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1. Introduction

The numerical solution of the Reynolds averaged Navier-Stokes (RANS) equations for aerodynamic
flows requires a suitable resolution of boundary layers. The currently most popular turbulence models
for such flows are of Spalart-Allmaras and of k-ω type [4], [5]. For these models, at the wall the no-slip
condition is imposed for velocity and the accurate numerical resolution of both attached and separated
boundary layers requires a so-called low-Reynolds grid with y+(1) ≈ 1 where y(1) is the distance of the
first node above the wall, vt is the wall-parallel component of velocity, and y+(1) is defined by

y+(1) ≡ y(1)uτ

ν
, where uτ =

√
ν

∂vt

∂n
, ν =

µ

ρ
(1)

with density ρ, viscosityµ, outer normal ~n and so-called friction velocity uτ .
The condition y+(1) ≈ 1 has to be ensured during grid-generation by specifying the first spacing y(1)
and using an estimate for uτ , e.g., from a semi-empirical relation for a flat-plate turbulent boundary
layer. However, there are regions in complex geometries where the grid-generator cannot reach the spec-
ified y(1)-value. Moreover, the semi-empirical guess for uτ may deviate from the value for uτ from the
RANS solution in regions of complex flow. As a remedy, the DLR TAU-code provides a grid-adaptation
module, which allows to ensure a user-defined target value for y+(1) based on the underlying RANS
solution. This method will be referred to as y+-adaptation.
In the present paper, this y+-adaptation technique is employed as part of a grid and flow adaptive uni-
versal wall-function method [2]. Wall-functions are still strongly relevant in CFD as they allow for a
significant reduction of the grid size and a noticeable acceleration of the nonlinear solver. The wall-
function method prescribes the wall-shear stress and no-penetration at the wall. In the noval approach
[1], the wall-shear stress is computed from the wall-parallel velocity at y(1) by assuming that the solu-
tion between y = 0 and y(1) is given by the turbulence-model specific solution of a flat-plate turbulent
boundary layer at zero pressure gradient. Such walls functions allow for solutions independent of the
wall-normal spacing y(1) for flows close to equilibrium, e.g., fully developed turbulent boundary layer
flows [1]. However, aerodynamic flows are characterised by (i) stagnation points and subsequent laminar
resp. not fully developed turbulent flow, (ii) regions of significant pressure gradient parameter due to a
strong (adverse) pressure gradient at a typically moderate Reynolds number and (iii) regions of separa-
tion and reattachment. These flow situations are very important not only for flows around airfoils and
rotor blades, but even more for complex aircraft configurations with flaps, engines etc. In these critical
flow situations (i)-(iii) local mispredictions using wall functions may occur, which may cause large de-
viations in integral coefficients of engineering interest as lift, moment and drag.
As a remedy, the present paper proposes a near-wall grid adaptation technique to ensure a locally appro-
priate resolution depending on both the near-wall flow physics to be captured and the range of validity
of the wall-function model. Critical regions are characterised by non-equilibrium flow situations which
are detected by a flow based sensor. The near-wall grid adaptation is then made possible due to the hy-
brid character of the wall-function method, e.g., y(1) can be shifted in the very near wall region without
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introducing an error stemming from an inconsistent coupling of turbulence models. We note that in clas-
sical wall-function methods, such an error is present due to the coupling of different turbulence models,
i.e., a one- resp. two equation model for the global flow and an ad-hoc patched algebraic model for the
near-wall region.

2. y+-adaptation in the DLR TAU-code

The new wall-function approach is applied to the DLR TAU-Code [6]. Due to the dual mesh approach,
the TAU-code supports hybrid grids, which may be composed of tetrahedra, prisms, hexahedra and/or
pyramids. In the near-wall region, this allows to use anisotropic regular meshes consisting of hexahedra
and/or prisms with a high aspect ratio whose edges are aligned with the wall-normal and wall-parallel
directions. These are fitted to boundary layer flows, i.e., with a relatively large spacing in streamwise
and spanwise direction but with a fine spacing in wall-normal direction with a suitable stretching factor
to resolve the steep wall-normal gradients of the solution.

