖2
E(Qn) ≤ C

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
. (3.5)
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Proof. Decompose the norm ‖u‖2
E(Qn) into a sum over elements Qn

T = T × In:

‖u‖2
E(Qn) =

∑
T∈E(Ωn)

tn∫
tn−1

‖u(·, t)‖2
T dt

=
∑

T∈I(Ωn)

tn∫
tn−1

‖u(·, t)‖2
T dt+

∑
T∈E(Ωn)\I(Ωn)

tn∫
tn−1

‖u(·, t)‖2
T dt.

If T ∈ I(Ωn) we are done. For T ∈ E(Ωn) \ I(Ωn) we use assumption A.1: There exists
a B(T ) = T0 ∈ I(Ωn) and elements {Ti}Mi=0 with correponding facet patches contained in
{ωF | F ∈ F∗,nR } that can be crossed in order to traverse from TM = T to T0. We then
apply Lemma 3.1 iteratively to each neighboring pair {Ti, Ti−1} to bound the norm on
TM against the norm on T0 at the expense of stabilization terms:

tn∫
tn−1

‖u(·, t)‖2
T dt ≤ C

 tn∫
tn−1

‖u(·, t)‖2
B(T ) dt+

∑
F∈F∗,nR

tn∫
tn−1

‖JuKωF
(·, t)‖2

ωF
dt

 .

Repeating this for every element T ∈ E(Ωn) \ I(Ωn) one ends up with

‖u‖2
E(Qn) ≤ C

( ∑
T∈I(Ωn)

(
1 + #(B−1(T ))

) tn∫
tn−1

‖u(·, t)‖2
T dt

+ #{T ∈ E(Ωn) \ I(Ωn)}
∑

F∈F∗,nR

tn∫
tn−1

‖JuKωF
(·, t)‖2

ωF
dt

)

≤ C

 ∑
T∈I(Ωn)

tn∫
tn−1

‖u(·, t)‖2
T dt+

∑
F∈F∗,nR

(
1 +

∆t

h

) tn∫
tn−1

‖JuKωF
(·, t)‖2

ωF
dt


= C

(
‖u‖2

I(Qn) + CB
h2

γJ
jnh (u, u)

)
,

in view of #(B−1(T0)) ≤ C for T0 ∈ I(Ωn) and #{T ∈ E(Ωn)\I(Ωn)} ≤ CB

(
1 + ∆t

h

)
.

The previous Lemma allows to extend estimates for finite elements with tensor product
structure to the unfitted case at the expense of additional stabilization terms.

Lemma 3.3 (Stabilized inverse inequality in time). For u ∈ Wh it holds that

(
un−1

+ , un−1
+

)
Ωn−1 ≤

C3.3

∆t

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
,

(
un−, u

n
−
)

Ωn ≤
C3.3

∆t

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
.

Proof. We employ the extension operator E to extend the domain Qn to a domain
E(Qn) = E(Ωn) × In that has tensor product structure. At a fixed point x ∈ E(Ωn),
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the function u(x, ·) is a polynomial of degree kt in time. Thus, the trace inverse inequal-
ity on the time interval In from Theorem 2 of [WH03] can be applied:

|u(x, tn)|2 ≤ C(kt)

∆t

∫
In

|u(x, t)|2 dt,

where the constant C(kt) only depends on kt. Then∥∥un−∥∥2

Ωn ≤
∥∥un−∥∥2

E(Ωn)
=

∫
E(Ωn)

|u(x, tn)|2 dx

≤
∫
E(Ωn)

C(kt)

∆t

∫
In

|u(x, t)|2 dt dx =
C(kt)

∆t
‖u‖2

E(Qn)

≤ C3.3

∆t

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
,

where the last inequality follows by applying Lemma 3.2. Analogously for un−1
+ .

Lemma 3.4 (Stabilized inverse inequality for time derivative). For u ∈ Wh ⊕ ∇Wh it
holds that

∆t(∂tu, ∂tu)Qn ≤
C3.4

∆t

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
. (3.6)

Proof. For a fixed point x ∈ E(Ωn), Theorem 4.5.11 in [BS08] implies

∆t

∫
In

|∂tu(x, t)|2 dt ≤ Cinv

∆t

∫
In

|u(x, t)|2 dt,

where Cinv does not depend on x, but only on kt. Integrating over E(Ωn) and using that
E(Ωn)× In = E(Qn) leads to

∆t(∂tu, ∂tu)E(Qn) ≤
Cinv

∆t
‖u‖2

E(Qn) .

Hence, the desired estimate again follows by extending Qn to a domain with tensor
product structure:

∆t(∂tu, ∂tu)Qn ≤ ∆t(∂tu, ∂tu)E(Qn)

≤ Cinv

∆t
‖u‖2

E(Qn)

≤ C3.4

∆t

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
,

where the last inequality uses Lemma 3.2.

Note that on Wh we have

J|u|K2
∗ ≤

C3.3

∆t

N∑
n=1

(
h2

γJ
jnh (u, u) + ‖u‖2

I(Qn)

)
.
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Lemma 3.5 (Derivatives in ghost penalty). There exist constants Ct
3.5 ≥ 1, Cs

3.5 ≥ 1 only
depending on the polynomial degree and the shape regularity of the background mesh T̃h
such that:

J(∂tu, ∂tu) ≤ Ct
3.5

∆t2
J(u, u), (3.7)

J(∇u,∇u) ≤ Cs
3.5

h2
J(u, u) (3.8)

holds for all u ∈ Wh.

Proof. The set of space-time facet patches has a tensor product structure within each
time slab: ∪F∈F∗,nR

ωF × In. This allows to proceed similarly to the previous proofs.
For u ∈ Wh one obtains by applying Theorem 4.5.11 from [BS08] for the time integral

on In that

J(∂tu, ∂tu) =
N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

1

h2

∫
ωF

∫
In

(∂tJuKωF
(x, t))2 dt dx

≤ Ct
3.5

∆t2

N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

1

h2

∫
ωF

∫
In

(JuKωF
(x, t))2 dt dx

=
Ct

3.5

∆t2
J(u, u).

The result for the gradient follows by applying Theorem 4.5.11 from [BS08] for the integral
over the facet patch ωF :

J(∇u,∇u) =
N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

1

h2

∫
In

∫
ωF

(∇JuKωF
(x, t))2 dt dx

≤ Cs
3.5

h2

N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

1

h2

∫
In

∫
ωF

(JuKωF
(x, t))2 dt dx

=
Cs

3.5

h2
J(u, u).

3.2.2 Stability

The inverse estimates from the last section will be needed to derive a discrete inf-sup
stability result. We begin by proving some auxiliary Lemmas.

Lemma 3.6 (positiveness). For u ∈ Wh there holds

(a) d(u, u) = 1
2

N−1∑
n=1

(∥∥un−∥∥2

Ωn −
∥∥un+∥∥2

Ωn

)
+ 1

2

∥∥uN−∥∥2

ΩN − 1
2

∥∥u0
+

∥∥2

Ω0
+

,

(b) b(u, u) = 1
2

N−1∑
n=1

‖JuKn‖2
Ωn + 1

2

N−1∑
n=1

(∥∥un+∥∥2

Ωn −
∥∥un−∥∥2

Ωn

)
+
∥∥u0

+

∥∥2

Ω0,

(c) B(u, u) + J(u, u) = 1
2
J|u|K2 +

N∑
n=1

(∇u,∇u)Qn + J(u, u).
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Proof. (a) In the proof of Lemma 2.1 it was derived that

d(u, v) =
N∑
n=1

{
(
un−, v

n
−
)

Ωn −
(
un−1

+ , vn−1
+

)
Ωn−1}+ d′(u, v).

Setting v = u and noting that d(u, u) = −d′(u, u) yields

d(u, u) =
1

2

N∑
n=1

(∥∥un−∥∥2

Ωn −
∥∥un−1

+

∥∥2

Ωn−1

)
=

1

2

N−1∑
n=1

(∥∥un−∥∥2

Ωn −
∥∥un+∥∥2

Ωn

)
+

1

2

∥∥uN−∥∥2

ΩN −
1

2

∥∥u0
+

∥∥2

Ω0 .

(b) Some rewriting gives

b(u, u) =
1

2

N−1∑
n=1

(
JuKn, un+

)
Ωn +

1

2

N−1∑
n=1

(
JuKn, un+

)
Ωn +

∥∥u0
+

∥∥2

Ω0

=
1

2

N−1∑
n=1

‖JuKn‖2
Ωn +

1

2

N−1∑
n=1

(
un+ − un−, un+ + un−

)
Ωn +

∥∥u0
+

∥∥2

Ω0

=
1

2

N−1∑
n=1

‖JuKn‖2
Ωn +

1

2

N−1∑
n=1

(∥∥un+∥∥2

Ωn −
∥∥un−∥∥2

Ωn

)
+
∥∥u0

+

∥∥2

Ω0 .

(c) Adding the expression obtained in (a) and (b) gives

b(u, u) + d(u, u) =
1

2

N−1∑
n=1

‖JuKn‖2
Ωn +

1

2

∥∥u0
+

∥∥2

Ω0 +
1

2

∥∥uN−∥∥2

ΩN

=
1

2
J|u|K2.

Since

B(u, u) = b(u, u) + d(u, u) +
N∑
n=1

(∇u,∇u)Qn

this gives the result.

Lemma 3.7 (control on time derivative). For u ∈ Wh there holds

B(u,∆t∂tu) + J(u,∆t∂tu) ≥ 1

2

N∑
n=1

∆t(∂tu, ∂tu)Qn − C3.7J|u|K2

− C3.7

N∑
n=1

(∇u,∇u)Qn − C3.7J(u, u),

with

C3.7 = max{C̃3.3,
h2

4γJ∆t
+

√
C̃3.4

2γJ
+
√
Ct

3.5,

√
C̃3.4 + Co ‖w‖2

∞}

where C̃3.4 = C3.4C
s
3.5 and C̃3.3 = C3.3C

t
3.5.
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Remark 7. Under assumption A.3, i.e. h2 ≤ CG∆t, the constant C3.7 can be bounded
independently of ∆t and h.

Proof. Consider

B(u,∆t∂tu)−
N∑
n=1

∆t(∂tu, ∂tu)Qn =
N∑
n=1

(w · ∇u,∆t∂tu)Qn I

+
N−1∑
n=1

(
JuKn,∆t(∂tu)n+

)
Ωn +

(
u0

+,∆t(∂tu)0
+

)
Ω0 II

+
N∑
n=1

(∇u,∇(∆t∂tu))Qn . III

Each of the terms on the right hand side will be treated separately. First we always apply
the Cauchy-Schwarz inequality. Then Young’s inequality for some εj > 0 will be used.
We start with

II =
N−1∑
n=1

(
JuKn,∆t(∂tu)n+

)
Ωn +

(
u0

+,∆t(∂tu)0
+

)
Ω0

≤ε1

2
J|u|K2 +

1

2ε1

N∑
n=1

∆t2
(
(∂tu)n−1

+ , (∂tu)n−1
+

)
Ωn−1

≤ε1

2
J|u|K2 +

C3.3

2ε1

(
∆t

h2

γJ
J(∂tu, ∂tu) + ∆t

N∑
n=1

(∂tu, ∂tu)Qn

)

≤ε1

2
J|u|K2 +

C3.3

2ε1

(
h2

γJ∆t
Ct

3.5J(u, u) + ∆t
N∑
n=1

(∂tu, ∂tu)Qn

)

≤ε1

2
J|u|K2 +

C̃3.3

2ε1

(
h2

γJ∆t
J(u, u) + ∆t

N∑
n=1

(∂tu, ∂tu)Qn

)
,

where Lemma 3.3 was used in line three and Lemma 3.5 in line four. Here C̃3.3 = C3.3C
t
3.5.

For the diffusion term one can use Lemma 3.4 and Lemma 3.5 to estimate

III =
N∑
n=1

(∇u,∇(∆t∂tu))Qn ≤
ε2

2
(∇u,∇u)Q +

1

2ε2

∆t2
N∑
n=1

(∂t∇u, ∂t∇u)Qn

≤ ε2

2
(∇u,∇u)Q +

C3.4

2ε2

(
h2

γJ
J(∇u,∇u) + (∇u,∇u)Q

)
≤ ε2

2
(∇u,∇u)Q +

C̃3.4

2ε2

(
1

γJ
J(u, u) + (∇u,∇u)Q

)
with C̃3.4 = C3.4C

s
3.5. Choosing ε2 =

√
C̃3.4 leads to:

N∑
n=1

(∇u,∇(∆t∂tu))Qn ≤
√
C̃3.4(∇u,∇u)Q +

√
C̃3.4

2γJ
J(u, u).
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It remains to treat the convection term:

I =
N∑
n=1

(w · ∇u,∆t∂tu)Qn ≤
ε3

2
∆t

N∑
n=1

(w · ∇u,w · ∇u)Qn +
∆t

2ε3

N∑
n=1

(∂tu, ∂tu)Qn

≤ ε3

2
∆t ‖w‖2

∞ (∇u,∇u)Q +
∆t

2ε3

N∑
n=1

(∂tu, ∂tu)Qn .

Finally, the ghost penalty term is estimated by invoking Lemma 3.5:

J(u,∆t∂tu) ≤ ε4

2
J(u, u) +

∆t2

2ε4

J(∂tu, ∂tu)

≤ ε4

2
J(u, u) +

Ct
3.5

2ε4

J(u, u)

=
√
Ct

3.5J(u, u),

where ε4 =
√
Ct

3.5 was chosen.
Assembling all the estimates gives:

B(u,∆t∂tu) + J(u,∆t∂tu) ≥ (∆t∂tu, ∂tu)Q

[
1− 1

2ε3

− C̃3.3

2ε1

]

− J(u, u)

[
C̃3.3

2ε1

h2

γJ∆t
+

√
C̃3.4

2γJ
+
√
Ct

3.5

]

− (∇u,∇u)Qn

[√
C̃3.4 +

ε3

2
∆t ‖w‖2

∞

]
− ε1

2
J|u|K2.

Choosing ε1 = 2C̃3.3 and ε3 = 2 yields:

B(u,∆t∂tu) + J(u,∆t∂tu) ≥ 1

2
(∆t∂tu, ∂tu)Q − C̃3.3J|u|K2 − J(u, u)

[
h2

4γJ∆t
+

√
C̃3.4

2γJ
+
√
Ct

3.5

]

− (∇u,∇u)Q

[√
C̃3.4 + ∆t ‖w‖2

∞

]
.

Using assumption A.4, the claim follows with

C3.7 = max{C̃3.3,
h2

4γJ∆t
+

√
C̃3.4

2γJ
+
√
Ct

3.5,

√
C̃3.4 + Co ‖w‖2

∞}.

Lemma 3.8 (special function). For u in Wh there holds

|||∆t∂tu|||j ≤ C3.8|||u|||j,

with (C3.8)2 = max{C3.4 + 4C3.3,
h2

γJ∆t
Ct

3.5[C3.4 + 4C3.3] + C3.4

γJ
Cs

3.5 + Ct
3.5}.

Remark 8. The constant C3.8 can be bounded independently of ∆t and h if assumption
A.3 is used.
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Proof. Most of the estimates have already been used in the previous proof.

• From Lemma 3.4 and Lemma 3.5 it follows that

∆t3
(
∂2
t u, ∂

2
t u
)
Q
≤ C3.4∆t

(
h2

γJ
J(∂tu, ∂tu) + (∂tu, ∂tu)Q

)
≤ C3.4C

t
3.5

h2

γJ∆t
J(u, u) + C3.4∆t(∂tu, ∂tu)Q.

• With Lemma 3.3 and Lemma 3.5 we have:

∆t2J|∂tu|K2 ≤ 2∆t2
N∑
n=1

[(
(∂tu)n−1

+ , (∂tu)n−1
+

)
Ωn−1 +

(
(∂tu)n−, (∂tu)n−

)
Ωn

]
≤ 4C3.3∆t

(
h2

γJ
J(∂tu, ∂tu) + (∂tu, ∂tu)Q

)
≤ 4C3.3C

t
3.5

h2

γJ∆t
J(u, u) + 4C3.3∆t(∂tu, ∂tu)Q.

• Another application of Lemma 3.4 and Lemma 3.5 yields

∆t2(∇∂tu,∇∂tu)Q ≤ C3.4

(
h2

γJ
J(∇u,∇u) + (∇u,∇u)Q

)
≤ Cs

3.5

C3.4

γJ
J(u, u) + C3.4(∇u,∇u)Q.

• Finally, the Ghost-Penalty term is bounded by Lemma 3.5: ∆t2J(∂tu, ∂tu) ≤
Ct

3.5J(u, u).

Collecting all the terms gives:

|||∆t∂tu|||2j ≤ (C3.4 + 4C3.3)
N∑
n=1

∆t(∂tu, ∂tu)Qn + C3.4

N∑
n=1

(∇u,∇u)Qn

+

(
h2

γJ∆t
Ct

3.5[C3.4 + 4C3.3] +
C3.4

γJ
Cs

3.5 + Ct
3.5

)
J(u, u)

≤ (C3.8)2|||u|||2j ,

with (C3.8)2 = max{C3.4 + 4C3.3,
h2

γJ∆t
Ct

3.5[C3.4 + 4C3.3] + C3.4

γJ
Cs

3.5 + Ct
3.5}.

The previous Lemmas can now be combined to show discrete stability.

Proposition 3.9 (Stability). For all u ∈ Wh there exists a ṽ(u) ∈ Wh such that there
holds

B(u, ṽ(u)) + J(u, ṽ(u)) ≥ C3.9|||u|||j|||ṽ(u)|||j,

with C3.9 = 1
2(2C3.7+C3.8+1)

.

Remark 9. Consider the constants C3.7(γJ), C3.8(γJ) as a function of the ghost-penalty
stabilization parameter. Then

lim
γJ→+0

C3.7(γJ) =∞, lim
γJ→+0

C3.8(γJ) =∞, which implies lim
γJ→+0

C3.9(γJ) = 0.

That is, the stability estimate deteriorates as γJ decreases since we loose control over the
norms on the elements of the extended domain.
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Remark 10. If one chooses not to include the stabilization factor
(
1 + ∆t

h

)
in the ghost

penalty term then it appears as 1/
(
1 + ∆t

h

)
in front of the constant C3.9 in the stability

estimate.

Proof. Consider ṽ(u) = (2C3.7 + 1)u + v∗(u) ∈ Wh with v∗(u) = ∆t∂tu ∈ Wh. Using the
triangle inequality and Lemma 3.8 there holds

|||ṽ(u)|||j ≤ (2C3.7 + 1)|||u|||j + |||v∗(u)|||j
≤ (2C3.7 + C3.8 + 1)|||u|||j.

Hence with Lemma 3.6 and Lemma 3.7:

B(u, ṽ(u)) + J(u, ṽ(u))

= (2C3.7 + 1) [B(u, u) + J(u, u)] +B(u,∆t∂tu) + J(u,∆t∂tu)

≥ (2C3.7 + 1)

(
1

2
J|u|K2 +

N∑
n=1

(∇u,∇u)Qn + J(u, u)

)
+

1

2

N∑
n=1

∆t(∂tu, ∂tu)Qn

− C3.7

(
J|u|K2 +

N∑
n=1

(∇u,∇u)Qn + J(u, u)

)

=
1

2
J|u|K2 + (1 + C3.7)

(
N∑
n=1

(∇u,∇u)Qn + J(u, u)

)
+

1

2

N∑
n=1

∆t(∂tu, ∂tu)Qn

≥ 1

2
|||u|||2j ≥

1

2(2C3.7 + C3.8 + 1)
|||u|||j|||ṽ(u)|||j.

3.2.3 Continuity

The continuity of the bilinear form B(·, ·) with respect to the first argument is needed in
a non-discrete space, since it has to be evaluated later at the solution of the continuous
problem.

Proposition 3.10 (Continuity). For all u ∈ Wh +H1(Q) and v ∈ Wh there holds

B(u, v) ≤ C3.10|||u|||∗|||v|||,
J(u, v) ≤ ‖u‖J ‖v‖J ,

for C3.10 = 4 + ‖w‖∞
√
Co.

Proof. Here one can use the representation B(u, v) = d′(u, v) + b′(u, v) +a(u, v) obtained
in Lemma 2.1. We bound the terms one after another:

25



• By the Cauchy-Schwarz inequality and the boundedness assumption on ‖w‖∞:

d′(u, v) =
N∑
n=1

(u,−∂tv −w · ∇v)Qn

≤
N∑
n=1

√(
1

∆t
u, u

)
Qn

(∆t∂tv, ∂tv)Qn +
N∑
n=1

√(
1

∆t
u, u

)
Qn

(∆tw · ∇v,w · ∇v)Qn

≤

√√√√ N∑
n=1

(
1

∆t
u, u

)
Qn


√√√√ N∑

n=1

(∆t∂tv, ∂tv)Qn + ‖w‖∞
√

∆t

√√√√ N∑
n=1

(∇v,∇v)Qn


≤
(

1 + ‖w‖∞
√
Co

)
|||u|||∗|||v|||.

• For u ∈ H1(Q) the inverse inequality from Lemma 3.3 is not available. Thus, the
term J|u|K∗ has been included into the |||·|||∗-norm.

b′(u, v) ≤
N−1∑
n=1

√
(un−, u

n
−)Ωn

√
(JvKn, JvKn)Ωn +

√
(uN− , u

N
− )ΩN

√
(vN− , v

N
− )ΩN

≤

√√√√N−1∑
n=1

(un−, u
n
−)Ωn

√√√√N−1∑
n=1

(JvKn, JvKn)Ωn +
√

(uN− , u
N
− )ΩN

√
(vN− , v

N
− )ΩN

≤ |||u|||∗


√√√√N−1∑

n=1

(JvKn, JvKn)Ωn +
√

(vN− , v
N
− )ΩN


≤ 2|||u|||∗|||v|||.

