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1. Introduction

To describe the evolution of a two-dimensional wavepacket in flow such as growing boundary
layer, the classical stability approach is based on the assumption of locally parallel or weakly non
parallel basic flow. These approach was used by Gaster ([6] 1982) to characterize the spatio-
temporal dynamic of a perturbation in a boundary layer by the evaluation of the integral of
simple traveling waves. However this approach could failed if a wave length of any perturbation
is larger than a characteristic length of the spatial inhomogeneity of the base flow. Consequently
a more general eigenvalue problem was developed by some authors as Lin & Malik ([7] 1995),
Theofilis et al. ([10] 2000) and Erhenstein & Gallaire ([3] 2005) where two spatial directions
are inhomogeneous. In this paper it will be shown the possibility to recover the convective
instability by calculating two dimensional temporal linear stability mode. In the same way as
Erhenstein & Gallaire [3] and Cossu & Chomaz ([2] 1997), we will see that the non-normality of
the temporal mode will lead to transient growth which takes the form of a wave packet travelling
in the boundary layer.

2. Basic Flow

The linear stability analysis was realized on a flate plate boundary layer. The two-dimensional
Navier-Stokes equations for incompressible fluids in the stream function-vorticity formulation
are considered to calculate the basic flow:
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where ω and ψ are the vorticity and the stream function respectively. System (1) is closed by
the following boundary conditions:

∂ψ/∂y = U, ω = 0 and ψ = 0, ∂ψ/∂y = 0 (2)

for the upper boundary and the wall respectively. At the inflow and at the outflow, a Blasius
profile and ∂2ψ/∂x2 = 0, ∂2ω/∂x2 = 0 are imposed respectively. Similar boundary conditions
were used by Briley (1971 [1]) to calculate separated boundary layer.

A second order finite differences scheme was used for the vorticity transport equation as well
as the poisson equation of stream function. An A.D.I algorithm has been employed to solve
the transport equation and the poisson equation was resolved by a Peaceman-Rachford A.D.I
technique. The grid used was uniform in x direction and geometrical in normal direction. The
lengths are dimensionless by the displacement thickness at the inflow. The stability analysis
was realized on a flate plate boundary layer calculated at the Reynolds number Re=610 for a
domain of length in the streamwise direction up to Lx = 460, with a grid 420×150.
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3. Two dimensional linear stability analysis

3..1. Generalities

The proposed linear stability analysis is based on the classical perturbations technique where
the instantaneous flow (q) is the superposition of the basic flow (Q), data of this problem,
and unknown perturbation (q̃): q(x, y, t) = Q(x, y) + εq̃(x, y, t) + cc, ε ¿ 1 . A wave form
have been taken for the perturbation : q̃(x, y, t) = q̂(x, y) exp(−iΩt) where Ω is the circular
global frequency of the fluctuation and q̂ = (û, v̂, p̂)T the two-dimensional amplitude function
of the perturbation. Then the two-dimensional generalized eigenvalue problem obtained by the
linearized incompressible Navier Stokes equations was defined by:
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. A Chebyshev/ Chebyshev collocation spectral

method was used to discretize the problem.

3..2. Boundary conditions

The boundary conditions u = 0, v = 0, are imposed on the perturbation velocity components
at the wall and the upper boundary.

In following the article of Erhenstein & Gallaire [3], compatibility boundary conditions with
convective instability are imposed at inflow and outflow of the domain. The main idea was
to use a Gaster type relation (1962 [5]) that links the spatial growth to the temporal growth.
Consequently the relation (4) are applied on the velocity perturbations at inflow and outflow of
the domain. Under the assumption of a locally parallel flow the expansion (4) was realized by
solving Orr-Sommerfeld on the same basic flow at inflow and outflow. Ω0 was chosen near the
neutral curve so that the relation (4) was justified.

∂u

∂x
= iαu with α ≈ α0,r +

∂αr

∂Ω
(Ω0)(Ω− Ω0) (4)

Finally no boundary conditions are applied on the pressure perturbation but only constraints.
As it is referred in the article of Phillips & Roberts (1993 [11]) there are 8 spurious pressure
modes in incompressible flow calculation when using a Chebyshev/ Chebyshev discretization:
4 at the corners, the line, column and checkerboard modes and the constant one. Spurious
pressure modes are removed by means of a singular value decomposition. Consequently the
corresponding velocity perturbation field was divergence free at all the collocation points.