2..1. y+-adaptation for low-Re grids

An accurate integration of the RANS equations down to the wall requires a so-called low-Reynolds grid
with y+(1) = y(1)uτ/ν ≈ 1 for all first nodes above the wall. In 3D flows, friction velocity uτ may be
computed from the vorticity tensor Ω(~u) by

uτ =
√

µ

ρ
|Ω| , where |Ω| =

√
2Ω(~u) : Ω(~u) , Ω(~u) =

1
2

(
~∇~u− (~∇~u)T

)
(2)

with the notation A : B =
∑d

i,j=1 AijBij for two tensors A, B, with space dimension d = 2, 3. For
complex flow problems, the low-Re grid condition can be satisfied only by using an adaptation of the
near-wall grid w.r.t. y+(1). We assume a given surface discretization composed of triangles and/or
quadrilaterals. Inside the regular near-wall layer, the nodes are located on (almost) wall-normal rays
starting at the corresponding wall node. We use the following notation:

• ~xwp: Surface (wall) node,

• ~xnp: First node above the wall corresponding to node wp,

• {~xwp + λp~r}: Ray of points starting at wall node ~xwp and ending at the outer edge of the regular
layer; {~xwp + λp~r} ≡ { ~x ∈ Rd | ~x = ~xwp + λp~r , 0 ≤ p ≤ pmax} where the direction vector ~r
may be non-constant.

Moreover we assume that ~xnp−~xwp is almost parallel to the surface normal vector ~n. Then the algorithm
for y+-adaptation with y+

target = 1 reads as follows.

1. Read RANS solution and grid.

2. y+ grid adaptation.

(a) For each surface node ~xwp do:

i. Determine ~xnp and compute uτ from vorticity using equation (2).
ii. From ynp = |~xnp − ~xwp| determine the y+

np = ynpuτ/ν.

iii. Set ynew = ynp y+
target/y+

np.

(b) Smooth the ynew-distribution.

(c) For each surface node redistribute the points on its ray {~xwp + λp~r} where the last point
{~xwp + λp,max~r} remaines unchanged.

3. Interpolate RANS solution from old grid to new grid.
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Figure 1: Left: Illustration of near-wall grid adaptation w.r.t. y+. Right: Pressure gradient parameter p+

for subsonic highlift A-airfoil.

Smoothing of the ynew-distribution is performed as follows. Denote K the number of smoothing steps,
yi
np = ynew of node ~xi

np after (2(a)iii), N (i) the set of indices of neighbour (adjacent) surface nodes of
node i and #N (i) their number. Then in smoothing step k

yi,k
np = (1− ε) yi,k−1

np + ε ynei,k−1
np with ynei,k−1

np =
1

#N (i)

∑
j∈N (i)

yj,k−1
np .

Figures 2-3 demonstrate the y+-adaptation for complex wing-body configurations.

Figure 2: Eurolift highlift configuration wing-body with slats and flaps (Re = 25 × 106, Ma = 0.2,
α = 19◦): y+-distribution without y+-adaptation (left) and with adaptation (right).

2..2. Near-wall grid adaption for wall functions using a flow based sensor

In this section we describe the near-wall grid adaption for wall-functions using a flow based sensor.
In aerodynamic flows, the following flow situations are beyond the range of validity of universal wall
functions in the sense that relatively large deviations from the low-Re solution may occur if y+(1) is too
large, viz., (i) stagnation points and subsequent not fully developed turbulent flow, (ii) regions of strong
adverse pressure gradient (p+ > 0.1), and (iii) regions of separated flow. As a remedy, a near-wall grid
adaptation is employed, motivated by the fairly grid-independent results for y+(1) / 10 even in regions
of complex flow, see also [1], [2].
On grids with y+(1) > 4, relation (2) ceases to be valid. Then uτ is estimated from the following
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Figure 3: A-320 wing-body (Re = 6.5 × 106, Ma = 0.75, α = 2.8◦): y+-distribution without y+-
adaptation (left) and with adaptation (right).

nonlinear equation, known as the law of the wall by Reichardt, to be solved using Newton’s method

u+(1) = FRei(y+(1)) , FRei(y+) ≡ ln(1 + 0.4y+)
κ

+ 7.8
(

1− e−
y+

11.0 − y+

11.0
e−

y+

3.0

)
(3)

with u+(1) = u(1)/uτ , y+(1) = y(1)uτ/ν, κ = 0.41 and u(1) being the wall-parallel velocity at y(1),
and κ = 0.41.
Regions of complex flow situations are detected by a flow based sensor. Both critical regions (i) and (ii)
can be detected using the pressure gradient parameter p+ as indicator

p+ =
ν

ρu3
τ

dp

dx
(4)

which is computed from the streamwise pressure gradient dp/dx. As stagnation point and separation
point are approached, uτ → 0 and thus p+ → ±∞. Figure 1 shows p+ vs. x/c with streamwise
coordinate x and chord length c for the A-airfoil at subsonic highlift conditions (Ma = 0.15, Re =
2.0× 106, α = 13.3◦). Non-small values p+ > 0.02 can be observed for x/c > 0.5 on the upper side of
the airfoil, which is due to the relatively small Reynolds-number. Such non-small p+-values in adverse
pressure gradient flow (i.e., dp/dx > 0) cause a significant departure from the universal wall-law for
large y+ (see [2]).
Then in the algorithm for y+-adaptation, step (2a) is modified as follows if wall-functions are used.