• The diffusion term is easily bounded:

a(u, v) ≤

√√√√ N∑
n=1

(∇u,∇u)Qn

√√√√ N∑
n=1

(∇v,∇v)Qn ≤ |||u|||∗|||v|||.

• The stabilization term can be bounded by repeated application of the Cauchy-
Schwarz inequality:

J(u, v) =
N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

∫
ωF×In

1

h
JuKωF

1

h
JvKωF

≤
N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

√√√√ ∫
ωF×In

1

h2
JuK2

ωF

√√√√ ∫
ωF×In

1

h2
JvK2

ωF

≤
N∑
n=1

√√√√(1 +
∆t

h

)
γJ

∑
F∈F∗,nR

∫
ωF×In

1

h2
JuK2

ωF

√√√√(1 +
∆t

h

)
γJ

∑
F∈F∗,nR

∫
ωF×In

1

h2
JvK2

ωF

≤

√√√√√ N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

∫
ωF×In

1

h2
JuK2

ωF

√√√√√ N∑
n=1

(
1 +

∆t

h

)
γJ

∑
F∈F∗,nR

∫
ωF×In

1

h2
JvK2

ωF

=
√
J(u, u)

√
J(v, v) = ‖u‖J ‖v‖J .
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3.2.4 Consistency

Proposition 3.11 (consistency error). Let u ∈ H2(Q) be the solution of (2.1) and uh be
the solution of (2.7). Then there holds:

B(u− uh, vh)− J(uh, vh) = 0 for all vh ∈ Wh.

Proof. Let v ∈ Wh. From u ∈ H2(Q) it folllows that −∆u ∈ L2(Q) and JuKn = 0 for
n = 1, . . . , N − 1 in the L2(Ωn) sense. Thus, b(u, v) =

(
u0, v

0
+

)
Ω0 .

Moreover, integration by parts of the diffusion term leads to a(u, v) = −
∑N

n=1 (∆u, v)Qn

due to homogeneous Neumann boundary conditions. Hence,

B(u, v) = d(u, v) + b(u, v) + a(u, v)

=
N∑
n=1

(∂tu+ w · ∇u−∆u, v)Qn +
(
u0, v

0
+

)
Ω0

=
N∑
n=1

(f, v)Qn +
(
u0, v

0
+

)
Ω0 = f(v).

Subtracting from this the equation

B(uh, v) + J(uh, v) = f(v)

for the discrete solution yields the claim.

3.2.5 Céa-like result

Theorem 3.12 (Céa-like result). Let u ∈ H2(Q) be the solution of (2.1) and uh be the
solution of (2.7). Then there holds:

|||u− uh||| ≤ inf
wh∈Wh

(
|||u− wh|||+ C3.12|||u− wh|||∗ + (C3.9)−1 ‖wh‖J

)
, (3.9)

with C3.12 = C3.10(C3.9)−1.

Remark 11. The first two terms in the estimate (3.9) above describe the approximation
error of the solution u in the space Wh with respect to the norms |||·||| and |||·|||∗. Denote
by wh the best approximation to u in Wh. Then the last term in (3.9) measures the
semi-norm ‖wh‖J of the best approximation rather than the approximation error u− wh
itself. This is reasonable, since we have defined J(·, ·) only for discrete functions. An
estimate for ‖wh‖J will be shown in Proposition 3.26. The key observation for obtaining
this estimate is the possibility to bound the jump on the facet patches ωF from above by
the approximation error of an L2-projection PωF

on the facet patch:

‖JwhK(·, t)‖ωF
≤ C ‖(wh − PωF

wh)(·, t)‖ωF
.

Proof. Choose an arbitrary wh ∈ Wh and split the error into two parts:

|||u− uh||| ≤ |||eu|||+ |||ew|||,
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with eu = u − wh and ew = wh − uh. Combining Propositions 3.9, 3.10 and 3.11 from
above ( and introducing q = ṽ(ew) with ṽ(·) as in Proposition 3.9) yields

|||ew||||||q|||j ≤ |||ew|||j|||q|||j ≤ (C3.9)−1 (B(ew, q) + J(ew, q))

= (C3.9)−1 (B(wh, q) + J(wh, q)−B(uh, q)− J(uh, q))

= (C3.9)−1 (B(wh, q) + J(wh, q)−B(u, q))

= (C3.9)−1 (B(−eu, q) + J(wh, q))

≤ C3.10(C3.9)−1|||eu|||∗|||q|||j + (C3.9)−1 ‖wh‖J |||q|||j.

It follows that:
|||ew||| ≤ C3.10(C3.9)−1|||eu|||∗ + (C3.9)−1 ‖wh‖J .

As wh may be chosen arbitrarily the result follows.

3.3 Interpolation in space-time

In order to derive an a priori estimate from Theorem 3.12 an interpolation operator
IΓ mapping Hk(Q) into the space-time finite element space Wh is needed. The global
interpolation operator will be defined by its restriction to the time slabs InΓ : Hk(Qn)→
Wn. So the task is to construct InΓ . This operator will be build step by step.

In subsection 3.3.1 we first construct an interpolation operator Πn
W : L2(E(Qn))→ Wn.

Here the space-time domain E(Qn) = E(Ωn)×In has a tensor product structure. In order
to keep the notation short we denote Qn = Ω×In in this subsection with a generic polyhe-
dral domain Ω. We may think of Ω as the extended spatial domain which combined with
In forms the extended space-time slab. The operator Πn

W is obtained by concatenation of
purely temporal and purely spatial interpolation operators. Consequently, the first task
will be the construction of these operators.

If the operator Πn
W for tensor product domains with the desired approximation prop-

erties is available, then InΓ can be defined by means of assumption A.5.

3.3.1 Interpolation in tensor-product space-time spaces

In this section we consider space-time slabs with tensor product structure Qn = Ω× In.
In [Leh15] suitable space-time interpolation operators for the piecewise linear case have
been constructed. The aim of this section is to generalize these results.

Anisotropic Sobolev spaces

We introduce anisotropic Sobolev spaces (see eg. [BIN78],[WYW06]) on the space-time
domain Q in which temporal and spatial derivatives are treated differently. Due to the
special role of the time, these spaces are also called t-anisotropic Sobolev spaces. Define:

Hk,l(Q) := {u | ∂ptDα
xu ∈ L2(Q), p, q ∈ N, q = |α|, q

k
+
p

l
≤ 1}. (3.10)

For k = l the isotropic Sobolev spaces are retained: Hk,k(Q) = Hk(Q). Moreover,
there exists a (time) trace operator H0,1(Qn)→ L2(Ω), which is bounded:

‖u(·, t)‖Ω ≤ C ‖u‖H0,1(Qn) .
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Semi-discrete spaces

For the tensor product case Qn = Ω × In, with a polygonal domain Ω, we define the
following spaces on the time slab. Let Pkt denote the space of polynomials up to degree
kt on In.

For X ⊂ L2(Ω) define

X ⊗ Pkt := {v ∈ L2(Qn) | v(x, t) =
kt∑
m=0

tmvm(x), vm ∈ X}. (3.11)

For Y ⊂ L2(In) and V ks
h a standard finite element space on Ω define

V ks
h ⊗ Y := {v ∈ L2(Qn) | v(x, t) =

N∑
i=0

vi(t)φi(x), vi ∈ Y, φi ∈ V ks
h , N = dim(V ks

h )}.

(3.12)
For Qn = Ω× In we seek to construct an interpolation operator into the space:

Wn = {v : Qn → R | v(x, t) =
kt∑
m=0

tmφm(x), φm ∈ V ks
h ,m = 0, . . . , kt}. (3.13)

Using the notation introduced above one has Wn = V ks
h ⊗ Pkt . Later this operator

will be extended to the unfitted case.

Interpolation in time

For u ∈ L2(In;X) define the temporal interpolation Πkt(u) as the L2(In;X) projection
of u into X ⊗ Pkt , so that Πkt(u) solves

(Πkt(u)− u, v)Qn = 0 ∀v ∈ X ⊗ Pkt . (3.14)

In the following the general case X = L2(Ω) is considered.
On sufficiently smooth functions, Πkt coincides with a standard temporal L2(In)

(quasi-) interpolation Ikt defined by(
Iktu, χ

)
In

= (u, χ)In ∀ χ ∈ Pkt .

That is, for u ∈ C0(Ω;L2(In)) it will be shown in the next Lemma that Πktu = Iktu holds
in the L2(Qn) sense. Another important property of Πkt is that it commutes with spatial
derivatives ∂xj . For the standard temporal interpolation on L2(In) this property readily
follows by an explicit description of this operator: Let φi(t) for i = 0, . . . , kt be a basis of
Pkt and ψj, j = 0, . . . , kt be its dual basis with respect to (·, ·)In , i.e. (φi, ψj)In = δi,j for
i, j = 0, . . . , kt. Then

Iktu(x, ·) =
kt∑
i=0

(u(x, ·), ψi)Inφi

holds for u ∈ C1(Ω; In). Hence,

∂xjI
ktu(x, ·) =

kt∑
i=0

(
(∂xju)(x, ·), ψi

)
In
φi

= Ikt∂xju(x, ·)
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follows. In order to extend this property to Πkt , which is defined for functions with weaker
regularity, the following Lemma is needed.

Lemma 3.13 (equivalent characterization of weak derivatives). Consider Q̂ = Ω × Î,
with Î = (0, 1] and let u ∈ L2(Q̂). Denote by C∞c (Q̂) the smooth functions with compact
support in Q̂ and by C∞(Î;C∞c (Ω)) the smooth functions φ such that φ(·, t) ∈ C∞c (Ω) for
every t ∈ Î. Then w ∈ L2(Q̂) fulfills(

w, φ̄
)
Q̂

= −
(
u, ∂xj φ̄

)
Q̂
∀φ̄ ∈ C∞c (Q̂), (3.15)

if and only if w fulfills

(w, φ)Q̂ = −
(
u, ∂xjφ

)
Q̂
∀φ ∈ C∞(Î;C∞c (Ω)). (3.16)

Proof. Since C∞c (Q̂) is a subset of C∞(Î;C∞c (Ω)) the direction (3.16) =⇒ (3.15) imme-
diately follows. We need to show (3.15) =⇒ (3.16). Let φ ∈ C∞(Î;C∞c (Ω)) be given.
We will construct a sequence φε ∈ C∞c (Q̂) which converges to φ in an L2(Q̂) sense. To
this end, pick ψ ∈ C∞(R) such that

0 ≤ ψ ≤ 1 and ψ(t) =

{
1 t ≥ 1,

0 t ≤ 1/2.

For ε ≤ 1/2 set

ψε(t) = ψ

(
t

ε

)
ψ

(
1− t
ε

)
=


0 t ≤ ε/2,

1 ε ≤ t ≤ 1− ε,
0 t ≥ 1− ε/2.

Then ψε is smooth, compactly supported in [ε/2, 1− ε/2] and fulfills 0 ≤ ψε ≤ 1. Figure
3.3 shows a sketch of this function. Setting φε(x, t) = ψε(t)φ(x, t) yields φε ∈ C∞c (Q̂),
which fulfills:

|φε(x, t)− φ(x, t)|2 = |ψε(t)− 1|2 |φ(x, t)|2 ≤ 4 |φ(x, t)|2 .

Hence, an application of Lebesgue’s dominated convergence theorem yields

lim
ε→+0

‖φε − φ‖2
Q̂ =

∫
Ω

∫
Î

lim
ε→+0

|ψε(t)− 1|2 |φ(x, t)|2 dt dx = 0,

since ψε converges to the identity on Î as ε→ +0.
From ∂xjφε(x, t) = ψε(t)∂xjφ(x, t) we also obtain that∥∥∂xjφε − ∂xjφ∥∥Q̂ → 0, as ε→ +0.

This allows to show the claim. As φε ∈ C∞c (Q̂) it holds that (w, φε)Q̂ = −
(
u, ∂xjφε

)
Q̂

.
Hence,

(w, φ)Q̂ = lim
ε→+0

(w, φε)Q̂ = − lim
ε→+0

(
u, ∂xjφε

)
Q̂

= −
(
u, ∂xjφ

)
Q̂
.
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t

ψε(t)

1

ε/2 ε 1−ε 1−ε/2 1

Figure 3.3: Sketch of the function ψε for ε = 1/4.

This allows to prove the following Lemma which serves as a basis for the approximation
properties of Πkt .

Lemma 3.14. For u ∈ C0(Ω;L2(In)) there holds

Πktu = Iktu in the L2(Qn) sense.

Moreover, for u ∈ H1,0(Qn) the temporal interpolation commutes with spatial derivatives

∂xjΠ
ktu = Πkt∂xju

for j = 1, . . . , d.

Proof. Let u ∈ C0(Ω;L2(In)). Then for every x ∈ Ω it follows that Iktu(x, ·) is well
defined. We will show that Iktu fulfills (3.14). Let vh ∈ L2(Ω)⊗Pkt be given. There are

vm ∈ L2(Ω) and χm ∈ Pkt such that vh(x, t) =
kt∑
m=0

vm(x)χm(t). By definition of Ikt one

has that (
Iktu(x, ·), χm

)
In

= (u(x, ·), χm)In

holds for all m = 0, . . . , kt. Multiplying this equality by vm(x), summing up over m =
0, . . . , kt and integrating over Ω leads to∫

Ω

∫
In

Iktu(x, t)
kt∑
m=0

vm(x)χm(t) dt dx =

∫
Ω

∫
In

u(x, t)
kt∑
m=0

vm(x)χm(t) dt dx.

That is,
(
Iktu, vh

)
Qn = (u, vh)Qn holds. Comparing with (3.14) it follows that: Πktu =

Iktu in the L2(Qn) sense.
It remains to show that Πkt commutes with spatial derivatives. Let u ∈ H1,0(Qn)

be given. We will show that ∂xjΠ
ktu = Πkt∂xju holds in the sense of weak derivatives.

To this end, it suffices to test against functions φ ∈ C∞(Î;C∞c (Ω)) due to Lemma 3.13.
Then (

∂xjΠ
ktu, φ

)
Qn = −

(
Πktu, ∂xjφ

)
Qn = −

(
u,Πkt∂xjφ

)
Qn

= −
(
u, Ikt∂xjφ

)
Qn = −

(
u, ∂xjI

ktφ
)
Qn ,

where it was used that φ is smooth such that Πkt coincides with the standard temporal
L2(In) interpolation which is known to commute with spatial derivatives. Since φ ∈
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C∞(Î;C∞c (Ω)), we have Iktφ ∈ C∞(Î;C∞c (Ω)). From the definition of weak derivatives
we conclude that

−
(
u, ∂xjI

ktφ
)
Qn =

(
∂xju, I

ktφ
)
Qn =

(
∂xju,Π

ktφ
)
Qn =

(
Πkt∂xju, φ

)
Qn .

This implies: ∂xjΠ
ktu = Πkt∂xju for j = 1, . . . , d.

Remark 12. Note that φ ∈ C∞c (Qn) does not imply Iktφ ∈ C∞c (Qn). Therefore, we use
the equivalent definition of weak derivatives from Lemma 3.13 in this proof.

Let Lkt = id − Πkt denote the temporal interpolation error. The stability and ap-
proximation properties of Πkt can now be derived from the corresponding properties for
Ikt .

Lemma 3.15. For the projector Πkt : L2(Qn) → L2(Ω) ⊗ Pkt there hold the following
stability and approximation properties:

(a)
∥∥Πktu

∥∥
Qn ≤ ‖u‖Qn ∀u ∈ L2(Qn),

(b)
∥∥∂tΠktu

∥∥
Qn ≤ C ‖u‖H0,1(Qn) ∀u ∈ H0,1(Qn),

(c)
∥∥Lktu∥∥

Qn ≤ C∆tl ‖u‖H0,l(Qn) ∀u ∈ H0,l(Qn), l ∈ {1, . . . , kt + 1},

(d)
∥∥∂tLktu∥∥Qn ≤ C∆tl−1 ‖u‖H0,l(Qn) ∀u ∈ H0,l(Qn), l ∈ {2, . . . , kt + 1}.

Proof. (a) To prove this, one does not need to resort to results about Ikt . We have

0 ≤
(
Πktu− u,Πktu− u

)
Qn

=
(
Πktu,Πktu

)
Qn + (u, u)Qn − 2

(
Πktu, u

)
Qn

=
(
Πktu,Πktu

)
Qn + (u, u)Qn − 2

(
Πktu,Πktu

)
Qn

= −
(
Πktu,Πktu

)
Qn + (u, u)Qn ,

which implies (a).

(b) Let u ∈ H0,1(Qn) be given. Since smooth functions are dense in the anisotropic
Sobolev spaces there exists a sequence uε ∈ C1(Qn) such that ‖uε − u‖H0,1(Qn) → 0
as ε→ +0. Then∥∥∂tΠktu

∥∥
Qn ≤

∥∥∂tΠkt(u− uε)
∥∥
Qn +

∥∥∂tΠktuε
∥∥
Qn

≤ C

∆t

∥∥Πkt(u− uε)
∥∥
Qn +

∥∥∂tΠktuε
∥∥
Qn

≤ C

∆t
‖u− uε‖Qn +

∥∥∂tΠktuε
∥∥
Qn ,

where the inverse inequality for polynomials and the stability estimate from (a) was
used. Since ‖u− uε‖Qn → 0 as ε → +0, it remains to treat

∥∥∂tΠktuε
∥∥
Qn . As uε is

sufficiently smooth we have Πktuε = Iktuε. For Ikt there is the stability estimate
(see Corollary 7.8 in [Bra07]):∥∥∂tIktuε(x, ·)∥∥In ≤ C ‖uε(x, ·)‖H1(In) .
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Integrating over Ω yields: ∥∥∂tIktuε∥∥Qn ≤ C ‖uε‖H0,1(Qn) .

Letting ε→ +0 then gives ∥∥∂tΠktu
∥∥
Qn ≤ C ‖u‖H0,1(Qn) .

(c) Here one proceeds similar to (b). For u ∈ H0,l(Qn) pick a sequence uε ∈ C l(Qn)
such that ‖uε − u‖H0,l(Qn) → 0 as ε→ +0. By the triangle inequality and (a):∥∥Lktu∥∥

Qn ≤
∥∥Lkt(u− uε)∥∥

Qn +
∥∥Lktuε∥∥

Qn

≤ 2 ‖u− uε‖Qn +
∥∥Lktuε∥∥

Qn .

The first term goes to zero as ε → +0. As uε is sufficiently smooth: Lktuε =
(id − Ikt)uε holds. This allows to use the interpolation results for Ikt (cf. Lemma
1.58 of [DPE12]): ∥∥Lktuε∥∥2

Qn =

∫
Ω

∥∥(id− Ikt)uε(x, ·)
∥∥2

In
dx

≤ C∆t2l
∫
Ω

‖uε(x, ·)‖2
Hl(In) dx.

Letting ε→ +0 gives∥∥Lktu∥∥
Qn ≤ C∆tl ‖u‖H0,l(Qn) for l ∈ {1, . . . , kt + 1}.

(d) The proof is done as in (c) with the difference that there is an additional time
derivative in the norms. One then estimates∥∥∂tLktu∥∥Qn ≤

∥∥∂tLkt(u− uε)∥∥Qn +
∥∥∂tLktuε∥∥Qn

≤ 2C ‖u− uε‖H0,1(Qn) +
∥∥∂tLktuε∥∥Qn

by using (b) instead of (a) and proceeds as above.

Interpolation in space

Define the projector Πks : L2(Qn)→ V ks
h ⊗ Y , so that for u ∈ L2(Qn)

(Πks(u)− u, vh)Qn = 0, for all vh ∈ V ks
h ⊗ Y. (3.17)

In the following the general case Y = L2(Ω) is considered. This interpolation oper-
ator is a generalization of the standard L2(Ω) (quasi) interpolation. The argument for
establishing stability and approximation properties of this operator then runs similar as
for the temporal interpolation Πkt . On sufficiently smooth functions Πks coincides with
a spatial L2(Ω) projector Iks : L2(Ω)→ V ks

h . This is proven in [Leh15] with an argument
which is independent of the polynomial degree ks. Thus, we only cite the result and move
on.
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Lemma 3.16. Let Iks : L2(Ω)→ V ks
h be the spatial L2(Ω) (quasi-) interpolation operator.

Then there holds for u ∈ L2(Ω)⊗ C0(In) = C0(In, L
2(Ω))

Πksu = Iksu in the L2(Qn) sense. (3.18)

Further, for u ∈ H0,1(Qn) there holds:

Πks∂tu = ∂tΠ
ksu. (3.19)

Proof. See Lemma 3.3.5 of [Leh15].

Let Lks = id−Πks denote the spatial interpolation error. The next Lemma shows that
the projection into the semi-discrete space is stable and has the expected approximation
properties.

Lemma 3.17. For the projector Πks : L2(Qn) → V ks
h ⊗ L2(Ω) there hold the following

stability and approximation results:

(a)
∥∥Πksu

∥∥
Qn ≤ ‖u‖Qn ∀u ∈ L2(Qn),

(b)
∥∥∇Πksu

∥∥
Qn ≤ C ‖u‖H1,0(Qn) ∀u ∈ H1,0(Qn),

(c)
∥∥Lksu∥∥

Qn ≤ Chs ‖u‖Hs,0(Qn) ∀u ∈ Hs,0(Qn), s ∈ {1, . . . , ks + 1},

(d)
∥∥∇Lksu∥∥

Qn ≤ Chs−1 ‖u‖Hs,0(Qn) ∀u ∈ Hs,0(Qn), s ∈ {2, . . . , ks + 1}.

Proof. (a) The proof is similar to the corresponding property for the temporal interpo-
lation (cf. Lemma 3.15 (a)).

The arguments for (b)-(d) use the same approximation argument to reduce the claims
to statements about the spatial L2(Ω) (quasi-) interpolation operator Iks .

(b) The proof of (b) with suitable references for the higher order case has been given
in Lemma 3.3.6 of [Leh15].