3..3. Numerical method

The system (3) associated with the boundary conditions define the eigenvalue problem:

AX = iΩX (5)

where the vector X contains the velocity and pressure disturbances and iΩ is the eigenvalue. It
was solved by a shift and invert Arnoldi algorithm. Then the original eigenvalues problem was
convert into: (

A− λB−1
)
BX = µX, µ =

1
iΩ− λ

(6)
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Figure 1: Spectrum resulting for the bidimensional analysis for the three domain lengths con-
sidered.

where λ is a shift parameter. Following Theofilis ([9] 2003) Krylov subspace iterations were
provided on (6) until convergence. A Krylov subspace of dimension 250 allowed to recover a
sufficient part of the spectrum considered.

4. Two dimensional temporal modes

The influence of the domain at Reynolds number 610 was studied on temporal modes resulting
of the stability analysis. The two dimensional stability modes was computed for three domains:
230, 340, 400 for an height of 20. Following the study of Erhenstein & Gallaire [3] we used
180× 45 grid for calculation. The spectrum resulting are shown on figure 1. All modes have a
negative imaginary part in accordance with the fact the flat plate boundary layer is convectively
unstable but globally stable. The space between modes as well as the imaginary parts are
dependant of the length of the domain, boundary conditions varying as well as the domain
length change. Nevertheless the positionning of these discrete modes are not still understood.

The real parts of eigenfunctions relatives to the streamwise velocity perturbation shown
on figure 2 are particularly interesting. Indeed eigenfunctions are reminiscent to a Tollmien-
Schlichting wave where the wave length seems to be characterized by the complex pulsation for
a domain length, similar to a dispersion relation of a local analysis. Moreover the treatment of
the boundary conditions for pressure gave quite good results as it can be shown on figure 2.

In order to evaluate the validity of results a similar study as Fasel ([4] 1990) for a direct
numerical simulation has been realized. For the longest domain, wave number, amplitude and
eigenfunctions have been compared with an 1D linear stability analysis for two complex pulsa-
tions.

The perturbation can be written as û = |û|exp(iΘu(x, y)) and v̂ = |v̂|exp(iΘv(x, y)) where
Θu is the phase of the wave relative to the disturbance following x, and Θv the one following y.
Consequently the relationships for calculating the wave number αr are :

αru =
∂Θu(x, y)

∂x
, (7a)

αrv =
∂Θv(x, y)

∂x
, (7b)

Wave numbers have been evaluated for y = 4.4. Amplification curves have been realized with
the energy criteria and compared to the 1D linear stability using the relationship :

A

A0
= exp

[
−

∫ x

x0

αi(ξ)dξ

]
(8)
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Figure 2: (a), (b) real part of eigenfunctions relative to streamwise disturbances; (c), (d) real
part of eigenfunctions relative to pressure disturbances, for length 400. On the left for the mode
Ωr ' 0.068, on the right Ωr ' 0.098.

where x0 located the begining of the flate plate. Results on two-dimensional stability analysis
shown on figure 3 for the pulsation Ωr ≈ 0.068 and Ωr ≈ 0.099 seem to be in accordance with the
Orr-Sommerfeld analysis for the wave number and the amplitude. However we could see that
wave number is quite oscillating around the 1D stability solution, and there is a slight influence
of boundary conditions at inflow and outflow that being able to be explained by the 1D stability
approach to evaluate the expansion (4). Finally differences between amplitude curves could
be explained by the non-parallel correction, this one predicting an higest amplitude than Orr-
Sommerfeld analysis. Indeed similar discrepancies have been observed by Fasel [4] in comparison
with Navier-Stokes calculation. Eigenfunctions plotted on figure 4 have also been compared for
the pulsation Ωr ≈ 0.068 at x = 260. The similarity between two-dimensional analysis and Orr-
Sommerfeld is really remarkable. This similarity was expected by the fact that rapid variation
scale of the boundary layer stability is relative to the exponential term while the slow one is
characterized by eigenfunctions. Consequently non-parallel effects influence less eigenfunctions.

