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1. Introduction

We are concerned with a two dimensional steady state convection-diffusion problem with discon-
tinuous outflow boundary conditions. It is well known that, where the boundary conditions are
sufficiently smooth and compatible, such a problem can be solved with uniform accuracy with
respect to the small parameter ε using a standard finite difference operator on special piecewise
uniform meshes [3], [1] and [7]. Where the outflow boundary data are only weakly regular and
compatible, parameter-uniform solutions may also be obtained by this method [1]. However, for
large values of ε (and by extension for small ε with a sufficiently large number of mesh intervals),
orders of convergence are small and pointwise errors are large.

Numerical methods for singularly perturbed problems comprising domain decomposition and
Schwarz iterative techniques have been examined by a number of authors, for example, in [3],
[7], [6], [4] and [5]. In [3], Miller et al. examine a continuous overlapping Schwarz method for a
singularly perturbed convection-diffusion equation with arbitrary fixed interface positions and
find it to be uniformly convergent with respect to the perturbation parameter. In [5] MacMullen
et al. consider the corresponding discrete overlapping Schwarz method for the same problem
and find that, in the discrete case the numerical solution obtained converges to the solution
of upwinding on a quasi-uniform mesh. Furthermore, they show that if the interface positions
for the overlapping discretised domains are based on layer-resolving piecewise uniform fitted
meshes then the numerical solutions obtained fail to converge to the analytical solution. As
an alternative they construct a discrete non-overlapping Schwarz method on uniform meshes
with artificial Dirichlet interface conditions for singularly perturbed linear convection-diffusion
problems in two dimensions with sufficiently smooth and compatible boundary data and show
it to be first order convergent for ε ≤ N−1. We examine experimentally the performance of such
methods extended to the class of singularly perturbed convection-diffusion problems with more
general boundary conditions described below.

We consider the following model problem in a domain Ω, the unit square.

Lu ≡ ε∆uε +
∂uε

∂x
+

∂uε

∂y
= 0 in Ω, (1)

uε(x, 0) = 5 − 4x1/6, uε(x, 1) = 1, x ∈ (0, 1)

uε(0, y) = y1/2, uε(1, y) = 1 y ∈ (0, 1)
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where 0 < ε ≤ 1. The problem exhibits regular layers along the outflow boundaries, a corner
boundary layer at the outflow boundary corner as well as a singularity of the solution discon-
tinuity in a neighbourhood of this corner. We implement domain decomposition methods to
isolate the neighbourhood of the singularity, along with a discrete Schwarz iterative technique
with the aim of producing parameter-uniformly accurate solutions for all values of epsilon on
the whole domain in the presence of such a singularity.

2. Numerical Methods and Results

2..1. Non-iterative discrete method on piecewise uniform fitted meshes

Hereafter referred to as the Direct Method. A tensor product of two piecewise-uniform fitted
meshes ΩN is used on Ω, where the transition parameter σ is chosen as

σ = min{1/2, ε ln N} (2)

along with the upwind finite difference operator

LN
ε Zj

i =
[

ε(δ2
x + δ2

y) + D+
x + D+

y

]

Zj
i . (3)

The differences between the numerical solutions for various values of N and the numerical
solution for N = 256, which are indicative of nodal errors are shown in Table 1, where

EN
ε = max

xi,yj∈ΩN
ε

|UN
ε − Ū256

ε |, EN = max
ε

EN
ε .

The computed orders of convergence for various values of N and ε, defined by

DN
ε = max

xi,yj∈ΩN
ε

|UN
ε − Ū2N

ε |,

pN
ε = log2 DN

ε /D2N
ε .

are shown in Table 2. It is clear from Tables (1) and (2) that the method fails for problem (1)
for large values of ε. Furthermore, while at first glance these results appear to be satisfactory
for small ε, as N increases the results worsen for smaller values of ε. It can therefore be inferred
that the bad behaviour for large ε will be replicated for small ε where N is large enough. We
therefore conclude that the direct method fails when applied to problem (1).