Hence, we will only show statement (c):

(c) Let u ∈ Hs,0(Qn). Pick a sequence uε ∈ Cs(Qn) such that ‖uε − u‖Hs,0(Qn) → 0 as
ε→ +0. Using the triangle inequality and the stability estimate (a) yields:∥∥Lksu∥∥

Qn ≤
∥∥Lks(u− uε)∥∥

Qn +
∥∥Lksuε∥∥

Qn

≤ 2 ‖u− uε‖Qn +
∥∥Lksuε∥∥

Qn ,

where ‖u− uε‖Qn → 0 as ε→ +0. It remains to estimate the other term. Since uε

is sufficiently smooth we have that Πksu(·, t) = Iksu(·, t) where Iks is the (quasi-)
L2(Ω) interpolation operator. This allows to use the interpolation results for Iks .
One obtains: ∥∥Lksuε∥∥2

Qn =

∫
In

∥∥(id− Iks)uε(·, t)
∥∥2

Ω
dt

≤ Ch2s

∫
In

‖uε(·, t)‖2
Hs(Ω) dt.

Letting ε→ +0 yields∥∥Lksu∥∥
Qn ≤ Chs ‖u‖Hs,0(Qn) , s ∈ {1, . . . , ks + 1}.
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(d) The proof is done as in (c) with the difference that there is an additional gradient op-
erator ∇ in the norms. One then estimates

∥∥∇Lks(u− uε)∥∥
Qn ≤ C ‖u− uε‖H1,0(Qn)

by using (b) instead of (a).

Interpolation in space-time

One can now define a space-time interpolation operator Πn
W for the tensor product case

Qn = Ω× In into the space Wn defined in (3.13). This is achieved by concatenating the
spatial and temporal interpolation operation:

Πn
W : L2(Qn)→ Wn, Πn

W (v) = Πkt(Πks(v)), ∀v ∈ L2(Qn). (3.20)

Since Πks and Πkt are L2-projections, the overall interpolation operator Πn
W is an L2-

projection on L2(Qn). For ease of notation we drop the index n of Πn
W in this section

and simply write ΠW .

Remark 13. As an alternative, one may consider to replace the temporal L2-projection
Πkt in (3.20) by temporal nodal interpolation. For space-time functions u(x, t) which are
sufficiently regular in time it follows that the jump between the time slabs JΠWuKn = 0
vanishes in an L2(Ωn) sense. But since this property is not needed in the subsequent
analysis, we will keep working with Πkt as a temporal L2-projection.

Denote the interpolation error of ΠW by LW = (id − ΠW ). An important ingredient
for establishing the approximation results of ΠW is that spatial derivatives commute with
the temporal interpolation and vice versa (cf. Lemma 3.14 and Lemma 3.16).

Theorem 3.18. For the interpolation operator ΠW as in (3.20) there hold the following
approximation error bounds:

(a) ‖u− ΠWu‖Qn ≤ C
(

∆tlt ‖u‖H0,lt (Qn) + hls ‖u‖Hls,0(Qn)

)
for ls ∈ {1, . . . , ks + 1} and

lt ∈ {1, . . . , kt + 1}.

(b) ‖∂t(u− ΠWu)‖Qn ≤ C
(

∆tlt−1 ‖u‖H0,lt (Qn) + hls
(
‖u‖Hls,0(Qn) + ‖∂tu‖Hls,0(Qn)

))
, for

ls ∈ {1, . . . , ks + 1} and lt ∈ {2, . . . , kt + 1}.

(c) ‖∇(u− ΠWu)‖Qn ≤ C
(

∆tlt ‖∇u‖H0,lt (Qn) + hls−1 ‖u‖Hls,0(Qn)

)
, for ls ∈ {2, . . . , ks+

1} and lt ∈ {1, . . . , kt + 1}.

Proof. For a differential operator D ∈ {id,∇, ∂t} one has:

‖DLWu‖Qn =
∥∥D(u− ΠktΠksu)

∥∥
Qn

≤
∥∥D(u− Πktu)

∥∥
Qn +

∥∥D(Πktu− ΠktΠksu)
∥∥
Qn

=
∥∥DLktu∥∥

Qn +
∥∥DΠktLksu

∥∥
Qn

We now consider the different cases for D:
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• D = id:

Here we apply the stability estimate for Πkt (Lemma 3.15 (a)) and then the ap-
proximation results for Lkt (Lemma 3.15 (c)) and Lks (Lemma 3.17 (c)):

‖LWu‖Qn ≤
∥∥Lktu∥∥

Qn +
∥∥ΠktLksu

∥∥
Qn

≤
∥∥Lktu∥∥

Qn +
∥∥Lksu∥∥

Qn

≤ C
(

∆tlt ‖u‖H0,lt (Qn) + hls ‖u‖Hls,0(Qn)

)
,

for ls ∈ {1, . . . , ks + 1} and lt ∈ {1, . . . , kt + 1}.

• D = ∇:

First we use that temporal interpolation commutes with the spatial derivatives.
Then the stability estimate for the temporal interpolation is employed. Finally, one
can apply the approximation results: Lemma 3.15 (c)) and Lemma 3.17 (d).

‖∇LWu‖Qn ≤
∥∥∇Lktu∥∥

Qn +
∥∥∇ΠktLksu

∥∥
Qn

=
∥∥Lkt∇u∥∥

Qn +
∥∥Πkt∇Lksu

∥∥
Qn

≤
∥∥Lkt∇u∥∥

Qn +
∥∥∇Lksu∥∥

Qn

≤ C
(

∆tlt ‖∇u‖H0,lt (Qn) + hls−1 ‖u‖Hls,0(Qn)

)
,

for ls ∈ {2, . . . , ks + 1} and lt ∈ {1, . . . , kt + 1}.

• D = ∂t:

Using the stability estimate Lemma 3.15 (b)) gives:

‖∂tLWu‖Qn ≤
∥∥∂tLktu∥∥Qn +

∥∥∂tΠktLksu
∥∥
Qn

≤
∥∥∂tLktu∥∥Qn + C

∥∥Lksu∥∥
H0,1(Qn)

.

Since spatial interpolation commutes with the time derivative we obtain by using
Lemma 3.17 (c):∥∥Lksu∥∥2

H0,1(Qn)
=
∥∥Lksu∥∥2

Qn +
∥∥Lks∂tu∥∥2

Qn

≤ Ch2ls
(
‖u‖2

Hls,0(Qn) + ‖∂tu‖2
Hls,0(Qn)

)
.

Combinig this with the estimate
∥∥∂tLktu∥∥Qn ≤ C∆tlt−1 ‖u‖H0,lt (Qn) from Lemma

3.15 (d) gives:

‖∂tLWu‖Qn ≤ C
(

∆tlt−1 ‖u‖H0,lt (Qn) + hls
(
‖u‖Hls,0(Qn) + ‖∂tu‖Hls,0(Qn)

))
for ls ∈ {1, . . . , ks + 1} and lt ∈ {2, . . . , kt + 1}.

Together these inequalities give the claim.

This yields the following bounds in terms of the norm in the isotropic Sobolev spaces
on the time slab.
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Corollary 3.19. For lt, ls ∈ N define lmax = max {ls, lt}. For the interpolation operator
ΠW as in (3.20) there hold the following approximation error bounds:

(a) ‖u− ΠWu‖Qn ≤ C
(
∆tlt + hls

)
‖u‖Hlmax (Qn) , for ls ∈ {1, . . . , ks + 1} and lt ∈

{1, . . . , kt + 1}.

(b) ‖∂t(u− ΠWu)‖Qn ≤ C
(
∆tlt−1 + hls

)
‖u‖Hlmax+1(Qn) , for ls ∈ {1, . . . , ks + 1} and

lt ∈ {2, . . . , kt + 1}.

(c) ‖∇(u− ΠWu)‖Qn ≤ C
(
∆tlt + hls−1

)
‖u‖Hlmax+1(Qn) , for ls ∈ {2, . . . , ks + 1} and

lt ∈ {1, . . . , kt + 1}.

The previous estimates allow also to derive a bound on the approximation error of
the interpolation operator ΠW at discrete time levels. For this we need a discrete inverse
inequality in time:

Lemma 3.20 (Discrete inverse inequality in time). There exist a constant C > 0 such
that

‖u(·, tn)‖Ω ≤ C∆t−1/2 ‖u‖Qn (3.21)

for all u ∈ L2(Ω)⊗ Pkt.

Proof. Denote by C∞c (Ω) the C∞ functions with compact support in Ω. By density of
C∞c (Ω) in L2(Ω) it suffices to prove the claim for u ∈ C∞c (Ω)⊗Pkt . Then we can proceed
similarly as in the proof of Lemma 3.3: For fixed x ∈ Ω, u(x, ·) is a polynomial of degree
kt in time. By Theorem 2 of [WH03] there exists a constant C(kt) such that:

|u(x, tn)|2 ≤ C(kt)

∆t

∫
In

|u(x, t)|2 dt.

Integration over Ω yields∫
Ω

|u(x, tn)|2 dx ≤ C(kt)

∆t

∫
Ω

∫
In

|u(x, t)|2 dt dx.

That is, ‖u(·, tn)‖Ω ≤ C∆t−1/2 ‖u‖Qn .

Lemma 3.21 (Approximation error bounds at fixed time levels). For u ∈ H0,lt(Qn) ∩
H ls,0(Qn) there holds the estimate

‖(u− ΠWu)(·, tn)‖Ω ≤ C
(

∆tlt−1/2 ‖u‖H0,lt (Qn) + ∆t−1/2hls ‖u‖Hls,0(Qn)

)
, (3.22)

for ls ∈ {1, . . . , ks + 1} and lt ∈ {2, . . . , kt + 1}.

Proof. Similar to the proof of Theorem 3.18 consider the splitting LW = Lkt + ΠktLks .
An application of the triangle inequality yields:

‖LWu(·, tn)‖Ω ≤
∥∥Lktu(·, tn)

∥∥
Ω

+
∥∥ΠktLksu(·, tn)

∥∥
Ω
.

For the second term we can apply the discrete inverse inequality in time (3.21) which
yields: ∥∥ΠktLksu(·, tn)

∥∥
Ω
≤ C∆t−1/2

∥∥ΠktLksu
∥∥
Qn ≤ C∆t−1/2

∥∥Lksu∥∥
Qn .
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Combining this with the bound from Lemma 3.17 (c) for the spatial interpolation leads
to: ∥∥ΠktLksu(·, tn)

∥∥
Ω
≤ C∆t−1/2hls ‖u‖Hls,0(Qn) ,

for u ∈ H ls,0(Qn) and ls ∈ {1, . . . , ks + 1}.
To treat the term

∥∥Lktu(·, tn)
∥∥

Ω
we transform the interval In = (tn−1, tn] to the

reference interval Î = (0, 1] and consider the problem there. Denote the corresponding
transformation by Φ : Q̂→ Qn with Q̂ = Ω× Î. The transformed function and operator
are given by û = u ◦ Φ and L̂kt = Φ−1 ◦ Lkt ◦ Φ. Using that the time trace operator is
continuous in H0,1(Q̂) and the interpolation estimates for Πkt (Lemma 3.15) yields:∥∥Lktu(·, tn)

∥∥2

Ω
=
∥∥∥L̂ktû(·, 1)

∥∥∥2

Ω
≤ C

∥∥∥L̂ktû∥∥∥2

H0,1(Q̂)

= C

(∥∥∥L̂ktû∥∥∥2

Q̂
+
∥∥∥∂tL̂ktû∥∥∥2

Q̂

)
≤ C

(
1

∆t

∥∥Lktu∥∥2

Qn + ∆t
∥∥∂tLktu∥∥2

Qn

)
≤ C

(
∆t2lt

∆t
‖u‖2

H0,lt (Qn) + ∆t∆t2(lt−1) ‖u‖2
H0,lt (Qn)

)
= C∆t2(lt−1/2) ‖u‖2

H0,lt (Qn)

for u ∈ H0,lt(Qn) and lt ∈ {2, . . . , kt + 1}.
Combining both inequalities gives the claim.

3.3.2 Interpolation in unfitted space-time finite element spaces

Now an interpolation operator InΓ : Hk(Qn) → Wn into the space-time FE-space on the
time slab Qn = ∪t∈InΩ(t)× {t} defined in (2.3) is required. From the previous section
we have the space-time interpolation operator

Πn
W : L2(E(Qn))→ Wn

for the tensor product case at our disposal. This operator can be used by recalling that
assumption A.5 guarantees the existence of a linear extension operator

En : Hk(Qn)→ Hk(E(Qn)), k ∈ N, (3.23)

which is bounded: ‖Enu‖Hk(E(Qn)) ≤ C ‖u‖Hk(Qn). This allows to define the interpolation
operator by

InΓ := Πn
WE

n.

The global interpolation IΓ : Hk(Q) → Wh is defined by (IΓu)�E(Qn) = InΓu. There hold
the following interpolation results:

Theorem 3.22 (space-time unfitted interpolation). For lt, ls ∈ N define lmax = max {ls, lt}.
Then

(a) ‖u− InΓu‖Qn ≤ C
(
∆tlt + hls

)
‖u‖Hlmax (Qn), for ls ∈ {1, . . . , ks+1} and lt ∈ {1, . . . , kt+

1}.
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(b) ‖∂t(u− InΓu)‖Qn ≤ C
(
∆tlt−1 + hls

)
‖u‖Hlmax+1(Qn), for ls ∈ {1, . . . , ks + 1} and lt ∈

{2, . . . , kt + 1}.

(c) ‖∇(u− InΓu)‖Qn ≤ C
(
∆tlt + hls−1

)
‖u‖Hlmax+1(Qn), for ls ∈ {2, . . . , ks + 1} and lt ∈

{1, . . . , kt + 1}.

(d) ‖(u− InΓu)(·, tn)‖Ωn ≤ C
(
∆tlt−1/2 + ∆t−1/2hls

)
‖u‖Hlmax (Qn), for ls ∈ {1, . . . , ks+1}

and lt ∈ {2, . . . , kt + 1}.

Proof. For D ∈ {Id, ∂t,∇} it holds that

‖D(u− InΓu)‖Qn = ‖D(Id− Πn
W )Enu‖Qn

≤ ‖D(Id− Πn
W )Enu‖E(Qn) .

Now we can make use of the interpolation results on E(Qn) established in Corollary 3.19.
Consider the different cases:

• D = Id:

‖(Id− Πn
W )Enu‖E(Qn) ≤ C

(
∆tlt + hls

)
‖Enu‖Hlmax (E(Qn))

≤ C
(
∆tlt + hls

)
‖u‖Hlmax (Qn)

(3.24)

for ls ∈ {1, . . . , ks+1} and lt ∈ {1, . . . , kt+1}, where the continuity of the extension
operator was employed to obtain the second inequality.

The cases D ∈ {∂t,∇} are analogous.

• D = ∂t:
‖∂t(Id− Πn

W )Enu‖E(Qn) ≤ C
(
∆tlt−1 + hls

)
‖u‖Hlmax+1(Qn) ,

for ls ∈ {1, . . . , ks + 1} and lt ∈ {2, . . . , kt + 1}.

• D = ∇:

‖∇(Id− Πn
W )Enu‖E(Qn) ≤ C

(
∆tlt + hls−1

)
‖u‖Hlmax+1(Qn) ,

for ls ∈ {2, . . . , ks + 1} and lt ∈ {1, . . . , kt + 1}.

The result at the fixed time levels is obtained by estimating

‖(u− InΓu)(·, tn)‖Ωn = ‖((Id− Πn
W )Enu)(·, tn)‖Ωn

≤ ‖((Id− Πn
W )Enu)(·, tn)‖E(Ωn)

and then inserting the result for the tensor product case from Lemma 3.21.

3.4 A priori error estimate in discrete norm

To bound the right hand side in Theorem 3.12, the interpolation error in the norms
|||·|||, |||·|||∗ and ‖·‖J needs to be estimated. The desired bounds in |||·||| and |||·|||∗ follow
directly from Theorem 3.22.
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Proposition 3.23 (Approximation in |||·|||). Let kmax = max {ks, kt} and u ∈ Hkmax+2(Q).
Then there holds (for a fixed constant C > 0)

|||u− IΓu||| ≤ C
(
hks+1∆t−1/2 + ∆tkt+1/2 + hks

)
‖u‖Hkmax+2(Q) .

Under assumption A.3 this simplifies to

|||u− IΓu||| ≤ C
(
∆tkt+1/2 + hks

)
‖u‖Hkmax+2(Q) .

Proof. Consider the interpolation errors, denoted by eu = u− IΓu for the different parts
in the norm |||·||| one after another:

1. The last part in the norm is the anisotropic semi-norm which was bounded in
Theorem 3.22 (c):

N∑
n=1

(∇eu,∇eu)Qn ≤ C
(
∆t2(kt+1) + h2ks

)
‖u‖2

Hkmax+2(Q) .

2. For the scaled space-time H0,1-semi-norm (first part) an application of Theorem
3.22 (b) yields:

N∑
n=1

(∆t∂teu, ∂teu)Qn ≤ C∆t
(
∆t2kt + h2(ks+1)

)
‖u‖2

Hkmax+2(Q) .

3. For the DG-jump norm J| · |K we can make use of Theorem 3.22 (d):

J|eu|K2 ≤ 2
N∑
n=1

[∥∥(eu)
n−1
+ (·, tn−1)

∥∥2

Ωn−1 +
∥∥(eu)

n
−(·, tn)

∥∥2

Ωn

]
≤ C

(
∆t2(kt+1/2) + h2(ks+1)∆t−1

)
‖u‖2

Hkmax+1(Q) .

Combining these estimates yields the first result. Under assumption A.3. one has
hks+1∆t−1/2 = hks(h2∆t−1)1/2 ≤ Chks , which implies the second statement.

Proposition 3.24 (Approximation in |||·|||∗). Let kmax = max {ks, kt} and u ∈ Hkmax+2(Q).
Then there holds (for a fixed constant C > 0)

|||u− IΓu|||∗ ≤ C
(
hks+1∆t−1/2 + ∆tkt+1/2 + hks

)
‖u‖Hkmax+2(Q) .

Under assumption A.3 this simplifies to

|||u− IΓu|||∗ ≤ C
(
∆tkt+1/2 + hks

)
‖u‖Hkmax+2(Q) .

Proof. Consider the interpolation errors, denoted by eu = u− IΓu for the different parts
in the norm |||·|||∗ one after another:

1. The last part in the norm is the anisotropic semi-norm which is bounded as above:

N∑
n=1

(∇eu,∇eu)Qn ≤ C
(
∆t2(kt+1) + h2ks

)
‖u‖2

Hkmax+2(Q) .
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2. For the scaled space-time L2-error we get by means of Theorem 3.22 (a) that:

N∑
n=1

(
∆t−1eu, eu

)
Qn ≤ C∆t−1

(
∆t2(kt+1) + h2(ks+1)

)
‖u‖2

Hkmax+1(Q) .

3. The contribution stemming from the time levels is bounded by Theorem 3.22 (d):

J|eu|K2
∗ =

N∑
n=1

∥∥(eu)
n
−(·, tn)

∥∥2

Ωn ≤ C
(
∆t2(kt+1/2) + h2(ks+1)∆t−1

)
‖u‖2

Hkmax+1(Q) .

The claim follows by combining these estimates.

To treat the term in (3.9) that involves the ‖·‖J -seminorm some preliminaries are
required:

For a facet patch ωF , let Pks(ωF ) denote the space of polynomials of degree at most
ks on ωF . Let the L2-projection PωF

: L2(ωF )→ Pks(ωF ) be defined by∫
ωF

(v − PωF
v)φ = 0 ∀φ ∈ Pks(ωF ). (3.25)

It has the following properties, that are known e.g. from the theory of local projection
stabilization (cf. Remark 3.69 in [RST08]):

Lemma 3.25. (a) Stability:

For v ∈ L2(ωF ) it holds that: ‖PωF
v‖L2(ωF ) ≤ ‖v‖L2(ωF ),

(b) Approximation:

For v ∈ Hks+1(ωF ) it holds that

‖v − PωF
v‖L2(ωF ) ≤ Chks+1 |v|Hks+1(ωF ) .

Proof. (a) This is a fundamental property of the L2-projection:

0 ≤
∫
ωF

(PωF
v − v)(PωF

v − v) dx

= ‖PωF
v‖2

ωF
+ ‖v‖2

ωF
− 2

∫
ωF

(PωF
v)v dx

= ‖PωF
v‖2

ωF
+ ‖v‖2

ωF
− 2

∫
ωF

PωF
vPωF

v dx

= −‖PωF
v‖2

ωF
+ ‖v‖2

ωF
.

(b) The definition (3.25) implies that PωF
coincides with the identity mapping on

Pks(ωF ). Hence, the approximation property follows from Theorem 4.28 of [GR07],
which is a consequence of the Bramble-Hilbert Lemma.
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Proposition 3.26 (Approximation in ‖·‖J). Let u be the solution of the continuous
problem.

(a) For any F ∈ F∗,nR it holds that

‖JInΓuKωF
(·, t)‖ωF

≤ C
(∥∥(InΓu− ΠktEnu)(·, t)

∥∥
ωF

+
∥∥(ΠktEnu− PωF

ΠktEnu)(·, t)
∥∥
ωF

)
,

where

• PωF
is the L2-projection onto the facet-patch from above,

• En the extension operator from (3.23),

• and Πkt the temporal L2-projection on E(Qn) = E(Ωn)× In from (3.14).

(b) It holds that

‖IΓu‖J ≤ C
√
γJ

√(
1 +

∆t

h

)
hks ‖u‖Hks+1(Q) .

Remark 14. The proof below assumes that the solution is sufficiently regular in time
so that evaluations at a fixed time level are well defined. This leads to a requirement
of the form Enu ∈ C(In, H

ks+1(E(Ωn))). To treat solutions with lower regularity, this
assumption may be relaxed by means of a density argument.