5. Transient growth: wave packet dynamic

In order to describe the evolution of perturbations in the transient they have been expressed in
a two dimensional eigenvectors basis as follow:

Q(x, y, t) =
N∑

k=1

K0
kexp(−iΩkt)q̂k(x, y) (9)

with N the number of two dimensional modes taken into account q̂k(x, y), Ωk eigenvectors and
eigenmodes respectively, K0

k the initial energy injected along each eigenvectors.
Although the evolution of each component of the basis vector decreased in time (the imag-

inary part of each eigenmode being negative) the non normality of the operator could create
transient growth (see Schmid & Henningson [8] 2001). Then the maximum of the energy at time
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Figure 3: (a), (b) wave numbers α(x) comparison for pulsations Ωr ' 0.068, Ωr ' 0.098
respectively. (c), (d) Amplitude curves A
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Figure 4: Comparison of eigenfunctions form 2D and 1D stability analysis taken at x = 260.
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Figure 5: Energy growth in red, green and blue for the domain length 230, 340, and 400
respectively. Enveloppe was in solid lines, the optimal energy growth in dashed lines.

t of all possible initial condition has been studied in a orthogonal basis :

G(t) = maxK0
k

E(t)
E(0)

= ||Fexp(tD)F−1||22 (10)

with Dl,k = −δlkiΩk (δlk Kronecker symbol), the diagonal matrix of eigenmodes, and A = F∗F
the Cholesky decomposition of the matrix of eigenvectors scalar product A:

Aij =
∫ H

0

∫ L

0
û∗i ûj + v̂∗i v̂j dx dy (11)

Consequently maximum energy amplification for time t was given by the highest singular value
of the matrix Fexp(tD)F−1. The calculation provided also the optimal disturbances in the
eigenvector basis thanks to a basis change.

The transient growth has been studied for three domain length 230, 340, 400. The eigenmodes
taken into account are shown in the spectrum figure 1. The energy growth resulting are depicted
on figure 5, in red green and blue for length 230, 340, 400 respectively, dashed lines representing
the evolution of initial disturbances leading to an optimal energy growth.

As it has been shown on the article of Cossu & Chomaz [2] and Erhenstein & Gallaire [3],
the non normality of global eigenmodes producing large transient growth (up to ' 5.8 for the
length 400) can be interpreted in terms of local convective instability. Indeed it can be seen
on the figure 6 than optimal perturbation ”can be thought of as a collection of initially excited
non-normal global modes whose amplitude decrease in time but whose superposition produces a
wave packet initially growing in time and moving in space as the relative phases of modes vary”
[2].

For the energy curves illustrated by fig.5, the wave packet grows as it is travelling in the
domain and starts to decrease when it is leaving (see 5, 6). The interesting part is the domain
lenght has no influence on the final resulting wave packet. As it was shown on figure 5 the
growth of the optimal disturbances in time is almost the same until the wave packet left the flat
plate whatever the domain lenght considered.

Finally the use of optimal disturbances could be related to the wave packet analysis in the
local approach by looking for waves which reinforce one another, instead of tending to cancel
out by interference (Gaster [5]).
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Figure 6: Wave packet resulting of non-normal global modes for the domain length 400, for
times 0 and 600.

6. Conclusion

In this paper it has been recovered that a convective stability of a flat plate boundary layer
could be captured by a two-dimensional stability analysis, as it was demonstrated in the arcticle
of Erhenstein & Gallaire [3]. Moreover it has been compared wave numbers, amplitude and
eigenfunctions of two-dimensional modes with an 1D linear stability analysis. Results gave
quite good similarities between the two approaches. However a weakly non-parallel stability
analysis would be more appropriate for comparison, amplitude curves being strongly dependant
of this correction (for example multiple scales or PSE). Finally the transient growth analysis
allowed to recover than optimal distrubance takes the form of a wave packet which grows as
it is travelling on the flate plate whose general form is independant of the calculation domain.
These results were very similar to the study of Gaster [6] by a WKB analysis, then it would be
interesting to compare more precisely the two wave packets.
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