2..2. Discrete overlapping Schwarz methods

Domain decomposition with restricted overlap region

Given the location of the incompatibility it is natural to consider partitioning the solution
domain Ω into the following two overlapping subregions

ΩS = (0, 1)2\(0, σ

a
) × (0,

σ

b
), a, b > 1

ΩP = {(x, y) ∈ (0, R)2 : x2 + y2 < R2}, R = CRσ, CR < 1

where CR is a constant, pictured in Figure (1).
It is important to note that, in order for the discrete overlapping Schwarz method to converge

to the correct solution, the overlap region between subdomains must be sufficiently large. From
the definition of ΩS and ΩP it follows that the width of the overlap region at its minimum point
is

(

CR −
√

1

a2
+

1

b2

)

σ,
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Table 1: Maximum pointwise errors EN
ε and EN for the

Direct Method applied to problem (1).

Number of intervals N
ε 16 32 64 128
1 0.0218 0.0243 0.0244 0.0191

2−1 0.0184 0.0227 0.0237 0.0188
2−2 0.0122 0.0190 0.0223 0.0183
2−3 0.0242 0.0150 0.0186 0.0172
2−4 0.0390 0.0223 0.0176 0.0140
2−6 0.0835 0.0471 0.0227 0.0145
2−8 0.1202 0.0739 0.0376 0.0149
2−10 0.1412 0.0907 0.0489 0.0192
2−12 0.1535 0.0992 0.0543 0.0220
2−14 0.1620 0.1045 0.0569 0.0230
2−16 0.1687 0.1084 0.0587 0.0234
2−18 0.1740 0.1116 0.0601 0.0238
2−20 0.1782 0.1141 0.0612 0.0240
2−22 0.1816 0.1161 0.0621 0.0243
2−24 0.1843 0.1177 0.0628 0.0245
2−26 0.1865 0.1189 0.0634 0.0246
2−28 0.1882 0.1199 0.0638 0.0248

EN 0.1882 0.1199 0.0638 0.0248

Table 2: Computed orders of convergence pN for the
Direct Method applied to problem (1).

Number of intervals N
ε 16 32 64
1 -0.18 -0.11 -0.08

2−1 -0.30 -0.16 -0.10
2−2 -0.70 -0.30 -0.15
2−3 0.50 -0.17 -0.30
2−4 0.40 0.00 0.00
2−6 0.63 0.74 0.00
2−8 0.43 0.66 0.69
2−10 0.36 0.55 0.68
2−12 0.35 0.53 0.62
2−14 0.35 0.53 0.62
2−16 0.34 0.54 0.63
2−18 0.34 0.55 0.64
2−20 0.34 0.56 0.65
2−22 0.34 0.56 0.65
2−24 0.34 0.57 0.66
2−26 0.34 0.57 0.66
2−28 0.34 0.57 0.66
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Figure 1: Domain decomposition with restricted over-
lap region
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Figure 2: Domain decomposition with maximal overlap
region

thus placing the restriction on our choice of CR that

CR >

√

1

a2
+

1

b2
.

However, in addition to considering the necessary overlap width required by the discrete
Schwarz method for convergence, we must also bear in mind the choice of R, the radius of
the quarter-disk subregion. In the presence of the incompatibility we require R to be small
in order to cluster more grid points in the neighbourhood of the singularity. Since the width
of the overlap is proportional to σ, for large values of ε the above restriction imposed by this
decomposition prevents us from choosing R sufficiently small to resolve the singularity.
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Domain decomposition with maximal overlap region

We overcome this obstacle by letting

ΩS = Ω

thereby removing the restriction on the choice of R, which we define as

R =
√

2σ/8

ensuring that the overlap region is sufficiently large for the convergence of the Schwarz method,
pictured in Figure (2).

A tensor product of two piecewise-uniform fitted meshes ΩN
S is used on Ω, with σ defined as

in (2). Uniform meshes ΩN
P are used on ΩP .