Proof. (a) Consider a facet patch ωF = T̄1 ∪ T̄2 and set wh = (InΓu)(·, t). Denote by wi
the extension of the polynomial (wh)�Ti to ωF . Let v = PωF

wh ∈ Pks(ωF ) be the L2

projection onto the facet patch. We have

‖JwhKωF
‖2
ωF

= ‖w1 − w2‖2
ωF

≤ 2
(
‖w1 − v‖2

ωF
+ ‖v − w2‖2

ωF

)
= 2

(
‖w1 − v‖2

T1
+ ‖w1 − v‖2

T2
+ ‖v − w2‖2

T1
+ ‖v − w2‖2

T2

)
.

Shape regularity ensures the existence of a constant C > 0, only depending on the
polynomial degree ks, such that

‖w1 − v‖2
T2
≤ C ‖w1 − v‖2

T1
and ‖v − w2‖2

T1
≤ C ‖v − w2‖2

T2
.

It follows that:

‖JwhK‖2
ωF
≤ C

(
‖w1 − v‖2

T1
+ ‖v − w2‖2

T2

)
= C ‖wh − PωF

wh‖2
ωF
.

By using the triangle inequality we can further estimate:

‖wh − PωF
wh‖2

ωF

=
∥∥(wh − ΠktEnu) + (ΠktEnu− PωF

ΠktEnu) + (PωF
ΠktEnu− PωF

wh)
∥∥2

ωF

≤ 4
(∥∥wh − ΠktEnu

∥∥2

ωF
+
∥∥ΠktEnu− PωF

ΠktEnu
∥∥2

ωF
+
∥∥PωF

(ΠktEnu− wh)
∥∥2

ωF

)
≤ 4

(
2
∥∥wh − ΠktEnu

∥∥2

ωF
+
∥∥ΠktEnu− PωF

ΠktEnu
∥∥2

ωF

)
,

where the last step used the stability of the L2-projection.
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(b) The sum

‖IΓu‖2
J =

N∑
n=1

tn∫
tn−1

(
1 +

∆t

h

)
γJ
h2

∑
F∈F∗,nR

‖JInΓuKωF
‖2
ωF
dt (3.26)

can now be split into two parts by using the result from (a).

‖IΓu‖2
J ≤ C

(
1 +

∆t

h

)
γJ
h2

( N∑
n=1

∥∥InΓu− ΠktEnu
∥∥2

E(Qn)

+
N∑
n=1

tn∫
tn−1

∑
F∈F∗,nR

∥∥(ΠktEnu− PωF
ΠktEnu)(·, t)

∥∥2

ωF
dt
)
.

To estimate the first term we recall that InΓ = Πn
WE

n = ΠktΠksEn, where Πks is the
spatial L2-projection. Then

InΓu− ΠktEnu = Πkt
(
ΠksEnu− Enu

)
.

Combining the stability of the temporal L2-projection (Lemma 3.15 (a)) and the
approximation results for the spatial-projection (Lemma 3.17 (c)) yields:∥∥IΓu− ΠktEnu

∥∥2

E(Qn)
≤
∥∥ΠksEnu− Enu

∥∥2

E(Qn)

≤Ch2(ks+1) ‖Enu‖2
Hks+1(E(Qn)) ≤ Ch2(ks+1) ‖u‖2

Hks+1(Qn) .

For the other part we first use the previous Lemma 3.25 (b):

tn∫
tn−1

∑
F∈F∗,nR

∥∥(ΠktEnu− PωF
ΠktEnu)(·, t)

∥∥2

ωF
dt

≤Ch2(ks+1)

tn∫
tn−1

∑
F∈F∗,nR

∣∣ΠktEnu(·, t)
∣∣2
Hks+1(ωF )

dt

≤Ch2(ks+1)

tn∫
tn−1

∣∣ΠktEnu(·, t)
∣∣2
Hks+1(E(Ωn))

dt

=Ch2(ks+1)
∣∣ΠktEnu

∣∣2
Hks+1,0(E(Qn))

.

From the fact that Πkt commutes with the spatial derivatives and is L2-stable it
follows that∣∣ΠktEnu

∣∣2
Hks+1,0(E(Qn))

≤ |Enu|2Hks+1,0(E(Qn)) ≤ ‖E
nu‖2

Hks+1(E(Qn)) .

Hence,

tn∫
tn−1

∑
F∈F∗,nR

∥∥(ΠktEnu− PωF
ΠktEnu)(·, t)

∥∥2

ωF
dt

≤Ch2(ks+1) ‖Enu‖2
Hks+1(E(Qn)) ≤ Ch2(ks+1) ‖u‖2

Hks+1(Qn) .
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Combining both estimates we arrive at

‖IΓu‖2
J ≤ C

(
1 +

∆t

h

)
γJ
h2
h2(ks+1) ‖u‖2

Hks+1(Q)

by summing up over n = 1, . . . , N .

In view of Theorem 3.12, we arrive at the following a priori error estimate in the
discrete norm |||·|||.

Theorem 3.27 (A priori error estimate). Let u be the solution of (2.1) and uh be the
solution of (2.7). Let kmax = max {ks, kt} and assume u ∈ Hkmax+2(Q). Then there holds:

|||u− uh||| ≤ C (1 + C3.12(γJ))
(
hks+1∆t−1/2 + ∆tkt+1/2 + hks

)
‖u‖Hkmax+2(Q)

+
C
√
γJ

C3.9(γJ)

√(
1 +

∆t

h

)
hks ‖u‖Hks+1(Q) .

Under assumption A.3 this simplifies to

|||u− uh||| ≤ C

(
∆tkt+1/2 +

√(
1 +

∆t

h

)
hks

)
‖u‖Hkmax+2(Q) ,

where C depends on γJ .

Proof. Combine Theorem 3.12 and Propositions 3.23, 3.24 and 3.26.

Remark 15. Since stability is lost for γJ → +0 also the energy norm estimate blows up
in this case. This can be seen from limγJ→+0 C3.12(γJ) =∞.

Remark 16. The Céa-like result involves the inverse of the stabilization constant in
front of the |||·|||∗-norm. Consider now the case where the ghost penalty terms are not
scaled with the factor

(
1 + ∆t

h

)
. According to Remark 10 this will result in a scaling of

the approximation error in the |||·|||∗-norm by
(
1 + ∆t

h

)
. Since this approximation error

involves the factor ∆tkt+1/2, this approach would result in a worse a priori error estimate.

Remark 17. The error estimate is suboptimal with respect to the Sobolev smoothness
required from the exact solution. This defect stems from the interpolation estimates es-
tablished in Theorem 3.18. By considering Sobolev interpolation in non-integer spaces
one may lower the required smoothness of the solution by half an order. We do not follow
this approach here in order to avoid technicalities.

Corollary 3.28 (L2 estimate at final time). Let u be the solution of (2.1) and uh be the
solution of (2.7). Then there holds:

∥∥(u− uh)N−
∥∥

ΩN ≤ C

(
hks+1∆t−1/2 + ∆tkt+1/2 +

√(
1 +

∆t

h

)
hks

)
‖u‖Hkmax+2(Q) .

Under assumption A.3 this simplifies to

∥∥(u− uh)N−
∥∥

ΩN ≤ C

(
∆tkt+1/2 +

√(
1 +

∆t

h

)
hks

)
‖u‖Hkmax+2(Q) .
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Remark 18 (Relation of analysis to literature). The analysis presented in this chapter
was motivated by [LR13], [Leh15] and to a lesser extent by [Sch10]. Let us discuss some
of the similarities and differences.

• The contributions [LR13] and [Leh15] present an error analysis for a Space-Time-
DG Nitsche-XFEM method for a two-phase mass transport problem with piecewise
linear elements in time and space. The moving domain problem considered in this
contribution is simpler, because it does not involve interface terms. But compared to
[LR13] and [Leh15], we prove a higher order bound (order greater-than two) which
is anisotropic with respect to the polynomial degrees in space and time. One of the
main differences already lies in the construction of the method. While this thesis
utilizes a ghost penalty stabilization, [LR13] and [Leh15] do not. In the end, we
prove a similar Céa-like Theorem as in [Leh15] (cf. Lemma 3.3.14 in [Leh15]) , but
the ghost penalty stabilization opened up a different way to arrive at this result. In
particular, the norms that are used in this thesis differ significantly from the ones in
[LR13] and [Leh15], because we also control the time derivative. Furthermore, our
proof of inf-sup stability relies on inverse inequalities which are ensured by the ghost
penalty stabilization. Since [LR13] and [Leh15] do not use ghost penalty, the proof
of stability in these contributions is naturally quite different from the one presented
here.

• The proof of inf-sup stability in this thesis is closer to the one given in [Sch10].
This paper analyzes a general evolution equation in a Hilbert space. The problem is
considered in a semi-discrete setting with discretization in time only. To this end, a
discontinuous Galerkin-Petrov time discretization is applied. This is very different
from our setting already by the fact that we consider a fully discretized problem and
also a different time discretization. However, there is a similarity, namely that the
time derivative of the discrete solution is contained in the discrete test space. Both
in [Sch10] (cf. Lemma 3 in [Sch10]) and in this thesis, this property is utilized for
deriving inf-sup stability.

Note also that we use a different variant of the ghost penalty stabilization than prevalent
in the literature. Thus, some fundamental properties of this stabilization first had to
be derived (cf. subsection 3.2.1). This includes in particular the properties for time-
dependent problems.
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Chapter 4

Isoparametric space-time
discretization for a moving domain
problem

In this chapter we drop the assumption of an exact handling of the geometry. First, a
stationary problem is considered. It is discussed how to obtain a higher order explicit
description of implicitly defined geometries by a parametric mapping of the underlying
mesh. We briefly sketch the construction of this mapping and outline how it is applied
in the setting of finite element methods. This gives rise to an isoparametric (unfitted)
finite element method [Leh16],[LR17].

Whereas the stationary situation has been fully analyzed in the literature [LR17],
the extension to moving domain problems is an open field. In section 4.2 we generalize
the parametric mapping to a space-time mesh transformation. In this regard, some new
difficulties occur that are not present in the stationary case and need to be adressed (see
section 4.2.2 and 4.3). Finally, we discuss how to apply the space-time mesh transfor-
mation for the solution of the moving domain problem from chapter 2. To this end, the
space-time discretization from this chapter needs to be adapted. The changes entailed
by the isoparametric method are discussed in section 4.3.

4.1 Isoparametric (unfitted) FEM

The problem to compute integrals on implictedly defined domains

Consider a stationary version of our model problem

−∆u+ u = f in Ω,

∇u · n∂Ω = 0 on ∂Ω.
(4.1)

Here the domain Ω is contained in a larger background domain Ω̃. The triangulation
is not fitted to the boundary of Ω. We assume that the domain Ω is described by a smooth
level set function φ, that is Ω = {x ∈ Ω̃ | φ(x) < 0} and ∂Ω = {x ∈ Ω̃ | φ(x) = 0}.
Consider the weak formulation of (4.1): Find u in an appropriate space such that for all
test functions v:
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φ > 0

φ < 0

x3

x2

x1

Γlin

T ∩ {φ < 0} =

Tc

Tb

Ta

x3

x2

x1

c1

c2

Γlin

Ta ∪

Tc

Tb

Ta

x3

x2

x1

c1

c2

Γlin

Tb

Figure 4.1: The shown element T is cut by the piecewise linear interface Γlin = {x ∈ Ω̃ |
φ̂h(x) = 0}. The integral over T ∩{φ < 0} has to be computed. To this end, new vertices
c1 and c2 are introduced. This allows to split T ∩ {φ < 0} into the two triangles Ta and
Tb on which standard quadrature rules can be applied.

∫
Ω

∇u∇v + uv dx =

∫
Ω

fv dx

holds. This gives rise to the problem of having to compute integrals
∫

Ω
f dx over

the implicitly described domain Ω = {x ∈ Ω̃ | φ(x) < 0}. For other non-homogeneous
boundary conditions or interface problems also integrals over {x ∈ Ω̃ | φ(x) = 0} have to
be evaluated. A highly accurate and robust computation of these integrals is crucial for
the numerical realization of higher order methods.

A low-order approach for numerical integration

A popular approach to compute the integrals
∫

Ω
f dx on simplicial meshes is based on

tesselation, see e.g. [Nær14] and [MGW09]. The level set function φ is approximated by a
piecewise linear level set function φ̂h = I1φ, where I1 is the nodal interpolation operator.
Accordingly, the integral over Ω = {x ∈ Ω̃ | φ(x) < 0} is approximated by an integral
over Ωlin = {x ∈ Ω̃ | φ̂h(x) < 0}: ∫

Ω

f dx ≈
∫

Ωlin

f dx.

The boundary Γlin = ∂Ωlin = {x ∈ Ω̃ | φ̂h(x) = 0} is then piecewise planar. To elements
which are cut by a piecewise linear approximation of the level set function, a tesselation
algorithm, as illustrated in Figure 4.1, can be applied. This algorithm subdivides the
cut elements into simpler geometries on which standard quadrature rules with positive
weights ωi can be applied:∫

Ω

f dx ≈
∫

Ωlin

f dx =
∑
T∈Th

∑
i

ωif(xi). (4.2)
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Unfortunately, this approach is limited to second order accuracy because the geometry
is approximated by the piecewise linear level set function φ̂h. In particular,

dist
(
∂Ω, ∂Ωlin

)
≤ O(h2).

Basic concept of isoparametric unfitted FEM

In [Leh16],[LR17] a method to compute integrals on implicitly described domains with
high order accuracy is presented. It is based on a parametric mapping of the underlying
mesh which gives rise to an explicit, high order representation of the level set domain. In
the following we describe only the basic idea of this approach. For a thorough discussion
and the actual construction of the mapping we refer to the literature cited above.

• One starts from a higher order interpolation φh = Iksφ ∈ V ks
h of the level set

function φ and a piecewise linear nodal interpolation φ̂h = I1φh of φh.

• Using φ̂h and the high-order information given by φh as input one constructs a
mapping Θh of the underlying mesh such that

φ̂h ≈ φh ◦Θh.

That is, Θh maps the piecewise planar interface {x ∈ Ω̃ | φ̂h(x) = 0} approximately
onto the zerolevel set of a high order accurate level set function. The image of the
piecewise planar domain under this mapping Θh(Ω

lin) is then a high-order accurate
approximation to Ω:

dist
(
∂Ω, ∂

(
Θh(Ω

lin)
))
≤ O(hks+1).

• The integrals are approximated by∫
Ω

f dx ≈
∫

Θh(Ωlin)

f dx.

By means of the transformation formula for integrals this integral can be reduced
to an integral over the piecewise linear approximation Ωlin. That is, this approach
leads to a high-order approximation of the geometry which admits by construction
an explicit representation. The cut topology is unchanged since the integrals are
formulated with respect to the piecewise planar reference configuration on which
e.g. the tesselation approach mentioned above can be applied:∫

Θh(Ωlin)

f dx =

∫
Ωlin

f ◦Θh |det (DΘh)| dy

=
∑
T∈Th

∑
i

ωi |det (DΘh(yi))| f(Θh(yi)).

The quadrature weights are the same as in (4.2), in particular, they are positive.
The accuracy of the quadrature now depends on Θh.

• This approach requires adapted finite element spaces which depend on φ̂h and
the parametric mapping. Let Vh be the finite element space corresponding to the
piecewise planar approximation with φ̂h. Applying the transformation Θh leads to
the isoparametric FE-space

Vh = {φh ◦Θ−1
h | φh ∈ Vh}.
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Construction of the stationary mesh-transformation

We sketch the main steps that are required to construct the parametric mapping Θh.
For a detailed and rigorous construction we refer to section 3 of [LR17]. First, some new
notation will be introduced.

Let Γlin := {φ̂ = 0} denote the low order geometry approximation of the boundary.
The elements of the triangulation T̃h of the background domain Ω̃ which are cut by Γlin

are collected in the set T Γ := {T ∈ T̃h, T ∩ Γlin 6= ∅}. The corresponding domain
is denoted by ΩΓ := {x ∈ T, T ∈ T Γ}. The set T Γ

+ := {T ∈ T̃h, T ∩ ΩΓ 6= ∅}
contains additionally all elements that share at least one vertex with elements in T Γ.
The corresponding domain is ΩΓ

+ := {x ∈ T, T ∈ T Γ
+ }. Furthermore, we distinguish the

set of continuous functions C(ΩΓ) on ΩΓ from the set of piecewise continuous functions
by denoting the latter as C(T Γ) := ⊕T∈T ΓC(T ). The functions in C(T Γ) may have jumps
over the element interfaces.

The mesh-deformation is constructed in the following steps:

1. Element-local construction for T ∈ T Γ:

Let ETφh be the polynomial extension of (φh)�T . For sufficiently small δ > 0 we
define the function dh : T → [−δ, δ] by requiring that dh(x) is the (in absolute
value) smallest number such that

ETφh(x+ dh(x)Gh(x)) = φ̂(x) for x ∈ T ∈ T Γ (4.3)

holds. Here, Gh(x) is a search direction. Possible choices are Gh(x) = ∇φh(x) which
may be discontinuous across element interfaces or a smoothed version Gh(x) =(
P Γ
h∇φh

)
(x), where P Γ

h : C(T Γ)d → V ks
h (ΩΓ)d is a projection operator. This

operator can be chosen as an Oswald-type projection which proceeds by averaging
(see section 2.2 of [LR17]).

The problem (4.3) can be solved by means of a Newton search. The obtained
function dhGh ∈ C(T Γ)d is used to define

ΨΓ
h(x) := x+ dh(x)Gh(x) for x ∈ T ∈ T Γ. (4.4)

The function ΨΓ
h is projected to a finite element function by solving local L2(T )

problems.

2. Smoothing by averaging with a projection operator:

The function ΨΓ
h is possibly discontinuous across element interfaces. These discon-

tinuities can be removed by applying the projection operator P Γ
h from above. This

leads to the definition of ΘΓ
h ∈ C(ΩΓ) by setting

ΘΓ
h := P Γ

h ΨΓ
h = id + P Γ

h (dhGh) . (4.5)

The transformation ΘΓ
h maps the piecewise linear interface Γlin to Γh = ΘΓ

h(Γlin),
which turns out to approximate the exact interface Γ = {φ = 0} with optimal order
(Lemma 3.7 in [LR17]):

dist (Γ,Γh) . hks+1. (4.6)
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Ω̃ \ Ωlin

Ωlin

Γlin
Θh−→

Ω̃ \Θh(Ω
lin)

Θh(Ω
lin)

Γh

Figure 4.2: Illustration of the mesh deformation: A piecewise linear approximation of the
zero level set Γlin is mapped to a high order accurate approximation Γh.

3. Extension from ΩΓ to Ω̃:

There exists an extension operator E∂ΩΓ
: C(∂ΩΓ) → C(Ω̃ \ ΩΓ) which extends

piecewise smooth functions given on ∂ΩΓ to the domain Ω̃ \ΩΓ in such a way that
the extension is zero on Ω̃ \ΩΓ

+ and piecewise smooth on ΩΓ
+ \ΩΓ . This operator is

derived by means of standard tools from isoparametric finite element methods (see
[Len86] and [Ber89]). Given E∂ΩΓ

and the local transformation ΘΓ
h we define the

globally continuous mapping Θh ∈ V ks
h (Ω̃)d by

Θh =


ΘΓ
h on ΩΓ,

id + E∂ΩΓ (
ΘΓ
h − id

)
on ΩΓ

+ \ ΩΓ,

id on Ω̃ \ ΩΓ
+.

(4.7)

It follows from this definition that the transformation acts only in the vicinity of
the interface. The situation is sketched in Figure 4.2. Moreover, it can be shown
that

‖DΘh − id‖∞,Ω̃ . h. (4.8)

Hence, DΘh is invertible for h sufficiently small and Θh : T → Θh(T ) is a bijection.
Moreover, the property (4.8) ensures shape-regularity of the transformed simplices
{Θh(T ), T ∈ T̃h} for h sufficiently small. In the underresolved case, where h is too
large, the deformation needs to be limited in order to guarantee shape-regularity
(see section 2.6 of [Leh16]).

4.2 Space-Time mesh deformation

4.2.1 Construction

The aim of this section is to construct a space-time version of the mesh deformation. We
assume that there is a smooth level set function φ : Q̃→ R available which describes the
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exact geometry:

φ(x, t)


< 0 x ∈ Ω(t),

= 0 x ∈ ∂Ω(t),

> 0 x ∈ Ω̃ \ Ω(t).

Then the following two tasks are carried out on the time slabs Q̃n:

1. Reference geometry representation:

Based on φ we compute a high order accurate approximation

φh(x, t) =
kt∑
l=0

tlφl(x) ∈ V kt,ks
h = V ks

h ⊗ P
kt , where φl ∈ V ks

h ,

of the exact geometry. Here V ks
h is a standard finite element space of degree ks on

the background domain Ω̃, so that V kt,ks
h coincides with the space Wn from (3.13)

on Q̃n. Applying the spatial, nodal P1 interpolation operator I1 to each φl leads
to:

φ̂h(x, t) =
kt∑
l=0

tlφ̂l(x) ∈ V kt,1
h , where φ̂l = I1φl ∈ V 1

h .

This function describes the reference geometry. Note that it is high order in time
but linear in space. Similar to the method for the stationary case all integrals
that need to be computed in the implementation of the space-time version will be
reduced to integrals on the reference geometry. The integrals over {φ̂h ≶ 0} and
{φ̂h = 0} on the space-time prisms can be simplified by iterated integrals. Since
φ̂h(·, t̄) is piecewise linear for a fixed t̄ the spatial integration only needs to treat
elements whose cut topology is described by a piecewise linear approximation of
the level set function.