(a) For each surface node ~xwp do:

i. Determine ~xnp and compute uτ using (3). Then set ynp = |~xnp − ~xwp| and determine
y+
np = ynpuτ/ν.

ii. Determine p+ from (4) and check if |p+| > p+
0 for a given threshold value p+

0 .

iii. Check if ~xwp is located in a region of strong surface curvature with flow stagnation.

iv. Check if point ~xwp resides in a region of recirculating (separated) flow.

v. Based on ii.-iv. set target value y+
target.

vi If y+
target < y+

np then set ynew = ynp y+
target/y+

np , else ynew = ynp.

Some technical details are described in the following. Calculating uτ using (3) is sufficient for the
adaptation. We use the threshold value p+

0 = 0.09 for indicating regions of strong pressure gradient.
Regarding the leading edge region, p+ is used as an indicator, and we note that p+ > 0 as dp/dx > 0
for accelerated flow. As an additional indicator the surface curvature may be used, see e.g. [11] for
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computational techniques. For 2D flows, regions of separated flow can be detected by the condition of
recirculating flow ~u∞ · ~unp < 0, where ~u∞ and ~unp denote the farfield velocity and the velocity at node
~xnp resp. In 3D flows in complex geometries, detection of separated flow is more complicated. Albeit,
the separation point is still indicated by large p+-values.
Concerning the target value for y+, numerical tests suggest y+

target ∈ [5, 10] in regions of flow stagnation
and not-fully developed turbulent flow and for strong adverse pressure gradient before separation, and
y+
target ∈ [1, 5] in regions of separated flow.

3. Application to aerodynamic flow problems

In this section we apply the method to the transonic flow around the RAE2822 airfoil (at Ma = 0.75,
Re = 6.2 × 106, and α = 2.8◦ with shock induced separation), and to the A-airfoil at subsonic highlift
conditions (Ma = 0.15, Re = 2.0× 106, α = 13.3◦). Calculations are performed on a series of O-type
grids of hybrid type. The boundary layer is fully contained in the regular prismatic grid. In wall-normal
direction a geometrical point distribution is used. We use grids with different spacing of the first node
above the wall and a different number of nodes in the structured layer such that the thickness of the
prismatic layer remains almost constant.
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Figure 4: A-airfoil: y+(1) distribution without (left) and after adaptation (right).

For the A-airfoil we use ε = 0.6 and K = 200. Figure 4 shows the y+-distribution before and after
adaptation. Figure 5 (left) shows a zoom of the cp distribution at the leading edge for the SST k-ω
model. The table in Figure 5 (right) gives the streamwise position of the separation point xsep where c
denotes the chord length. Values without brackets are obtained without adaptation. The improvement
using adaptation (values in brackets) is discernible. The spreading in the separation point for each model
is less than 1% but the predictions between the two turbulence models differ by 11%. Figure 6 shows
that the grid-independence of the prediction for skin friction cf is remarkable.
Secondly we apply the approach to the RAE 2822 case 10. We are interested in an improved grid-
independence of the results close to the the leading edge and in the aft-shock separation region. Figure
7 shows the distribution of y+(1) for the SST k-ω model without (left) and with (right) y+-adaptation.
As intended, the wall-normal grid is shifted towards the low-Re regime in the vicinity of the leading
edge, close to the shock and in the separation region. Figure 8 (left, without adaptation) shows a detail
view of cp in the leading edge region, predicted by the SA-Edwards model. The improvement with grid-
adaptation (right) can be clearly seen. As shown in Figure 9, the grid-independence in cf , in particular
in the recirculation region, can also be increased significantly. Figure 10 shows that even for flow-
details like Mach-number contours and streamtraces of velocity, there is close agreement between the
wall-resolved RANS solution and the solution with wall-functions.
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4 28 0.755 0.863
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12 24 0.761 0.861
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50 19 (0.771) 0.881 (0.873)
70 17 (0.788) 0.903 (0.867)

Figure 5: A-airfoil: Detail of cp for SST k-ω model on adapted grid (left). Right: Prediction of separation
point without adaptation and with adaptation (value in brackets).
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Figure 6: A-airfoil: cf on grid with y+-adaptation for SA-E model (left) and SST k-ω model (right).

4. Conclusions

A near-wall grid adaptation technique for wall-function applications to non-equilibrium flows has been
presented. The method gives promising results for 2D airfoil flows. The application of the method to 3D
full aircraft configurations is subject to future research.
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