Schwarz Method 1

On ΩP we use the following translation

v = e(x+y)/2εuε,

yielding the translated equation

2ε2∆v − v = 0.

In polar coordinates the equation becomes

2ε2(vrr +
1

r
vr +

1

r2
vθθ) − v = 0.

Our discrete iterative method is then as follows:
For each k ≥ 1,

U [k]
ε (x, y) =

{

U
[k]
S (x, y), (x, y) ∈ ΩN

S

Ū
[k]
P (x, y), (x, y) ∈ ΩP ∩ ΩN

S

where Ū
[k]
i is the bilinear interpolant of U

[k]
i . Then for k = 1,

LN
ε U

[1]
S = 0, (xi, yj) ∈ ΩN

S ,

and

LN
P U

[1]
P = 0, (ri, θj) ∈ ΩN

P , U
[1]
P (R, θj) = Ū

[1]
S (R, θj),

where U
[1]
P (0, θj) is a linear interpolant of gB(0) and gL(0).

For k > 1,

LN
ε U

[k]
S = 0, (xi, yj) ∈ ΩN

S ,

U
[k]
S (xi, yj) = Ū

[k−1]
P (xi, yj), xi ∈ (0, σ/8), yj ∈ (0, σ/8),

and

LN
P U

[k]
P = 0, (ri, θj) ∈ ΩN

P , U
[k]
P (R, θj) = Ū

[k−1]
S (R, θj),
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where U
[1]
P (0, θj) is a linear interpolant of gB(0) and gL(0).

We define the finite difference operators as

LN
ε Zj

i =
[

ε(δ2
x + δ2

y) + D+
x + D+

y

]

Zj
i

LN
P Zj

i = 2ε2

[

δ2
r +

1

ri
D0

r +
1

r2
i

δ2
θ

]

Zj
i − Zj

i (4)

where

δ2
xZ(xi, yi) =

2

xi+1 − xi−1
(D+

x − D−
x )Z(xi, yj)

with

D+
x Z(xi, yj) =

Z(xi+1, yj) − Z(xi, yj)

xi+1 − xi
, D−

x Z(xi, yj) =
Z(xi, yj) − Z(xi−1, yj)

xi − xi−1
,

D0
xZ(xi, yj) =

Z(xi+1, yj) − Z(xi−1, yj)

xi+1 − xi−1
.

The numerical solutions are depicted in Figures 3 and 4 for N = 32 and ε = 2−1 and 2−6

respectively, alongside plots of the numerical solutions obtained by the Direct Method for the
same parameters for the purpose of comparison. In Table 3 the required iteration counts are
given for a tolerance level of

max
xi,yj∈Ω̄N

ε

|U [k]
S (xi, yj) − U

[k−1]
S (xi, yj)| ≤ 10−4

The differences between the numerical solutions for various values of N and the numerical
solution for N = 256, which are indicative of nodal errors are shown in Table 4 and the computed
orders of convergence for various values of N and ε are shown in Table 5. Both tables show
a notable improvement in the magnitude of the error and the orders of convergence for large
values of ε on the results obtained by the Direct Method, seen in Tables 1 and 2. However, there
is a noticeable drop in the convergence rates for intermediate values of ε which requires further
consideration.

Table 3: Iteration counts for Schwarz Method 1 applied to problem (1) .
Number of intervals N

ε 16 32 64 128 256
1 3 6 5 4 3

2−1 3 6 5 4 3
2−2 3 6 5 4 3
2−3 3 6 5 3 3
2−4 3 6 5 3 4
2−6 3 6 5 4 4
2−8 3 6 5 4 4
2−10 3 6 5 4 4
2−12 2 6 5 4 4
2−14 2 6 5 4 4
2−16 2 6 5 4 4
2−18 2 6 5 4 4
2−20 2 6 5 4 4
2−22 2 6 5 4 4
2−24 2 6 5 4 4
2−26 2 6 5 4 4
2−28 2 6 5 4 4
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Figure 3: Numerical solutions of problem (1) for ε = 2−1, N = 32
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Figure 4: Numerical solutions of problem (1) for ε = 2−6, N = 32

Table 4: Maximum pointwise errors EN
ε and EN for

Schwarz Method 1 applied to problem (1).