2. Higher order accurate geometry representation with space-time mapping:

The space-time version of the mesh deformation is constructed by employing the
machinery available from the stationary case. Feeding φl and φ̂l into this mechanism
produces a spatial mesh deformation Θl(x) ∈ [V ks

h ]d such that

φ̂l(x) ≈ φl(Θl(x))

for every l = 0, . . . , kt. This allows to define the space-time mapping:

Θh(x, t) :=
kt∑
l=0

tlΘl(x) ∈ [V kt,ks
h ]d. (4.9)

To ensure continuity of Θh within the time slab Q̃n it is necessary to enlarge the
set of elements T Γ on which the local transformation ΨΓ

h,l in steps 1-2 of the sta-
tionary case is computed. For every l ∈ 0, . . . , kt the local construction needs to be
performed on each element from the set

T Γn := {T ∈ T̃ nh , T ∩ Γlin(t) 6= ∅ for some t ∈ In},

where Γlin(t) = {φ̂(·, t) = 0}. This set contains all the elements which are cut by
the interface at some point in time within the time slab. The corresponding sets
ΩΓn , T Γn

+ and ΩΓn
+ are defined analogously as for the stationary case.
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+
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Figure 4.3: Discontinuity of space-time mapping between time slabs: The marking of the
elements (filled/dotted/none) corresponds to the value of the mesh-deformation on these
elements.

4.2.2 Discontinuity of mesh deformation between time slabs

The space-time mesh deformation is defined on each time slab Q̃n by means of (4.9).
Unfortunately, the construction from the previous subsection leads to a space-time map-
ping which is in general discontinuous between different time slabs. This is illustrated
in Figure 4.3. Consider the space-time prisms Qn

T = T × In and Qn+1
T = T × In+1. On

the time slab Q̃n the corresponding simplex T belongs to the set T̃h \ T Γn
+ . According to

the definition (4.7) we have (Θn
−)�T = id, where Θn

± = lims→0 Θh(tn ± s, ·). However, in

the next time slab Q̃n+1 the same simplex T is now a neighbor of a cut element. Hence,
T ∈ T Γn+1

+ . Again according to (4.7) we have (Θn
+)�T 6= id. Therefore, (Θn

−)�T 6= (Θn
+)�T .

That is, the transformation is in general discontinuous between the time slabs. This is
in contrast to the discrete space-time domains which are matching by construction.

Since the derived method involves passing on the solution on the time slab Qn as an
initial condition for the variational formulation on the time slab Qn+1 these discontinuities
will cause difficulties in the implementation. We will address this problem when discussing
the isoparametric space-time discretization and sketch a possible solution.

4.2.3 Test problem: Circle moving through mesh

We expect that the space-time mesh transformation provides a higher order accurate
description of the geometry. That is, a space-time version of equation (4.6) should hold
true. More precisely, the distance of the space-time interface Γ∗ = ∪t∈(0,T ]Γ(t)× {t},
where Γ(t) = {φ(·, t) = 0}, to its approximation Γ∗,h = ∪t∈(0,T ]Γh(t)× {t}, where Γh(t) =
Θh(t)(Γ

lin(t)) should be controlled as

dist (Γ∗,Γ∗,h) . ∆tkt+1 + hks+1. (4.10)

To test this we consider a circle moving through the mesh. The level set function is given
by

φ(x, y, t) =

√
(x− 1− 1

4
sin(πt))2 + (y − 1)2 − 1

2
.

At t = 0 the center of the disk described by {φ(t) < 0} is at position (x, y) = (1, 1).
From t = 0 to t = 1/2 the disk shifts to the right so that the center at t = 1/2 is at
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Figure 4.4: Circle moving through the mesh: geometry error.

(x, y) = (5/4, 1). Then it switches direction and has returned to its original position at
t = 1.

We consider a discrete set Sn of ten equally spaced sample points in In to approximate
the geometry error:

dist (Γ∗,Γ∗,h) = max
n=1,...,N

max
t∈In

dist (Γ(t),Γh(t))

≈ max
n=1,...,N

max
t∈Sn

dist (Γ(t),Γh(t)).

The refinement in time has been performed on a mesh of 57344 triangles with ks = 4.
The refinement in space was carried out with a time step of ∆t = 1/64 and kt = 4. The
results are shown in Figure 4.4.The numerical test confirms the prediction (4.10).

4.3 Isoparametric space-time discretization

In this section we describe the adaptations that are necessary when switching from a
space-time discretization that assumes exact geometry handling to the isoparametric
case. As a start, consider the variational formulation from chapter 2.

Find u in Wh such that for all v in Wh

B(u, v) + J(u, v) = f(v)

holds true. In practice, the alternative representation B(u, v) = d′(u, v)+b′(u, v)+a(u, v)
is preferred in order to stay as close to the mass conservation property as possible (cf.
Remark 3). For v which is supported in Qn it holds that vn+ = vn−1

− = 0. By testing with
such a function one obtains the problem for the time slab Qn:

(u,−∂tv −w · ∇v)Qn + (∇u,∇v)Qn +
(
un−, v

n
−
)

Ωn + jnh (u, v) = (f, v)Qn +
(
un−1
− , vn−1

+

)
Ωn−1 .

(4.11)
The transition to isoparametric (unfitted) FEM works similar as described for the

stationary case. The integrals
∫
Qn f are approximated by∫

Qn

f ≈
∫

Θh(Qn,lin)

f, with Θh(Q
n,lin) =

⋃
t∈In

Θh(t)
(
Ωlin(t)

)
× {t}.
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This requires to replace u and v in (4.11) by functions from the isoparametric space-
time finite element space

Wn,Θh
:= {v | v(t,Θh(t, x̂)) = v̂(t, x̂) for x̂ ∈ Ωlin(t), with v̂ ∈ Wn}.

Here we follow the convention to denote a function defined on the undeformed mesh by
v̂ : Qn,lin 7→ R, while v : Θh(Q

n,lin) 7→ R is defined on the deformed mesh. Using u and v
from this space entails two adjustments for the variational formulation (4.11).

Contribution of the mesh velocity

The functions from the isoparametric FE-space are of the form

v(t,Θh(t, x̂)) = v̂(t, x̂),

which means that the space-time mapping introduces an implicit time dependence. There-
fore, the time derivative in (4.11) will also act on the space-time mapping. This leads
to:

d

dt
v(t,Θh(t, x̂)) =

∂v̂

∂t
+

(
∂Θh

∂t

)
· ∇v

=
∂v̂

∂t
+

(
∂Θh

∂t

)
· (DΘh)

−T ∇v̂.

The contribution ∂tΘh corresponds to a “mesh velocity”.

Treating the discontinuity of the space-time mapping between time slabs

The right hand side of (4.11) contains the term (un−1
− , vn−1

+ )Ωn−1 . Here, the value of the
solution at the top of the previous time slab Qn−1 is passed on as an initial condition to the
variational formulation on the next time slab Qn. If n = 1 so that we were to start fresh
with our calculation, then we would project the initial condition into the isoparametric
FE-Space: un−1

− = u0 ◦ (Θn−1
+ )−1. But for n > 1 all that we have at our disposal is

un−1
− = ûn−1

− ◦ (Θn−1
− )−1. As the space-time mapping is in general not continuous between

time slabs one has

un−1
− = ûn−1

− ◦ (Θn−1
− )−1 6= ûn−1

− ◦ (Θn−1
+ )−1.

In numerical experiments it is observed that this problem needs to be taken seriously.
Using directly un−1

− = ûn−1
− ◦ (Θn−1

− )−1 available from the previous time slab leads to a
drop in the convergence rate.

We sketch an idea how to adress this issue: One replaces un−1
− by a projection Pun−1

−
which fulfills:

Pun−1
− ≈ ûn−1

− ◦ (Θn−1
+ )−1 = un−1

− ◦Θn−1
− ◦ (Θn−1

+ )−1.

This problem can be restated as: Given the function x 7→ un−1
− (x) evaluate it at the

shifted position x 7→ un−1
− (z), where z = s(x) is obtained from

z = Θn−1
− ◦ (Θn−1

+ )−1(x).

In the implementation z is computed by a fixed point iteration. A detailed description
of this projection operator will be provided in a forthcoming publication.
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Remark 19 (Violation of mass conservation). In Remark 3 it was mentioned that the
space-time DG method that assumes exact geometry handling is mass conserving. Un-
fortunately, for the isoparametric method as derived here, mass conservation cannot be
guaranteed anymore. The necessity to replace un−1

− in (4.11) by the projection Pun−1
−

leads to a violation of this property. Indeed, testing in (4.11) with a constant function we
obtain: ∫

Ωn

u−(x, tn) dx =

∫
Ωn−1

(Pun−1
− )(x) dx+

∫
Qn

f dx. (4.12)

Thus, the projection can interfere with mass conservation on the time slabs by modifying
the initial condition at tn−1.
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Chapter 5

Implementational aspects

Most finite element packages are geared towards fitted discretizations. Thus, the realiza-
tion of unfitted methods requires some additional efforts. Among these are the numerical
integration on cut elements, a suitable handling of the degrees of freedom on subdomains
of the mesh (often described implicitly via a level set function) and the implementation
of stabilization terms. Most functionality required for the implementation of our method
is provided by the following tools:

• Netgen: An automatic mesh generator [Sch97].

• NGSolve: A finite element library [Sch14] which comes as an Add-On to Netgen.
Netgen and NGSolve are written in C++. Together they provide a complete package
for finite element simulation. NGSolve features a Python frontend that allows to
control the flow of the program by Python-scripting. Netgen/NGSolve is open
source and available at www.ngsolve.org.

• ngsxfem: An Add-On to NGSolve which enables the use of unfitted discretizations.
It provides the functionality for the numerical integration on unfitted geometries
which are implicitedly described by a level set function. Moreover, the degrees of
freedom belonging to the partition of the mesh induced by the level set function
can be handled flexibly. A special feature of ngsxfem is the mesh transforma-
tion technique as described in Chapter 4. This allows for an explicit higher order
representation of implicit level set geometries and provides the basis for our ap-
proach towards higher order unfitted discretizations. The Add-On is available at
https://github.com/ngsxfem/ngsxfem.

The implementation of our method for moving domain problems required some exten-
sions of ngsxfem. First, the finite element spaces on the time slab need to be implemented.
These were then also used for extending the mesh transformation technique to the in-
stationary case. Furthermore, the numerical quadrature on space-time level set domains
has to be carried out. These two aspects of the implementation will be described further
in this chapter.
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Figure 5.1: Shape functions of nodal finite element for kt ∈ {1, 2, 3}.

5.1 Space-time finite element spaces

Implementing the space-time method requires a tensor product finite element space on
the time slabs of the form

{v̂ : Ω̃× In → R | v̂(x, t) =
kt∑
m=0

χm(t)v̂m(x), with v̂m ∈ V ks
h , χm ∈ V kt},

where

• V ks
h is a spatial finite element space on the background mesh T̃h,

• V kt is a one-dimensional finite element space for the time dependence.

Nodal finite element in time

For V kt we choose a nodal finite element.This has advantages for the implementation of
the reference geometry representation and the space-time mapping.

As the reference element we take the unit interval Î = [0, 1]. The nodes are cho-
sen as Gauss-Lobatto points τ0, τ1, . . . , τkt . The shape-functions are given by Lagrange
polynomials

χkt,m(t) =

∏
0≤j≤kt; j 6=m

(t− τj)∏
0≤j≤kt; j 6=m

(τm − τj)
.

Figure 5.1 visualizes the shape-functions for kt ∈ {1, 2, 3}.

Finite element in space

We use a triangulation of the background domain Ω̃ into simplices T ∈ T̃h. The elements
T are related to the reference simplex T̂ by an affine linear transformation. The shape
functions on T̂ will be denoted by

ϕ1(x), ϕ2(x), . . . , ϕNs(x),

where Ns denotes the degrees of freedom.
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Space-time finite element

Here the reference element is given by the space-time prism Q̂T = T̂ × Î. The shape
functions on Q̂T are obtained by simply taking tensor products of the shape functions on
T̂ and Î:

χm(t)ϕj(x), m = 0, . . . , kt; j = 1, . . . , Ns.

The space-time FE space then provides the connnection between the local reference prism
and the global mesh.

Implementation of space-time mesh deformation

The constructed space-time finite element space is based on a nodal basis in time. This
allows for a convenient implementation of the reference geometry approximation and the
space-time mapping from chapter 4.2. For the high order accurate geometry approxima-
tion of the exact level set function φ(x, t) we make the ansatz

φh(x, t) =
kt∑
m=0

χm(t)φm(x), with φm ∈ V ks
h .

On the nodes τm we have that

φh(x, τm) = φm(x),

for which we can choose φm = Pksφ(·, τ̃m) where τ̃m = tn−1 + ∆t · τm and Pks is a
suitable projector into V ks

h . This ensures that the approximation error at the nodes τm
for m = 0, . . . , kt is of order O(hks+1).

The reference geometry approximation

φ̂h(x, t) =
kt∑
m=0

χm(t)φ̂m(x), with φ̂m = I1φm ∈ V 1
h

and the space-time mapping

Θh(x, t) =
kt∑
m=0

χm(t)Θm(x), with Θm ∈ [V ks
h ]d

with φ̂m(x) ≈ φm(Θm(x)) follow accordingly. At the nodes τm we then have

φh(τm,Θh(x, τm)) = φm(Θm(x))

≈ φ̂m(x)

= φ̂h(x, τm),

for every m = 0, . . . , kt.
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Figure 5.2: Numerical integration on a space-time prism in isoparametric unfitted finite
elements.

5.2 Quadrature on space-time level set domains

The main idea for computing the integrals for the space-time method is similar to the
stationary case. In the isoparametric method the integrals over Qn are approximated by
integrals over the high order accurate geometry description provided by the space-time
mapping. So one has to compute integrals of the form

∫
Θh(Qn,lin)

f =
∑

Qn
T∩Qn,lin 6=∅

tn∫
tn−1

∫
Θh(T (t))

f dx dt,

where T (t) = T ∩ {φ̂h(·, t) < 0} is the part of the element which belongs to Ωlin(t). The
corresponding decomposition of the space time prism QT is shown in Figure 5.2. By
means of the transformation formula the integrals over the deformed space-time prisms
can be reduced to the undeformed case

tn∫
tn−1

∫
Θh(T (t))

f(x, t) dx dt =

tn∫
tn−1

∫
T (t)

f(Θh(y, t), t) |detDΘh(y, t)| dy dt.

It remains to treat integrals of the form

tn∫
tn−1

∫
T (t)

g(x, t) dx dt

for which we can use the fact that T (t) is described by φ̂h ∈ V kt,1
h . This means that at a

fixed time t̄ the function φ̂h(·, t̄) is piecewise linear. Thus, the cut topology of the element
T (t) at t = t̄ is determined by the values of φ̂h(x, t̄) at the spatial vertices x = xV of T .
For the cut topology to change it is necessary that φ̂h(xV , ·) switches its sign on one of
the vertices xV . This leads to the following procedure:

• For each space-time edge xV × [tn−1, tn] compute the zeros tj∗ of the one-dimensional
function φ̂h(xV , ·). An illustration is given in Figure 5.2. Collect these in the set
{tj∗} and add the initial tn−1 and final time tn.
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• Between consecutive times [tj∗, t
j+1
∗ ] the cut topology remains the same. Hence, we

can write
tn∫

tn−1

∫
T (t)

g(x, t) dx dt =
∑
j

tj+1
∗∫
tj∗

∫
T (t)

g(x, t) dx dt

and treat the integrals over [tj∗, t
j+1
∗ ] separately. We notice that t 7→

∫
T (t)

g(x, t) dx

is smooth inside (tj∗, t
j+1
∗ ) if g(·) is smooth.

• Applying quadrature in time yields

tj+1
∗∫
tj∗

∫
T (t)

g(x, t) dx dt ≈
∑
l

ωl

∫
T (tl)

g(x, tl) dx (5.1)

with appropriate tl ∈ [tj∗, t
j+1
∗ ]. The remaining spatial integrals over T (tl) are treated

according to the cut topology on [tj∗, t
j+1
∗ ]. If the element is not cut between these

times then T (tl) = T or T (tl) = ∅ and the integral can be approximated by a
standard quadrature rule in space. In the other case, so if a cut occurs, the integral
over T (tl) can for example be computed by the tesselation approach. This is possible
since the cut is described by the piecewise linear level set function φ̂h(·, tl).
The description above only deals with the integration on parts of the space-time
prisms where {φ̂h < 0}. For other boundary conditions or interface problems also
the integration on {φ̂h > 0} and {φ̂h = 0} is needed. For these cases one proceeds
similarly as above.

In the end, all the integrals that need to be computed in the implementation of the
isoparametric method can be reduced to the reference configuration described by
φ̂h ∈ V kt,1

h . Thus, it should be possible to integrate the isoparametric space-time
method into CutFEM codes which provide spatial integration rules for elements
which are cut by a piecewise linear approximation of a level set function. Addi-
tionally, the mesh deformation is required. However, as mentioned in [LR17] this
is also easy to implement.

Remark 20 (Numerical Integration on Hyperrectangles in Isoparametric Unfitted Finite
Elements). In this thesis only simplicial elements are used. The low oder approximation
of the level set function is then piecewise linear on each element. This allows for a
tesselation of cut elements into simpler geometries on which standard integration rules
can be applied. For quadrilateral and hexahedral elements the corresponding low order
approximation of the level set function is not piecewise linear anymore. This renders the
numerical integration on such elements more challenging. An approach that also takes
the isoparametric mapping into account is proposed in [HL17]. The basic principle for
the integration is similar to the case of space-time prisms as described in this section.

Remark 21 (Integration on space-time level set domains by quadrature in time). There
is an alternative approach for computing the integrals

∫
Qn f dx dt over the time slabs Qn

that is used in [HLZ16] and [Zah18]. These papers consider stabilized space-time cut finite
element methods for solving PDEs on moving domains. The arising space-time integrals
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Figure 5.3: Integration on the time slab by quadrature in time.

are approximated by first applying quadrature in time. One chooses a temporal quadrature
rule with weights ωl and corresponding times tl ∈ [tn−1, tn], e.g. the Gauss-Radau rule
as illustrated in Figure 5.3. The integral over Qn is computed by applying quadrature in
time first: ∫

Qn

f(x, t) dx dt ≈
3∑
l=0

ωl

∫
Ω(tl)

f(x, tl) dx.

Now it only remains to treat integrals over spatial cut configurations Ω(tl). Hence, the
quadrature in time approach basically reduces the quadrature problem on space-time level
set domains to the purely spatial situation.

This method has the advantage of being simple to implement into codes that can deal
with stationary problems on unfitted meshes. Moreover, it can easily be combined with
the isoparametric mapping at the quadrature points tl. Since the mesh transformation is
only applied at these quadrature points, the problem of introducing a discontinuity through
the space-time mesh transformation, as described in section 4.3, is avoided. Hence, it is
not necessary to apply a projection step and conservation of mass can be guaranteed (cf.
Remark 19). Also, this method performed very well in our numerical tests.

However, we do not follow this approach here. Instead, we opt for the more involved
space-time quadrature as described in this chapter. By computing the cut positions tj∗
as seen in Figure 5.2 on each space-time prism, we can guarantee that the cut topology
does not change in the interval [tj∗, t

j+1
∗ ]. Hence, the integrand has enough regularity to

ensure that the integral in (5.1) can be computed with high accuracy. We question whether
this also holds true for the quadrature in time approach. Here, one applies a standard
quadrature rule in time without taking the cut positions into account. Due to this reason,
we favor our space-time quadrature approach as it appears more promising for a future
analysis.
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Chapter 6

Numerical experiments for a moving
domain problem

In this chapter it will be investigated how the method performs for two different numerical
examples. The aim is to compare the numerical results with the error bounds derived
in Theorem 3.27. In the implementation we always use the alternative version of the
bilinear form (2.9), obtained via integration by parts.

6.1 Moving circle

6.1.1 Description of test case

The moving domain (see Figure 6.1) for this test problem is a circle

Ω(t) = {(x, y) ∈ R2 |
√
x2 + (y − ρ(t))2 < r0}

with r0 = 1
2

and ρ(t) = 1
π

sin(2πt). Consider a convection of the form w =
(
0, ρ̇
)
.

The right hand side is computed so that the exact solution is given by u(x, y, t) =
χ(
√
x2 + (y − ρ(t))2) with χ(r) = cos2( πr

2r0
).

At t = 0 the center of the circle is at (x, y) = (0, 0). It moves in the positive y-direction
so that at t = 1/4 the center lies at (x, y) = (0, 1/π). Then it stops and returns to its
original position which it reaches at t = T with T = 1/2. We perform the convergence
studies over this time interval [0, T ]. The stabilization parameter for the ghost penalty
is chosen as γJ = 5 · 10−2.

Figure 6.1: Moving circle: The domain Ω(t) for t ∈ {0, 1/8, . . . , 4/8}.
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6.1.2 Convergence tables

This section contains the results of the convergence studies for the test case of the moving
circle in the form of tables. First we explain how to read these tables and what quantities
are measured.

The errror u − uh is measured in five different (semi-)norms. The first two are the
L2-norm ‖(u− uh)(·, T )‖L2(Ω) and the H1 seminorm ‖∇(u− uh)(·, T )‖L2(Ω) at the final
time point. To be precise one would need to write ‖·‖L2(Ω(T )) instead of ‖·‖L2(Ω). The
other three measured quantities are ‖∇(u− uh)‖L∞t (0,T ; L2

x(Ω)), ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω))

and ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)). Here ‖·‖L∞t (0,T ; L2

x(Ω)) denotes the L∞-norm in time for

functions taking values in L2(Ω(t)). The L∞-norm in time is approximated by considering
ten equally spaced sample points inside each time interval In for 1 ≤ n ≤ N (similar to
section 4.2.3).

The results are given in form of tables. The columns correspond to different refinement
levels ns of the spatial mesh. The rows show the error for different timesteps ∆t = T/nt.
The last column contains the estimated order of convergence with respect to refinements
in time on the finest spatial mesh (usually ns = 6). Similarly, the estimated order
of convergence in space for the smallest time step is shown in the second to last row.
Finally, the very last row shows the estimated order of convergence when the spatial
mesh and the time step are both refined on each level. The relevant values for computing
the rate for this space-time refinement can be found on the diagonal of the tables.

