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Many interesting phenomena in plasma fluid dynamics can be described within the framework
of magnetohydrodynamics. Numerical studies in plasma flows frequently involve simulations
with highly varying spatial and temporal scales. As a consequence, numerical methods on
uniform grids are inefficient to be used, since (too) many grid points are needed to resolve the
spatial structures, such as boundary and internal layers, shocks, discontinuities, shear layers, or
current sheets. For the efficient study of these phenomena, adaptive grid methods are needed
which automatically track and spatially resolve one or more of these structures. An interesting
application within this framework can be found in and around our sun. There are several cases
for which we can expect steep boundary and internal layers (see figure 1).

The first one deals with the expulsion of the magnetic flux by eddies in a solar magnetic
field model. This model addresses the role of the magnetic field in a convecting plasma and the
distortion of the field by cellular convection patterns for various (small) values of the resistivity
(magnetic diffusion coefficient). This situation is of importance around convection cells just
below the solar photosphere. Steep boundary and internal layers are formed when the magnetic
induction reaches a steady-state configuration.

In this presentation we discuss another phenomenon that takes place a little bit farther from
the solar interior, viz., in the solar corona. It is known that the temperature gradually decreases
from the center of the sun down to values of around 104 degrees Kelvin at the foot of the corona
(see figure 2). From that point, however, it surprisingly increases dramatically again up to several
millions of degrees Kelvin forming a non-trivial transition zone (boundary layer) between the
photosphere and the chromosphere. Moreover, because of the extreme temperatures, the solar
corona is highly structured with closed magnetic structures which are generally known as coronal
loops. It can be derived that the temperature T and pressure distribution P in the loop as a
function of a mass-coordinate z satisfy the following PDE model:
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where P (z, t) = P0(t) − µz, EH is a heating function, χ(T ) the radiative loss function and
ε a small parameter representing the thermal conductivity in the loop. Near the base of the
loop there are two adjacent boundary layers where the temperature increases very quickly when
moving upward in the loop; in these thin layers the pressure in nearly constant. We will examine
the nature of this special boundary layer via the theory of significant degenerations and also in
terms of a dynamical system of the steady-state of PDE (1) in which a non-trivial saddle-center
connection occurs. A complicating factor is the fact that we also need to take into account the
so-called loop-condition:
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with gasconstant R, total mass in the loop M and (half) looplength L.
To support and confirm the theory, we have applied an adaptive grid technique, based on

an equidistribution principle with additional smoothing properties, to numerically simulate the
forming of the thin boundary layer.
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Figure 1: Convection cells and coronal loops in, and on top of, the sun in the form of magnetic
field lines.

Figure 2: The temperature distribution and the steep transition zone in the outer layers of the
sun.
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