First we pick a fixed ks = kt = k with k ∈ {1, 2, 3} and show the behavior of the error
in all five described norms. Then selected results for ks 6= kt are given. In the end, we
also consider the case where the polynomial orders kgeom

s , kgeom
t for the approximation of

the geometry are different from the orders ks, kt of the approximate solution uh. This
means that the high-order accurate approximation of the level set φh and the space-time

mapping Θh are elements of the space V
kgeom
t ,kgeom

s

h respectively its vector valued version.
The results are discussed in the next section.

ks = 1, kt = 1:

nt \ ns 0 1 2 3 4 5 6 eoct
1 1.26 1.12 1.12 1.12 1.12 1.12 1.12
2 0.22 0.3 0.31 0.31 0.31 0.31 0.31 1.87
4 0.15 8.77 · 10−2 9.08 · 10−2 9.13 · 10−2 9.15 · 10−2 9.15 · 10−2 9.15 · 10−2 1.74
8 0.2 4.29 · 10−2 2.60 · 10−2 2.39 · 10−2 2.39 · 10−2 2.39 · 10−2 2.39 · 10−2 1.94
16 0.21 4.24 · 10−2 1.42 · 10−2 6.91 · 10−3 6.08 · 10−3 6.00 · 10−3 5.99 · 10−3 1.99
32 0.22 4.33 · 10−2 1.34 · 10−2 3.89 · 10−3 1.79 · 10−3 1.52 · 10−3 1.50 · 10−3 2.00
64 0.22 4.36 · 10−2 1.34 · 10−2 3.62 · 10−3 1.02 · 10−3 4.49 · 10−4 3.82 · 10−4 1.97

eocs 2.32 1.7 1.89 1.83 1.18 0.24
eocst 2.06 1.73 1.92 1.98 2 1.99

Table 6.1: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = 1, kt = 1.
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nt \ ns 0 1 2 3 4 5 6 eoct
1 3.98 3.77 3.74 3.74 3.74 3.74 3.74
2 1.33 1.01 0.84 0.77 0.75 0.74 0.74 2.34
4 1.1 0.72 0.44 0.29 0.23 0.21 0.21 1.85
8 1.08 0.69 0.39 0.21 0.11 6.88 · 10−2 5.09 · 10−2 2.01
16 1.08 0.69 0.39 0.21 0.11 5.40 · 10−2 2.82 · 10−2 0.85
32 1.08 0.69 0.39 0.21 0.11 5.31 · 10−2 2.67 · 10−2 0.08
64 1.08 0.69 0.39 0.21 0.11 5.30 · 10−2 2.66 · 10−2 0.01

eocs 0.64 0.83 0.93 0.96 0.99 0.99
eocst 1.97 1.2 1.07 0.99 1 1

Table 6.2: Moving circle problem: The error ‖∇(u− uh)(·, T )‖L2(Ω) for ks = 1, kt = 1.

nt \ ns 0 1 2 3 4 5 6 eoct
1 1.14 1.1 1.11 1.12 1.12 1.12 1.12
2 0.28 0.32 0.32 0.32 0.32 0.32 0.32 1.79
4 0.15 0.11 0.1 0.1 0.1 0.1 0.1 1.66
8 0.19 5.08 · 10−2 2.93 · 10−2 2.65 · 10−2 2.68 · 10−2 2.70 · 10−2 2.70 · 10−2 1.92
16 0.2 4.76 · 10−2 1.54 · 10−2 7.57 · 10−3 7.21 · 10−3 7.41 · 10−3 7.47 · 10−3 1.86
32 0.21 4.75 · 10−2 1.39 · 10−2 4.18 · 10−3 1.99 · 10−3 1.91 · 10−3 1.97 · 10−3 1.93
64 0.21 4.76 · 10−2 1.38 · 10−2 3.69 · 10−3 1.09 · 10−3 5.03 · 10−4 4.92 · 10−4 2.00

eocs 2.12 1.79 1.9 1.76 1.12 3.12 · 10−2

eocst 1.83 1.65 1.94 1.88 1.92 1.95

Table 6.3: Moving circle problem: The error ‖u− uh‖L∞t (0,T ; L2
x(Ω)) for ks = 1, kt = 1.

nt \ ns 0 1 2 3 4 5 6 eoct
1 3.73 3.73 5.52 8.52 11.86 16.11 22.3
2 1.43 1.34 1.26 1.23 1.22 1.46 2.41 3.21
4 1.08 0.78 0.55 0.44 0.41 0.4 0.59 2.03
8 1.05 0.71 0.41 0.24 0.16 0.14 0.13 2.17
16 1.05 0.71 0.4 0.21 0.11 6.44 · 10−2 4.57 · 10−2 1.52
32 1.1 0.72 0.4 0.21 0.11 5.41 · 10−2 2.84 · 10−2 0.69
64 1.16 0.74 0.4 0.21 0.11 5.31 · 10−2 2.68 · 10−2 0.09

eocs 0.64 0.9 0.95 0.97 0.99 0.99
eocst 1.47 1.3 1.19 1.09 1.05 1.02

Table 6.4: Moving circle problem: The error ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 1, kt = 1.

nt \ ns 0 1 2 3 4 5 6 eoct
1 3.91 3.8 3.81 3.81 3.82 3.82 3.82
2 2.67 2.83 2.86 2.86 2.86 2.86 2.86 0.42
4 2.02 1.81 1.86 1.91 1.93 1.94 1.94 0.56
8 1.72 1.3 1.23 1.22 1.23 1.23 1.24 0.65
16 1.68 1.1 0.83 0.72 0.69 0.69 0.69 0.83
32 2.35 1.24 0.67 0.44 0.38 0.37 0.37 0.92
64 3.9 1.89 0.66 0.3 0.21 0.19 0.19 0.96

eocs 1.04 1.53 1.13 0.49 0.14 3.05 · 10−2

eocst 0.47 0.6 0.61 0.81 0.91 0.96

Table 6.5: Moving circle problem: The error ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 1, kt = 1.
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ks = 2, kt = 2:

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.69 0.29 0.2 0.2 0.2 0.2 0.2
2 0.49 9.36 · 10−2 3.16 · 10−2 2.88 · 10−2 2.89 · 10−2 2.89 · 10−2 2.89 · 10−2 2.79
4 0.47 8.15 · 10−2 8.97 · 10−3 2.92 · 10−3 2.84 · 10−3 2.83 · 10−3 2.82 · 10−3 3.35
8 0.47 8.10 · 10−2 7.60 · 10−3 2.51 · 10−4 1.80 · 10−4 1.77 · 10−4 1.77 · 10−4 4.00
16 0.47 8.09 · 10−2 7.40 · 10−3 1.14 · 10−4 1.50 · 10−5 1.06 · 10−5 1.04 · 10−5 4.09
32 0.47 8.07 · 10−2 7.39 · 10−3 1.04 · 10−4 9.00 · 10−6 1.38 · 10−6 7.08 · 10−7 3.87
64 0.47 8.07 · 10−2 7.36 · 10−3 1.00 · 10−4 8.91 · 10−6 1.13 · 10−6 1.53 · 10−7 2.21

eocs 2.54 3.45 6.2 3.49 2.97 2.89
eocst 2.89 3.38 5.16 4.07 3.44 3.17

Table 6.6: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = 2, kt = 2.

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.76 0.68 0.69 0.71 0.72 0.73 0.73
2 0.44 0.23 0.2 0.2 0.2 0.2 0.2 1.90
4 0.48 0.14 4.05 · 10−2 2.06 · 10−2 1.88 · 10−2 1.86 · 10−2 1.86 · 10−2 3.40
8 0.45 0.14 3.61 · 10−2 9.19 · 10−3 2.72 · 10−3 1.56 · 10−3 1.46 · 10−3 3.67
16 0.45 0.14 3.68 · 10−2 9.38 · 10−3 2.38 · 10−3 6.15 · 10−4 2.10 · 10−4 2.80
32 0.45 0.14 3.73 · 10−2 9.45 · 10−3 2.40 · 10−3 6.06 · 10−4 1.53 · 10−4 0.46
64 0.45 0.14 3.74 · 10−2 9.52 · 10−3 2.41 · 10−3 6.09 · 10−4 1.53 · 10−4 −0.01

eocs 1.7 1.89 1.98 1.98 1.99 1.99
eocst 1.7 2.52 2.14 1.95 1.97 1.98

Table 6.7: Moving circle problem: The error ‖∇(u− uh)(·, T )‖L2(Ω) for ks = 2, kt = 2.

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.69 0.29 0.21 0.21 0.2 0.2 0.2
2 0.49 9.36 · 10−2 6.47 · 10−2 6.37 · 10−2 6.33 · 10−2 6.31 · 10−2 6.30 · 10−2 1.68
4 0.47 8.15 · 10−2 1.35 · 10−2 1.25 · 10−2 1.25 · 10−2 1.25 · 10−2 1.25 · 10−2 2.33
8 0.47 8.10 · 10−2 7.60 · 10−3 2.01 · 10−3 2.02 · 10−3 2.02 · 10−3 2.02 · 10−3 2.63
16 0.47 8.09 · 10−2 7.40 · 10−3 2.94 · 10−4 2.80 · 10−4 2.80 · 10−4 2.80 · 10−4 2.85
32 0.47 8.08 · 10−2 7.39 · 10−3 1.13 · 10−4 3.79 · 10−5 3.69 · 10−5 3.68 · 10−5 2.93
64 0.47 8.07 · 10−2 7.36 · 10−3 1.03 · 10−4 1.01 · 10−5 4.87 · 10−6 4.73 · 10−6 2.96

eocs 2.55 3.45 6.16 3.35 1.05 4.04 · 10−2

eocst 2.89 2.79 2.75 2.84 2.93 2.96

Table 6.8: Moving circle problem: The error ‖u− uh‖L∞t (0,T ; L2
x(Ω)) for ks = 2, kt = 2.
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nt \ ns 0 1 2 3 4 5 6 eoct
1 0.86 0.84 0.87 0.9 0.92 0.92 1.75
2 0.54 0.4 0.39 0.39 0.4 0.4 0.4 2.13
4 0.48 0.17 8.09 · 10−2 7.35 · 10−2 7.33 · 10−2 7.34 · 10−2 7.34 · 10−2 2.44
8 0.47 0.16 3.95 · 10−2 1.43 · 10−2 1.12 · 10−2 1.10 · 10−2 1.10 · 10−2 2.74
16 0.45 0.16 3.81 · 10−2 9.61 · 10−3 2.85 · 10−3 1.66 · 10−3 1.56 · 10−3 2.82
32 0.45 0.16 3.81 · 10−2 9.60 · 10−3 2.94 · 10−3 6.53 · 10−4 2.64 · 10−4 2.56
64 0.45 0.17 3.82 · 10−2 9.59 · 10−3 2.44 · 10−3 6.72 · 10−4 1.60 · 10−4 0.72

eocs 1.41 2.15 1.99 1.98 1.86 2.07
eocst 1.12 2.3 2.5 2.32 2.13 2.03

Table 6.9: Moving circle problem: The error ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 2, kt = 2.

nt \ ns 0 1 2 3 4 5 6 eoct
1 3.58 3.75 3.77 3.79 3.79 3.79 3.79
2 2.83 2.19 2.09 2.1 2.11 2.11 2.11 0.84
4 2.43 0.98 0.93 0.94 0.95 0.95 0.95 1.16
8 1.9 0.43 0.3 0.3 0.3 0.3 0.3 1.65
16 2.46 0.41 0.1 8.27 · 10−2 8.30 · 10−2 8.31 · 10−2 8.31 · 10−2 1.86
32 3.3 0.42 5.64 · 10−2 2.27 · 10−2 2.17 · 10−2 2.17 · 10−2 2.17 · 10−2 1.94
64 4.01 0.59 5.91 · 10−2 6.22 · 10−3 5.75 · 10−3 5.57 · 10−3 5.52 · 10−3 1.97

eocs 2.76 3.32 3.25 0.11 4.45 · 10−2 1.39 · 10−2

eocst 0.71 1.23 1.63 1.86 1.94 1.97

Table 6.10: Moving circle problem: The error ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 2, kt = 2.

ks = 3, kt = 3:

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.35 7.36 · 10−2 5.06 · 10−2 5.22 · 10−2 5.24 · 10−2 5.25 · 10−2 5.25 · 10−2

2 0.35 6.67 · 10−2 8.08 · 10−3 3.84 · 10−3 3.68 · 10−3 3.65 · 10−3 3.64 · 10−3 3.85
4 0.35 6.47 · 10−2 6.19 · 10−3 3.99 · 10−4 2.75 · 10−4 2.60 · 10−4 2.57 · 10−4 3.82
8 0.35 6.43 · 10−2 5.76 · 10−3 1.03 · 10−4 1.93 · 10−5 1.13 · 10−5 1.06 · 10−5 4.60
16 0.35 6.43 · 10−2 5.57 · 10−3 4.85 · 10−5 4.53 · 10−6 9.94 · 10−7 4.15 · 10−7 4.68
32 0.34 6.42 · 10−2 5.56 · 10−3 3.38 · 10−5 1.46 · 10−6 2.79 · 10−7 5.78 · 10−8 2.84
64 0.35 6.41 · 10−2 5.54 · 10−3 2.66 · 10−5 4.95 · 10−7 1.44 · 10−7 2.01 · 10−8 1.53

eocs 2.43 3.53 7.7 5.75 1.78 2.84
eocst 2.38 3.43 5.92 4.5 4.02 3.79

Table 6.11: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = 3, kt = 3.
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nt \ ns 0 1 2 3 4 5 6 eoct
1 0.49 0.39 0.39 0.39 0.39 0.39 0.39
2 0.38 7.22 · 10−2 3.64 · 10−2 3.29 · 10−2 3.21 · 10−2 3.20 · 10−2 3.19 · 10−2 3.60
4 0.6 7.77 · 10−2 1.08 · 10−2 4.46 · 10−3 3.54 · 10−3 3.38 · 10−3 3.35 · 10−3 3.25
8 0.25 5.48 · 10−2 5.65 · 10−3 8.59 · 10−4 3.00 · 10−4 2.17 · 10−4 2.07 · 10−4 4.02
16 0.24 5.78 · 10−2 5.15 · 10−3 4.60 · 10−4 6.04 · 10−5 2.62 · 10−5 1.31 · 10−5 3.98
32 0.23 6.15 · 10−2 4.89 · 10−3 2.97 · 10−4 6.53 · 10−5 2.06 · 10−5 7.53 · 10−6 0.80
64 0.24 5.27 · 10−2 4.81 · 10−3 2.76 · 10−4 5.52 · 10−5 5.80 · 10−5 1.32 · 10−5 −0.81

eocs 2.16 3.45 4.12 2.32 −7.09 · 10−2 2.13
eocst 2.75 2.74 3.65 3.83 1.55 0.64

Table 6.12: Moving circle problem: The error ‖∇(u− uh)(·, T )‖L2(Ω) for ks = 3, kt = 3.

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.35 9.88 · 10−2 0.1 0.1 0.1 0.1 0.1
2 0.35 6.67 · 10−2 2.06 · 10−2 2.03 · 10−2 2.01 · 10−2 2.01 · 10−2 2.01 · 10−2 2.34
4 0.35 6.47 · 10−2 6.19 · 10−3 2.06 · 10−3 2.01 · 10−3 2.01 · 10−3 2.00 · 10−3 3.33
8 0.35 6.43 · 10−2 5.76 · 10−3 1.62 · 10−4 1.59 · 10−4 1.60 · 10−4 1.60 · 10−4 3.65
16 0.35 6.43 · 10−2 5.57 · 10−3 4.85 · 10−5 1.22 · 10−5 1.18 · 10−5 1.18 · 10−5 3.77
32 0.34 6.42 · 10−2 5.56 · 10−3 3.38 · 10−5 1.48 · 10−5 1.51 · 10−6 7.99 · 10−7 3.88
64 0.34 6.41 · 10−2 5.54 · 10−3 2.88 · 10−5 3.43 · 10−6 2.41 · 10−6 4.79 · 10−7 0.74

eocs 2.43 3.53 7.59 3.07 0.51 2.33
eocst 2.37 3.43 5.26 3.73 3.02 1.65

Table 6.13: Moving circle problem: The error ‖u− uh‖L∞t (0,T ; L2
x(Ω)) for ks = 3, kt = 3.

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.73 0.72 0.74 0.74 0.75 0.75 0.75
2 0.59 0.13 0.11 0.11 0.11 0.11 0.11 2.73
4 0.6 9.18 · 10−2 2.44 · 10−2 1.38 · 10−2 1.39 · 10−2 1.40 · 10−2 1.40 · 10−2 3.00
8 0.45 8.54 · 10−2 9.73 · 10−3 1.89 · 10−3 1.55 · 10−3 1.31 · 10−3 1.30 · 10−3 3.43
16 0.31 7.32 · 10−2 7.77 · 10−3 9.71 · 10−4 4.41 · 10−4 6.29 · 10−4 3.74 · 10−4 1.80
32 0.31 0.14 7.78 · 10−3 3.02 · 10−3 3.29 · 10−3 7.03 · 10−4 3.72 · 10−4 0.01
64 0.28 7.62 · 10−2 7.78 · 10−3 3.40 · 10−4 9.83 · 10−4 1.12 · 10−3 3.76 · 10−4 −0.02

eocs 1.86 3.29 4.52 −1.53 −0.19 1.58
eocst 2.43 2.47 3.69 2.1 −0.67 0.9

Table 6.14: Moving circle problem: The error ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 3, kt = 3.

nt \ ns 0 1 2 3 4 5 6 eoct
1 3.37 3.47 3.44 3.45 3.45 3.45 3.46
2 2.96 1.35 1.35 1.35 1.35 1.35 1.35 1.36
4 2.82 0.35 0.29 0.28 0.28 0.28 0.28 2.27
8 4.02 0.35 7.23 · 10−2 4.34 · 10−2 4.37 · 10−2 4.38 · 10−2 4.39 · 10−2 2.67
16 3.85 0.42 4.88 · 10−2 7.86 · 10−3 6.13 · 10−3 6.22 · 10−3 6.24 · 10−3 2.81
32 6.72 0.83 4.87 · 10−2 2.54 · 10−2 1.81 · 10−2 2.04 · 10−3 8.29 · 10−4 2.91
64 7.17 0.8 4.91 · 10−2 2.01 · 10−3 8.31 · 10−3 6.96 · 10−3 1.38 · 10−3 −0.73

eocs 3.17 4.02 4.61 −2.05 0.26 2.34
eocst 1.33 2.23 2.72 2.82 1.58 0.57

Table 6.15: Moving circle problem: The error ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 3, kt = 3.
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Selected results for kt 6= ks

nt \ ns 0 1 2 3 4 5 6 eoct
1 2.73 2.87 3.22 3.38 3.44 3.46 3.46
2 1.75 1.13 1.21 1.35 1.36 1.36 1.35 1.36
4 2.08 0.92 0.37 0.32 0.3 0.28 0.29 2.24
8 3.1 1.48 0.53 0.13 8.55 · 10−2 7.06 · 10−2 5.31 · 10−2 2.42
16 5.56 2.59 0.69 0.19 4.93 · 10−2 2.86 · 10−2 2.23 · 10−2 1.25
32 8.51 4.57 0.94 0.21 5.56 · 10−2 1.60 · 10−2 9.87 · 10−3 1.18
64 10.67 7.5 1.58 0.3 6.64 · 10−2 1.80 · 10−2 5.11 · 10−3 0.95

eocs 0.51 2.25 2.37 2.2 1.88 1.82
eocst 1.27 1.59 1.52 1.41 1.62 1.65

Table 6.16: Moving circle problem: The error ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 1, kt = 3.

nt \ ns 0 1 2 3 4 5 6 eoct
1 0.64 0.59 0.58 0.58 0.58 0.58 0.58
2 0.53 0.36 0.34 0.34 0.34 0.34 0.34 0.75
4 0.42 0.1 7.03 · 10−2 7.06 · 10−2 7.09 · 10−2 7.09 · 10−2 7.09 · 10−2 2.27
8 0.35 7.22 · 10−2 1.38 · 10−2 1.10 · 10−2 1.11 · 10−2 1.11 · 10−2 1.11 · 10−2 2.67
16 0.29 7.29 · 10−2 8.22 · 10−3 1.59 · 10−3 1.56 · 10−3 1.56 · 10−3 1.57 · 10−3 2.83
32 0.3 0.14 7.77 · 10−3 3.93 · 10−4 2.19 · 10−4 2.16 · 10−4 2.16 · 10−4 2.86
64 0.27 7.45 · 10−2 7.78 · 10−3 3.47 · 10−4 4.56 · 10−5 2.92 · 10−5 2.89 · 10−5 2.90

eocs 1.87 3.26 4.49 2.93 0.64 1.80 · 10−2

eocst 0.83 2.36 2.67 2.82 2.86 2.9

Table 6.17: Moving circle problem: The error ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)) for ks = 3, kt = 2

and kgeom
s = 3, kgeom

t = 4.

nt \ ns 1 2 3 4 5 6 eoct
1 0.22 0.22 0.22 0.22 0.22 0.22
2 5.29 · 10−2 4.29 · 10−2 4.37 · 10−2 4.44 · 10−2 4.45 · 10−2 4.46 · 10−2 2.31
4 4.08 · 10−2 1.72 · 10−2 1.76 · 10−2 1.87 · 10−2 1.91 · 10−2 1.92 · 10−2 1.22
8 4.24 · 10−2 1.18 · 10−2 3.61 · 10−3 3.64 · 10−3 3.96 · 10−3 4.06 · 10−3 2.24
16 4.35 · 10−2 1.31 · 10−2 3.26 · 10−3 7.64 · 10−4 5.68 · 10−4 6.39 · 10−4 2.67
32 4.37 · 10−2 1.34 · 10−2 3.54 · 10−3 8.69 · 10−4 1.94 · 10−4 8.22 · 10−5 2.96
64 4.37 · 10−2 1.34 · 10−2 3.58 · 10−3 9.14 · 10−4 2.26 · 10−4 5.23 · 10−5 0.65

eocs 1.7 1.9 1.97 2.02 2.11
eocst 1.62 2.25 2.24 1.97 1.89

Table 6.18: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = kt = kgeom
s = 1

and kgeom
t = 2.
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nt \ ns 1 2 3 4 5 6 eoct
1 0.18 0.17 0.18 0.18 0.18 0.18
2 8.75 · 10−2 4.95 · 10−2 5.12 · 10−2 5.21 · 10−2 5.24 · 10−2 5.24 · 10−2 1.75
4 7.59 · 10−2 1.75 · 10−2 1.79 · 10−2 1.91 · 10−2 1.95 · 10−2 1.96 · 10−2 1.42
8 7.56 · 10−2 1.23 · 10−2 3.34 · 10−3 3.62 · 10−3 3.97 · 10−3 4.07 · 10−3 2.27
16 7.68 · 10−2 1.34 · 10−2 3.00 · 10−3 6.88 · 10−4 5.60 · 10−4 6.38 · 10−4 2.67
32 7.68 · 10−2 1.36 · 10−2 3.31 · 10−3 8.08 · 10−4 1.77 · 10−4 7.95 · 10−5 3.00
64 7.68 · 10−2 1.37 · 10−2 3.36 · 10−3 8.58 · 10−4 2.11 · 10−4 4.84 · 10−5 0.72

eocs 2.49 2.03 1.97 2.02 2.13
eocst 2.32 2.39 2.28 1.96 1.87

Table 6.19: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = 1, kt = 1 and

kgeom
s = 3, kgeom

t = 3.

,

nt \ ns 0 1 2 3 4 5 eoct
1 0.38 0.18 0.18 0.18 0.18 0.18
2 0.35 8.35 · 10−2 5.24 · 10−2 5.23 · 10−2 5.24 · 10−2 5.24 · 10−2 1.75
4 0.34 6.71 · 10−2 2.02 · 10−2 1.96 · 10−2 1.96 · 10−2 1.96 · 10−2 1.42
8 0.35 6.42 · 10−2 6.95 · 10−3 4.09 · 10−3 4.10 · 10−3 4.10 · 10−3 2.26
16 0.35 6.43 · 10−2 5.59 · 10−3 6.70 · 10−4 6.71 · 10−4 6.72 · 10−4 2.61
32 0.34 6.42 · 10−2 5.56 · 10−3 1.05 · 10−4 1.00 · 10−4 1.00 · 10−4 2.74
64 0.35 6.41 · 10−2 5.54 · 10−3 3.02 · 10−5 1.42 · 10−5 1.43 · 10−5 2.81
128 0.34 6.41 · 10−2 5.52 · 10−3 2.32 · 10−5 2.01 · 10−6 1.98 · 10−6 2.85
256 0.34 0.26 5.53 · 10−3 2.17 · 10−5 4.95 · 10−7 2.75 · 10−7 2.85

Table 6.20: Moving circle problem: The error ‖(u− uh)(·, T )‖L2(Ω) for ks = 3, kt = 1 and

kgeom
s = 3, kgeom

t = 3.

6.1.3 Discussion of results

In chapter 3 we have derived error estimates for our method. The aim of this section
is to compare the analytical predictions with the numerical observations from the test
problem. An overview of the results is given in Table 6.21. It will now be discussed how
the results given in the column ‘numerical observation’ are concluded from the data in
the previous section. Consider the different (semi-)norms one after another.

• ‖∂t·‖Q:

In the numerical experiment the strong (semi-)norm ‖∂t·‖L∞t (0,T ; L2
x(Ω)) was mea-

sured. The Tables 6.5,6.10 and 6.15 show ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) for kt = ks =

1, 2, 3 respectively. The convergence in time is of order kt. For kt = ks = 2, 3 we
observe a spatial convergence of order ks + 1. However, for kt = ks = 1 the highest
spatial rate measured is merely 1.53. To investigate this case more closely we have
increased the polynomial degree in time to kt = 3. The results are shown in Table
6.16. Now a second order spatial convergence is clearly visible. Hence, the poor
spatial convergence for kt = 1 is due to the fact that the overall error is dominated
by the temporal error. Overall, it is numericall observed that

‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) . ∆tkt + hks+1,

which is optimal with respect to the approximation error estimate. With regard to
the spatial convergence this is also better than the discretization error estimate.
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(semi-)norm
|·| = . . .

approximation error
inf

wh∈Wh

|u− wh| ≤ C · . . .
discretization error
|u− uh| ≤ C · . . .

numerical observation
|u− uh|

‖∂t·‖Q ∆tkt + hks+1 ∆tkt +
√(

1 + ∆t
h

)
hks

∆t1/2 ∆tkt + hks+1

‖∇·‖Q ∆tkt+1 + hks ∆tkt+1/2 +
√(

1 + ∆t
h

)
hks ∆tkt+1 + hks

‖·‖Q ∆tkt+1 + hks+1 - ∆tkt+1 + hks+1

‖∇·‖Ω(T ) ∆tkt+1/2 + ∆t−1/2hks - ∆tkt+1 + hks

‖·‖Ω(T ) ∆tkt+1/2 + ∆t−1/2hks+1 ∆tkt+1/2 +
√(

1 + ∆t
h

)
hks

∆tkt+1+α(kt) + hks+1

α(kt) = 1 for kt = 1, 2
α(kt = 3) > 1/2

Table 6.21: Moving circle problem: Comparing the approximation and discretization
error estimate with the numerical observations.

• ‖∇·‖Q:

The results for the stronger norm ‖∇·‖L∞t (0,T ; L2
x(Ω)) are given in Tables 6.4,6.9 and

6.14. For kt = ks = 1 the error certainly behaves as O(∆t2 + h). For kt = ks = 2 a
second order spatial convergence is clearly visible. According to the approximation
error estimate one would expect a rate of three for refinements in time. But the
three highest values for eoct gathered from Table 6.9 are only 2.83, 2.74 and 2.56.
This is due to the influence of the spatial errors. When the polynomial degree ks
is increased to ks = 3, as shown in Table 6.17, the three highest values for eoct
improve to 2.90, 2.86 and 2.83. The situation for kt = ks = 3 seems to be similar.
We conclude that

‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)) . ∆tkt+1 + hks

is observed.

• ‖·‖Q:

Tables 6.3,6.8 and 6.13 show the results for the stronger norm ‖·‖L∞t (0,T ; L2
x(Ω)). For

kt = ks ∈ {1, 2} the error behaves as

‖u− uh‖L∞t (0,T ; L2
x(Ω)) . ∆tkt+1 + hks+1.

To conlude that this rate also holds true for kt = ks = 3 one would need to observe
a spatial convergence of order four. This value does actually not occur in Table
6.13, which is due to a kick at refinement level 3. However, the mean of the three
highest values for eocs is 4.73. Hence, the overall rate seems to be four.

• ‖∇·‖Ω(T ):

The results for the H1 semi-norm at the final time are given in Tables 6.2,6.7 and
6.12. It is observed that

‖∇(u− uh)(·, T )‖Ω(T ) . ∆tkt+1 + hks .

Actually this is half an order in time better than the approximation error estimate.

70



• ‖·‖Ω(T ):

The L2-error at the final time point for kt = ks ∈ {1, 2, 3} is shown in Tables 6.1,6.6
and 6.11. For kt = ks = 2 we have also plotted the results in Figure 6.3. This
highlights the saturation of the error which occurs on a mesh of a given gridsize or
for a fixed time step. With respect to spatial refinements a rate of ks+1 is observed.

For refinements in time we make an interesting observation:

– For kt = 1, ks = 1 and a piecewise linear approximation of the geometry
(kgeom
s = kgeom

t = 1) Table 6.1 shows a second order rate of convergence for
refinements in time. But if the polynomial order of the geometry approxima-
tion in time is increased to kgeom

t = 2, as shown in Table 6.18, then the rate
improves to three. Thus, for kgeom

t = 1 the convergence rate was limited by
the low-order approximation of the geometry with respect to time. Increas-
ing the polynomial degrees of the geometry approximation even further to
kgeom
s = kgeom

t = 3, as shown in Table 6.19, does only lead to a small additional
improvement of the rate. More precisely, we observe the the estimated orders
of convergence: 2.27, 2.67 and 3.00. Then the rate drops to 0.72 in the last
refinement as the spatial error begins to dominate. In order to reduce the
impact of the spatial error we can increase ks to three. The results are shown
in Table 6.20 and Figure 6.2. A third order rate of convergence is observed.

– For kt = 2 it can be seen in Table 6.6 and Figure 6.3 that ‖(u− uh)(·, T )‖Ω(T )

converges at a rate of four with respect to refinements in time. Increasing kgeom
t

did not lead to a further improvement of the rate in our numerical experiments.

– For kt = 3 a maximal estimated order of convergence of 4.68 can be seen in
Table 6.11. We expect that it should also be possible to improve this rate to
five by means of a better approximation of the geometry and an increase of ks
to mitigate the influence of the spatial error.

Hence, the numerical experiment shows that

‖(u− uh)(·, T )‖Ω(T ) . ∆tkt+1+α(kt) + hks+1,

where α(kt) = 1 for kt = 1, 2 and α(kt = 3) > 1/2. That is, we observe supercon-
vergence with respect to refinements in time.

In this example the numerical error in all considered norms converges at least as good
as the bound for the approximation error. At the fixed time T it even converges better
than the approximation error estimate in ‖·‖Ω(T ) and ‖∇·‖Ω(T ). Hence, the estimates for
the discretization error derived in chapter 3 are definetely suboptimal for this example.

Another interesting observation is the superconvergence at the time level T with
respect to refinements in time. It has been shown in Theorem 12.7 of [Tho97] that the
space-time DG FEM with ks = kt = 1 applied to the fitted heat equation admits an error
bound of the form

‖(u− uh)(·, T )‖Ω ≤ C(∆t3 + h2).

Based on this analysis (see Theorem 12.3 in [Tho97]), one would expect an error bound
of the form

‖(u− uh)(·, T )‖Ω ≤ C(∆t2kt+1 + hks+1) (6.1)
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Figure 6.2: Moving circle problem ks = 3, kt = 1, kgeom
s = 3, kgeom

t = 3: The error
‖(u− uh)(·, T )‖L2(Ω) for refinements in time on different meshes (spatial refinement levels
ns = 1 to ns = 5).
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Figure 6.3: Moving circle problem ks = 2, kt = 2: The error ‖(u− uh)(·, T )‖L2(Ω) for
refinements in time and space.
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to hold true for general polynomial orders provided that the solution is sufficiently smooth.
In section 3.4.2 of [Leh15] a similar method as discussed here has been applied to a

moving interface problem. The considered geometry was a moving sphere. For ks = kt = 1
an order of around 2.5 for the convergence in time has been observed. Moreover, it was
expected that for finer spatial resolutions and a better approximation of the geometry
the rate can be improved to three. The results of this section confirm this expectation
for the simpler two dimensional test problem considered here.

For kt = 2 one would expect to see a rate of five with respect to refinements in time
based on (6.1). In our numerical experiments, a rate of four has been observed. This
is one and a half orders higher than expected by the approximation error estimate, but
not sufficient to speak of full superconvergence. Therefore, we conclude that we see some
effects of superconvergence, but do not fully understand the phenomenon yet.

6.2 Moving and deforming ellipse

6.2.1 Description of test case

The domain in the last example was moving but did not change its shape. Now we
consider the more challenging case of a moving domain which is additionally deforming.
The level set function is given by

φ(x, y, t) =
√

[ξ(x− x0 − ρx)]2 + [η(y − y0 − ρy)]2 − r0,

with

ρx(t) =
1

2
sin(4πt), ρy(t) = sin(2πt)

and

ξ(t) = 1− 1

2
sin2(4πt) η(t) = 1− 1

2
sin2(2πt).

The constants are chosen as x0 = 1, y0 = 1/2 and r0 = 1/3. As the background
domain we take Ω̃ = [−0.5, 2.5]× [0.0, 2.5].

The resulting domain Ω(t) = {(x, y) ∈ Ω̃ | φ(x, y, t) < 0} is a moving and deforming
ellipse. The center of the ellipse is translated through the domain by the velocity field
w(t) =

(
ρ̇x(t), ρ̇y(t)

)
. The scaling factors ξ and η lead to an additional deformation of

the ellipse. In particular, the velocity of the boundary in normal direction Vn does not
need to coincide with the value of the convection field in normal direction w · n. Note
that this violates an assumption that was needed for deriving Lemma 2.1.

At t = 0 the domain starts as a circle. It then undergoes quite strong deformations
while travelling in circular motion in the background domain. At t = T = 1/2 it has
completed a full revolution. Half of this motion is shown in Figure 6.4.

The right hand side is computed so that the solution is given by

u(x, y, t) = χ(φ(x, y, t) + r0),

with χ(r) = cos2( πr
2r0

). The convergence studies are performed over the time interval

[0, T ]. The stabilization parameter for the ghost penalty is chosen as γJ = 5 · 10−2.
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Figure 6.4: Moving and deforming ellipse: The domain Ω(t) for t ∈
{0, 1/20, 2/20, 3/20, 4/20, 5/20}.

6.2.2 Discussion of results

We consider the case of quadratic elements in time and space: ks = kt = 2. The
polynomial degrees of the geometry approximation are chosen accordingly: kgeom

s = ks
and kgeom

t = kt. The error is measured in the (semi-)norms: ‖·‖L2(Ω) , ‖∂t·‖L∞t (0,T ; L2
x(Ω))

and ‖∇·‖L∞t (0,T ; L2
x(Ω)).

• ‖·‖Ω(T ):

Figure 6.5 shows that the error behaves as

‖(u− uh)(·, T )‖Ω(T ) . ∆t4 + h3.

Again the convergence with respect to refinements in time is at least an order better
than expected.

• ‖∂t·‖L∞t (0,T ; L2
x(Ω)):

It can be seen in Figure 6.6 that ‖∂t(u− uh)‖L∞t (0,T ; L2
x(Ω)) converges with a quadratic

rate for refinements in time. For investigating the convergence in space we have
increased the polynomial degree in time to four. This reduces the effect of temporal
errors. Then a cubic rate of convergence in space is observed.

• ‖∇·‖L∞t (0,T ; L2
x(Ω)):

Figure 6.7 shows the results for ‖∇(u− uh)‖L∞t (0,T ; L2
x(Ω)). We observe a second

order rate of convergence in space and a rate of nearly three in time.

As in the previous experiment the observed rate of convergence is again much better
than the derived error estimate

|||u− uh||| . ∆tkt+1/2 +

√(
1 +

∆t

h

)
hks
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Figure 6.5: Moving and deforming ellipse, ks = 2, kt = 2: The error ‖(u− uh)(·, T )‖L2(Ω)

for refinements in time and space.
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Figure 6.7: Moving and deforming ellipse, ks = kt = 2: The error
‖∇(u− uh)‖L∞t (0,T ; L2

x(Ω)) for refinements in time and space.
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128 2.10 · 10−4 2.64
256 3.18 · 10−5 2.72
512 4.78 · 10−6 2.73

Figure 6.8: Moving and deforming ellipse kt = 1 : The error ‖(u− uh)(·, T )‖Ω(T ) for

refinements in time, where ks = 2 and kgeom
t = kgeom

s = 2.

suggests.
In the last example it was observed that the error in the ‖·‖Ω(T )-norm for kt = 1

converges at a rate of about three with respect to refinements in time provided that
the approximation of the geometry is sufficiently accurate. Since the evolution of the
domain is more complicated in this example it is interesting to investiate whether the
superconvergence can still be observed. Figure 6.2 shows the results for refinements in
time with kt = 1. We have chosen kgeom

t = kgeom
s = 2 to provide a better approximation

of the geometry and ks = 2 to alleviate the effects of spatial errors. On the finest mesh a
highest rate of 2.73 is observed. This is slightly worse than for the moving circle problem
(Tables 6.19 and 6.20). Nevertheless, the observed rate is definitely higher than 2.0 so
that one can still speak of superconvergence.
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Chapter 7

Isoparametric unfitted space-time
FEM for a two-phase interface
problem

This chapter deals with the application of the isoparametric unfitted space-time DG
method to a mass transport problem in two-phase flows. First we introduce the PDE
that needs to be solved and provide some information on the physical background. For
further details on the modelling we refer to section 1.2 of [Leh15] and references therein.
Then we derive an isoparametric space-time discretization for this problem. It is based
on the Space-Time-DG Nitsche-XFEM method that has been introduced and analyzed
in [LR13] and [Leh15] for linear finite elements in time and space.

Compared to the moving domain problem from the previous chapters, the two-phase
interface problem poses some additional challenges. Firstly, the problem now consists of
two PDEs given inside the bulk phases instead of just one. Secondly, there are additional
conditions at the interface separating the two fluids which need to be taken care of. To
this end, the Nitsche technique can be used.

7.1 Introduction

We are interested in computing the concentration of a soluble species u inside the two
fluids. The fluids are assumed to be immiscible, incompressible and contained in the
background domain Ω. A phase transition is not allowed. We consider the situation that
one of the phases Ω1(t) is completely surrounded by the other phase Ω2(t). The interface
Γ(t) := Ω̄1(t) ∩ Ω̄2(t) is assumed to have thickness zero. I.e. it is sharp and separates Ω
into two disjoint regions as shown in Figure 7.1.

Furthermore, we assume that species conservation across the interface holds. In par-
ticular, the species do not adhere to the interface and no chemical reactions take place
there. The transport of the species through the interface is then caused by diffusion and
modelled by Fick’s law. Conservation of mass across the interface then leads to the first
interface condition:

α1∇u1 · n = α2∇u2 · n,

where αi are the diffusivities of the fluids and ui denotes the solution inside the phase
Ωi(t) for i = 1, 2. The normal n points from Ω1 to Ω2, i.e. n = n1 is the outer normal of
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Figure 7.1: Sketch of the two phases.

Ω1. Using the jump operator J·K at the interface defined by

Jv(x)K := lim
s→0+

v(x+ s · n)− lim
s→0+

v(x− s · n), x ∈ Γ(t), t ∈ (0, T ],

this condition can be written as Jα∇u · nK = 0 on Γ(t).
The second interface condition stems from chemical reasons. We assume that the

chemical potentials from both sides of the interface are in balance so that Henry’s law

β1u1 = β2u2

holds true on Γ(t). Here βi, i = 1, 2 are the Henry coefficients describing the solvability
of the species in the fluid.

Inside the phases we use the same convection diffusion equation as treated in the
previous chapters:

∂tui + w · ∇ui − div(αi∇ui) = fi in Ωi(t), i = 1, 2.

The model has to be complemented by suitable initial conditions at Ωi(0) and bound-
ary conditions on ∂Ω. Here only homogeneous Dirichlet boundary conditions will be
considered:

u2(·, t) = 0 on ∂Ω, t ∈ (0, T ].

We arrive at:

∂tui + w · ∇ui − div(αi∇ui) = fi in Ωi(t), t ∈ [0, T ] (7.1)

J−α∇u · nK = 0 on Γ(t), t ∈ [0, T ], (7.2)

JβuK = 0 on Γ(t), t ∈ [0, T ], (7.3)

ui(·, t = 0) = ui0 in Ωi(0), (7.4)

u2(·, t) = 0 on ∂Ω, t ∈ (0, T ]. (7.5)

The problem is visualized in Figure 7.2.
Similar to the discretization from chapter 2 for the moving domain problem, the

following assumptions are made:

• The velocity field w shall originate from an incompressible flow: div(w) = 0 and is
assumed to be bounded: ‖w‖∞ <∞.
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Mass balance:
[[−α∇u · n]] = 0 on Γ(t)

∂tui + w · ∇ui − div(αi∇ui) = fi in Ωi(t)

Ω1(t)

Ω2(t)

Henry condition:
[[βu]] = 0 on Γ(t)

w

Figure 7.2: Mass transport problem in two-phase flows.

• The velocity of the interface in normal direction Vn shall coincide with the value of
the convection field in normal direction: Vn = w · n.

Compared to the moving domain problem from the previous chapters, the problem
considered here now poses the additional challenge of having to respect the interface con-
ditions. In general, it holds that β1 6= β2 and α1 6= α2, so that the solution exhibits jumps
and kinks across the interface. Due to the motions of the interface, these discontinuities
travel in time. Thus, an unfitted discretization has to be able to approximate functions
that have a discontinuity whose position moves inside the discretization elements. An op-
timal approximation can be achieved by using twice the degrees of freedom of a standard
finite element space in the interface region.

7.2 Derivation of the method

Notation

To formulate the variational formulation it is necessary to generalize the notation from
chapter 2 to the setting of a two-phase problem. This is easily done by introducing an
additional index i ∈ {1, 2} which indicates the domain Ωi(t). As before, let 0 < t1 <
. . . < tN−1 < tN be a partition of the time domain into time intervals In = (tn−1, tn] with
constant size ∆t = tn − tn−1. The space-time slabs are given by Qn

i := ∪t∈InΩi(t)× {t}
for i = 1, 2. These are contained in the tensor product domain Qn = Ω × In. We
denote the union over all time slabs by Qi = ∪Nn=1Q

n
i and Q = ∪Nn=1Q

n. The spatial
domain at a fixed time Ωi(tn) will again be abbreviated by Ωn

i = Ωi(tn). Further, we
define the space-time interface Γ∗ := ∪t∈(0,T ]Γ(t)× {t} and its restriction to the time slab
Γn∗ := ∪t∈InΓ(t)× {t}.

Further, let Th be a shape-regular triangulation of the background domain. Let V ks
h

be a standard finite element space of order ks on this mesh. We define an extension
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operator E that extends the domains Qn
i onto a domain with a tensor product structure

within each time slab

E(Qn
i ) := {x ∈ T for some T ∈ Th with Qn

T ∩Qn
i 6= ∅},

where we recall that the space-time prisms are defined by Qn
T = T × In. Let then

E(Qi) = ∪Nn=1(E(Qn
i )). The restriction is given by

I(Qn
i ) := Qn

i \ E(Qn \Qn
i ).

Then we introduce purely spatial counterparts

I(Ωn
i ) such that I(Ωn

i )× In = I(Qn
i ),

E(Ωn
i ) such that E(Ωn

i )× In = E(Qn
i ),

for i = 1, 2.
The space-time finite element spaces on the time slab are defined by:

W i
n := {v : E(Qn

i )→ R | v(x, t) =
kt∑
m=0

tmφm, φm ∈ V ks
h (E(Ωn

i ))}. (7.6)

We combine these into the space W Γ
n := W 1

n⊕W 2
n . The space on the complete space-time

domain is defined by restriction to the time slabs: W Γ
h := {v : Q→ R | v�Qn ∈ W Γ

n }.

Remark 22 (CutFEM vs XFEM). The space W Γ
n is basically contructed by piecing

together two standard space-time finite element spaces which have been cut-off at the space-
time interface. Such an approach is known as CutFEM in the literature. It is possible to
give an equivalent description of W Γ

n which may be more intuitive. Let Wn be the standard
space-time finite element space on the tensor product Qn defined in (3.13). The space W Γ

n

is obtained by enriching Wn by new basis functions which capture the discontinuity of the
solution across the space-time interface Γn∗ . We have W Γ

n = Wn⊕W x
n , where the part W x

n

contains basis functions that are discontinuous across the space-time interface. A precise
definition can be found in section 3.2.3 of [Leh15], where such a characterization of W Γ

n

has been used. Splitting W Γ
n into a standard space Wn and a so called XFEM-part W x

n ,
including the enrichments functions, might be advantageous for preconditioning purposes
(cf. section 3.5 of [Leh15]).

In the derivation of the variational formulation we will multiply by a test function
βv = (β1v1, β2v2) ∈ W Γ

h . It is convenient to introduce β -weighted scalar products that
allow to absorb the Henry coefficient. To this end, define

(ui, vi)Qn
i

:=

∫
Qn

i

βiuivi dx dt

and

(ui, vi)Ωn
i

:=

∫
Ωn

i

βiuivi dx.
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Derivation of the variational formulation

We start by multiplying the equation (7.1) by a test function βv ∈ W Γ
h and integrate

over the space-time domain:

∑
i=1,2

N∑
n=1

(∂tui + w · ∇ui − div(αi∇ui), vi)Qn
i

=
∑
i=1,2

N∑
n=1

(fi, vi)Qn
i
.

Denote the right hand side by f(v) =
∑
i=1,2

N∑
n=1

(fi, vi)Qn
i
.

Now an integration by parts is performed on the space-time convection (∇, ∂t). First
consider Qn

1 . For the time derivative one obtains

(∂tu1, v1)Qn
1

= −(u1, ∂tv1)Qn
1
+
(
(u1)n−, (v1)n−

)
Ωn

1
−
(
(u1)n−1

− , (v1)n−1
+

)
Ωn−1

1
−

tn∫
tn−1

∫
∂Ω1(t)

β1Vnu1v1 dsdt,

where Vn denotes the velocity of the interface in normal direction and (u1)n−1
− is the

upwind flux.
For the convection term one has

(w · ∇u1, v1)Qn
1

= −(u1,∇ · (wv1))Qn
1

+

tn∫
tn−1

∫
∂Ω1(t)

β1w · nu1v1 dsdt

= −(u1,w · ∇v1)Qn
1

+

tn∫
tn−1

∫
∂Ω1(t)

β1w · nu1v1 dsdt,

where it was used that ∇ · (wv1) = v1∇ · w + w · ∇v1 = w · ∇v1 since w is divergence
free.

Now one has that the velocity of the interface in normal direction coincides with the
convection field: w · n− Vn = 0. So these two terms cancel and we obtain:

(∂tu1 + w · ∇u1, v1)Qn
1

= −(u1, ∂tv1 + w · ∇v1)Qn
1
+
(
(u1)n−, (v1)n−

)
Ωn

1
−
(
(u1)n−1

− , (v1)n−1
+

)
Ωn−1

1
.

Using that u2 = v2 = 0 on ∂Ω we obtain that the same formula holds when Qn
1 is replaced

by Qn
2 . Summing up over the time slabs leads to:

∑
i=1,2

N∑
n=1

(∂tui + w · ∇ui, vi)Qn
i

= −
∑
i=1,2

N∑
n=1

(ui, ∂tvi + w · ∇vi)Qn
i

+
∑
i=1,2

N∑
n=1

{
(
(ui)

n
−, (vi)

n
−
)

Ωn
i
−
(
(ui)

n−1
− , (vi)

n−1
+

)
Ωn−1

i
}

= −
∑
i=1,2

N∑
n=1

(ui, ∂tvi + w · ∇vi)Qn
i
−
∑
i=1,2

N−1∑
n=1

(
(ui)

n
−, JviK

n
)

Ωn
i

+
(
(ui)

N
− , (vi)

N
−
)

ΩN
i
− (ui0, (vi)

0
+)Ω0

i
.

Now defining

d′(u, v) :=
N∑
n=1

d′n(u, v),
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where
d′n(u, v) := −

∑
i=1,2

(ui, ∂tvi + w · ∇vi)Qn
i

for 1 ≤ n ≤ N, (7.7)

b′(u, v) :=
N−1∑
n=1

b′n(u, v) +
∑
i=1,2

(
(ui)

N
− , (vi)

N
−
)

ΩN
i
,

where
b′n(u, v) := −

∑
i=1,2

(
(ui)

n
−, JviK

n
)

Ωn
i

for 1 ≤ n ≤ N − 1,

and c(w, v) :=
∑
i=1,2

(
wi, (vi)

0
+

)
Ω0

i
, one has

∑
i=1,2

N∑
n=1

(∂tu+ w · ∇u, v)Qn
i

= d′(u, v) + b′(u, v)− c(u0, v).

Next the diffusion term will be treated. An integration by parts leads to:

∑
i=1,2

(−div(αi∇ui), vi)Qn
i

=
∑
i=1,2

(αi∇ui,∇vi)Qn
i
−

tn∫
tn−1

∫
Γ(t)

∑
i=1,2

αi∇uiniβivi ds dt

=
∑
i=1,2

(αi∇ui,∇vi)Qn
i
−

tn∫
tn−1

∫
Γ(t)

Jα∇u · nβvK ds dt

=
∑
i=1,2

(αi∇ui,∇vi)Qn
i
−

tn∫
tn−1

∫
Γ(t)

{{α∇u · n}}JβvK ds dt.

Here the weighted average {{·}} is defined by

{{α∇u · n}} := (κ1α1∇u1 + κ2α2∇u2) · n1,

for a convex combination of κi ∈ [0, 1], κ1 +κ2 = 1. To rewrite the jump term in this way
we used that the normal flux is univalued at the interface due to conservation of mass
(7.2). Further, we can transform the iterated integrals to integrals on the space-time
interface by means of the following formula:

tn∫
tn−1

∫
Γ(t)

f(s)ds dt =

∫
Γn
∗

f(s)ν(s) ds,

where ν(s) = (1 + (w ·n))−1/2 and w is the (interface) velocity. Here ds denotes both the
surface measure on Γ(t) as well as on Γ∗. Employing this formula we can write

−
tn∫

tn−1

∫
Γ(t)

{{α∇u · n}}JβvKds dt = −(ν{{α∇un}}, JβvK)Γn
∗

:= Nn
c (u, v).
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The full Nitsche form Nn(·, ·) on the time slab is then obtained by adding additional
symmetry and stabilization terms.

Nn(u, v) := Nn
c (u, v) +Nn

c (v, u) +Nn
s (u, v),

where Nn
s (u, v) :=

(
νᾱλ

h
JβuK, JβvK

)
Γn
∗
. Due to the Henry condition (7.3) the additional

terms vanish for the exact solution. In other words, the stabilization is consistent. So,
defining

a(u, v) :=
N∑
n=1

an(u, v), where an(u, v) :=
∑
i=1,2

(αi∇ui,∇vi)Qn
i

for 1 ≤ n ≤ N,

and N(u, v) :=
N∑
n=1

Nn(u, v) yields:

∑
i=1,2

N∑
n=1

−(div(αi∇ui), vi)Qn
i

= a(u, v) +N(u, v).

Finally, we need to add an analogue to the ghost penalty stabilization term from chapter
2. Let F = {F} be the set of spatial facets of Th. The relevant facets for the stabilization
on Qn

i are then given by

F∗,nRi
= {F ∈ F : F = T1 ∩ T2, T1 ∈ E(Ωn

i ) \ I(Ωn
i ), T2 ∈ E(Ωn

i )}.

The corresponding facet-patches are defined as before

ωF = T1 ∪ T2, F ⊂ ∂Tj, j = 1, 2.

Then we define the stabilization term

jnh (u, v) :=
∑
i=1,2

tn∫
tn−1

γJ

(
1 +

∆t

h

) ∑
F∈F∗,nRi

∫
ωF

1

h2
JuiKωF

JviKωF
dx dt

and

J(u, v) :=
N∑
n=1

jnh (u, v).

Finally, we arrive at the discrete variational formulation
Find uh ∈ W Γ

h such that

B(uh, vh) + J(uh, vh) = f(vh) + c(u0, vh) for all vh ∈ W Γ
h , (7.8)

where B(uh, vh) = a(uh, vh) + b′(uh, vh) + d′(uh, vh) +N(uh, vh).

Isoparametric adaptations to discretization

The variational formulation derived so far assumes an exact handling of the geometry.
The changes that are necessary for the extension to an isoparametric discretization are
analogous to the moving domain problem (cf. section 4.3). Let Θh denote the space-time

83



mapping corresponding to the time slabs Qn. The space-time finite element spaces W i
n

from (7.6) then need to be replaced by the isoparametric spaces

W i
n,Θh

:= {v | v(t,Θh(t, x̂)) = v̂(t, x̂) for x̂ ∈ Ωlin
i (t), with v̂ ∈ W i

n}.

Accordingly, W Γ
n is replaced by W 1

n,Θh
⊕W 2

n,Θh
.

The changes to the terms in the variational formulation are analogous to section 4.3
as well. In the bilinear form d′n(·, ·) we need to add an additional term ∂tΘh

∂t
· ∇vi that

accounts for the mesh velocity. Moreover, a projection step is necessary when the solution
from the top of the time slab Qn−1

i is passed on as an initial condition to the variational
formulation on the next time slab Qn

i . The projection is computed separately for each
Qn
i for i = 1, 2.

Remark 23 ((space-time) surface integrals). In contrast to the fictitious domain problem
in the previous chapters, we have to consider and implement also (space-time) surface in-
tegrals stemming from the Nitsche terms. This can be done with similar techniques as
explained in section 5.2. Thanks to the explicit geometry description provided by the
space-time mapping, it is again sufficient to consider the situation of a space-time inter-
face described by a level set function which is piecewise linear with respect to the spatial
variable. Furthermore, the space-time integrals over the space-time surface can be written
as iterated integrals over spatial surface integrals.
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Chapter 8

Numerical experiments for a
two-phase interface problem

In this chapter we investigate the performance of the method introduced in chapter 7 for
two test problems. The interface in the first problem is a (curved) plane. In the second
problem we consider again the case of a moving circle.

8.1 Moving (curved) plane

We start with a two-dimensional adaptation of an example from section 3.4.1 of [Leh15].
It easily allows to switch between a planar and a curved interface. To this end, consider
the domains Ω1(t) = {(x, y) ∈ Ω | |x− q(y)− ρ(t)| < D

2
} and Ω2(t) = Ω \ Ω1(t) with

D = 1/3 and q and ρ to be determined. The background domain is chosen as a box
Ω = [0, 2]2. This example assumes periodic boundary conditions: u(x = 0) = u(x = 2)
and u(y = 0) = u(y = 2). The data is prescribed so that the exact solution is given by
u(x, y, t) = sin(πt)ui(x− q(y)− ρ(t)) where

• u1(y) = ay + by3,

• u2(y) = sin(πy).

The convection field is given by w =
(
ρ̇, 0
)
. The diffusivities are chosen as (α1, α2) = (1, 2)

and the Henry weights (β1, β2) = (1.5, 1). To make the interface conditions hold in an
approximate sence we choose a ≈ 1.02728 and b ≈ 6.34294. The freedom to pick ρ and q
offers the possibility to construct different kinds of interfaces:

• The easiest case is a planar interface q(y) = 1 in a linear motion ρ(t) = 0.25t.

• To build a non-planar interface one can chose q(y) = 7
8

+ 1
4
y2(2 − y)2. Further,

ρ(t) = 1
4π

sin(2πt) leads to a harmonic motion.

The convergence studies are performed over the interval [0, T ] with T = 1. We consider
quadratic elements in space and time and measure the L2-norm at the final time T . The
stabilization parameter for the ghost penalty is chosen as γJ = 103.

Planar interface: Since the interface is planar, the space-time mesh transformation
was not used in this case. The results for the planar interface are shown in Figure 8.1.
We observe a spatial rate of convergence which is at least three. The rate with respect
to refinements in time is somewhere between three and four.
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Figure 8.1: Moving plane - planar interface, ks = 2, kt = 2: The error ‖(u− uh)(·, T )‖L2(Ω)

for refinements in time and space.
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Figure 8.2: Moving plane - curved interface, ks = 2, kt = 2: The error
‖(u− uh)(·, T )‖L2(Ω) for refinements in time and space.

Curved interface: For the curved case we use the mesh transformation to deal with
the more complicated geometry of the interface. Figure 8.2 shows the results for the
curved case. The observed spatial rate of convergence is again at least three. Likewise,
the rate of convergence with respect to refinements in time is between three and four.
In the third refinement the rate is quite close to four but it deteriorates in the later
refinements.

The results for the planar and curved case are quite similar thanks to the higher order
accurate geometry description provided by the isoparametric space-time mapping.

8.2 Moving circle

The geometry for this example is again a moving circle as shown in Figure 8.3. But this
time we consider an interface problem. Let

Ω1(t) = {(x, y) ∈ R2 |
√

(x− 0.5− ρ(t))2 + (y − 1)2 < 1/3},
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Mass balance:
[[−α∇u · n]] = 0 on Γ(t)

∂tui + w · ∇ui − div(αi∇ui) = fi in Ωi(t)

Ω1(t)

Ω2(t)

Henry condition:
[[βu]] = 0 on Γ(t)

w

Figure 8.3: Mass transport problem in two-phase flows: Moving circle.
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Figure 8.4: Moving circle problem ks = 2, kt = 2: The error ‖(u− uh)(·, T )‖L2(Ω) for
refinements in time and space.

where ρ(t) = 1
4π

sin(2πt) and Ω2(t) = [0, 2]2 \ Ω1(t). The data is chosen so that the exact
solution is given by

u(x, y, t) = sin(πt)ui(
√

(x− 0.5− ρ(t))2 + (y − 1)2)

with u1(y) = a + by2 and u2(y) = cos(πy). The evolution of the geometry is driven by
the convection field w =

(
0, ρ̇
)

with ρ(t) = 1
4π

sin(2πt). Choose (α1, α2) = (10, 20) and
(β1, β2) = (2, 1). To fulfill the interface conditions approximately we set a ≈ 1.1569 and
b ≈ −8.1621.

The convergence studies are performed over the time interval [0, T ] with T = 1/2.
The stabilization parameter for the ghost penalty is chosen as γJ = 10−1.

The results for ‖(u− uh)(·, T )‖L2(Ω) with quadratic elements in time and space are
shown in Figure 8.4. The observed spatial rate of convergence is three. With respect to
convergence in time we see a rate between three and four.

In this example, time-dependent Dirichlet data has been used for the boundary condi-
tion. We notice that this already prohibits superconvergence behavior if not chosen with
care, cf. [VR18].
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Chapter 9

Conclusion

9.1 Summary

In this thesis we have investigated a higher order unfitted finite element method for
moving domain problems. As a model problem, a simple convection-diffusion equation
on a moving domain was considered. For this equation we first derived a space-time DG
formulation which assumes an exact handling of the geometry. Under this assumption,
an a priori error analysis was carried out. We arrived at an error estimate in a discrete
norm that is anisotropic in the time step and the spatial mesh width. To the best of our
knowledge, this is the first higher order (order greater-than two) error bound proven for
an Eulerian method of a moving domain problem. However, this estimate is suboptimal
with respect to the approximation error bounds .

For the implementation of higher order unfitted methods it is essential to carry out the
quadrature on the cut elements with sufficient accuracy. To this end, we have generalized
an approach introduced in [Leh16] and [LR17] for the stationary case. The general idea is
to construct a space-time mapping of the underlying mesh which provides a higher order
accurate explicit description of the geometry. All the integrals that need to be computed
in an implementation of the method can be reduced to a reference configuration which is
piecewise planar with respect to the spatial dimension. We have described the resulting
isoparametric finite element method and discussed implementational aspects.

The performance of the proposed method was studied in numerical experiments. The
observed rates of convergence are at least as good as the approximation error bounds.
Since the method performs better in all our experiments than guaranteed by the a priori
estimate, the derived estimate is probably not sharp.

As an application of our method to a physically more interesting problem, we have
considered a mass transport problem in two-phase flows. A corresponding variational
formulation was derived, but an analysis was not carried out. In numerical experiments
similar rates of convergence for the L2-norm at the final point in time have been observed
as for the moving domain problem.

9.2 Open problems and outlook

The development of higher order unfitted finite element methods for moving domain
problems is still in its infancy. The approach investigated in this thesis appears to be
promising as it is accessible for a rigorous error analysis and performs well in numerical
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experiments. Nevertheless, many interesting questions remain for further research. In
the following we will sketch some of them.

Improvement of the error analysis assuming exact geometry handling The
error estimate derived in the discrete norm that was given in Theorem 3.27 appears to
be suboptimal. In the numerical experiments we observe better rates of convergence as
guaranteed by the Theorem. One might attempt to improve on this estimate by means
of duality arguments. Alternatively, it is possible that a different kind of analysis might
lead to better error bounds. However, we note that the analysis of our method method is
challenging, since the finite element spaces are time-dependent. Hence, the usual analysis
for parabolic problems, which involves an error splitting based on the Ritz projection,
cannot be applied directly.

Error analysis of the isoparametric method We have only provided an analysis
which assumes that all the arising integrals can be calculated exactly. The next step would
be an extension of the analysis to the isoparametric method introduced in chapter 4. A
corresponding analysis for a stationary problem, which allows for optimal error bounds,
has been given in [LR17] and [LR16]. In this regard, it is important to have suitable
space-time interpolation operators at hand which can deal with the discontinuity of the
space-time mesh transformation between the time slabs (see section 4.2.2). This is one
of the reasons why we have constructed tailor-made interpolation operators in this thesis
instead of retreating to nodal interpolation. Overall, an extension of the analysis that
takes the isoparametric space-time mapping into account should be possible and might
be the subject of a forthcoming paper. In this regard, it is also planned to cover details
of the projection operator that is used to treat the discontinuity of the space-time mesh
transformation between the time slabs.

Analysis of the two-phase interface problem An application of the method
to a mass transport problem in two-phase flows has been presented. Since the method
performs well in numerical experiments, it might be interesting to extend our analysis
from the moving domain problem to the setting of two-phase flows. The PDEs in the
bulk phases coincide for both problems. The additional challenge comes from the Nitsche
terms enforcing the interface conditions. The Nitsche terms in the stationary case can
be controlled by a special choice of the weights in the averaging operator (cf. [HH02]).
This approach has been extended to the instationary case in [LR13]. In this paper the
authors show error estimates for a similar method as presented in chapter 7 for the case
of piecewise linear finite elements in space and time. Apart from being higher order,
our method differs from the one presented in [LR13] by the additional ghost penalty
stabilization that we employ. Due to the stabilization term we expect that stability of
our variational formulation can be ensured independent of the choice of the weights in the
avaraging operator. This might be advantageous for the case that the diffusion coefficients
αi have a large contrast. Furthermore, the conditioning of the arising linear systems is
expected to be independent of the cut position even in the higher order case.

Linear solvers for (high-order) unfitted FEM Concerning the linear systems
for unfitted finite elements methods one faces a difficult situation. On the one hand,
one wants to ensure condition number bounds which are independent of the cut position.
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A popular way to guarantee this is by means of a ghost penalty stabilization. On the
other hand, the efficient solution of the arising linear systems is desired. To this end, one
would like to construct suitable preconditioners. However, the ghost penalty stabilization
might complicate this task by introducing additional couplings into the system. For time
dependent problems the situation becomes even more complicated as the cut positions
move through the mesh. Controlling and solving the linear systems arising in unfitted
discretizations efficiently is highly desired for the practical application of these methods.

Extension to spatially three-dimensional problems The numerical examples
treated in this thesis are all spatially two-dimensional. With a view towards applications
it is clearly desired to treat the spatially three-dimensional case as well. Hence, the
extension of the implementation in ngsxfem to three spatial dimensions and the treatment
of challenging test cases are interesting tasks for the future.

Extension to more complicated problems The moving domain problem con-
sidered in chapters 2-6 is rather simple. To treat physically realistic problems it might be
necessary to take couplings and nonlinear effects into account. Constructing higher-order
discretizations for such problems is challenging. Other members of our working group
tackle such tasks. We hope that part of this thesis might be useful for their work.
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bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind. Abh. Math. Sem. Univ. Hamburg, 36:9–15, 1971. Collection of articles
dedicated to Lothar Collatz on his sixtieth birthday.

[RN09] A. Reusken and T. H. Nguyen. Nitsche’s method for a transport problem in
two-phase incompressible flows. J. Fourier Anal. Appl., 15(5):663–683, 2009.

[RST08] H.-G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for
singularly perturbed differential equations, volume 24 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, second edition, 2008.
Convection-diffusion-reaction and flow problems.
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