Number of intervals N
ε 16 32 64 128
1 0.0218 0.0076 0.0019 0.0004

2−1 0.0184 0.0065 0.0015 0.0003
2−2 0.0122 0.0054 0.0025 0.0008
2−3 0.0242 0.0150 0.0080 0.0028
2−4 0.0390 0.0223 0.0114 0.0087
2−6 0.0835 0.0471 0.0227 0.0082
2−8 0.1202 0.0739 0.0376 0.0138
2−10 0.1412 0.0907 0.0489 0.0192
2−12 0.1535 0.0992 0.0543 0.0220
2−14 0.1620 0.1045 0.0569 0.0230
2−16 0.1687 0.1084 0.0587 0.0234
2−18 0.1740 0.1116 0.0601 0.0238
2−20 0.1783 0.1141 0.0612 0.0240
2−22 0.1816 0.1161 0.0621 0.0243
2−24 0.1843 0.1177 0.0628 0.0245
2−26 0.1865 0.1189 0.0634 0.0246
2−28 0.1882 0.1199 0.0638 0.0248

EN 0.1882 0.1199 0.0638 0.0248

Table 5: Computed orders of convergence pN
ε for Schwarz

Method 1 applied to problem (1).

Number of intervals N
ε 16 32 64
1 1.49 1.91 1.92

2−1 1.48 2.02 2.05
2−2 1.13 1.34 0.93
2−3 0.50 1.23 0.91
2−4 0.65 0.28 0.28
2−6 0.63 0.74 0.82
2−8 0.43 0.66 0.81
2−10 0.36 0.55 0.68
2−12 0.35 0.53 0.62
2−14 0.35 0.53 0.62
2−16 0.34 0.54 0.63
2−18 0.34 0.55 0.64
2−20 0.34 0.56 0.65
2−22 0.34 0.56 0.65
2−24 0.34 0.57 0.66
2−26 0.34 0.57 0.66
2−28 0.34 0.57 0.66

Schwarz Method 2

On ΩP we use the alternative translation

w = e(x+y)/2εuε − φ(x, y)

where φ is defined as follows

φ(x, y) = 10/π(π/2 − arctan(y/x))
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yielding the translated equation

2ε2∆w − w = φ.

This has the effect of resolving the incompatibilty at the outflow corner. Solving the translated
equation using the domain decomposition, finite difference operators (4) and iterative method as
before, the numerical results obtained do not differ appreciably from those for Schwarz Method
1.

Schwarz Method 3

It is interesting to consider an alternative Schwarz method with a square subregion, ΩC =
(0, R)2, R = σ/8 at the outflow corner replacing the quarter-disk region used in the two Schwarz
methods above. The finite difference operator in this region is then the same as that used on
the entire domain, (3). The iterative method is essentially similar to that used in the previous
two Schwarz methods. Tables (6) and (7) show that the performance of this method is no better
than that of the direct method for large values of epsilon when applied to problem (1).

Table 6: Maximum pointwise errors EN
ε and EN for

Schwarz Method 3 applied to problem (1).

Number of intervals N
ε 16 32 64 128
1 0.0221 0.0246 0.0244 0.0191

2−1 0.0190 0.0235 0.0238 0.0188
2−2 0.0110 0.0204 0.0223 0.0183
2−3 0.0242 0.0150 0.0187 0.0172
2−4 0.0390 0.0223 0.0171 0.0139
2−6 0.0835 0.0471 0.0227 0.0145
2−8 0.1202 0.0739 0.0376 0.0149
2−10 0.1412 0.0907 0.0489 0.0192
2−12 0.1535 0.0992 0.0543 0.0220
2−14 0.1620 0.1045 0.0569 0.0230
2−16 0.1687 0.1084 0.0587 0.0234
2−18 0.1740 0.1116 0.0601 0.0238
2−20 0.1782 0.1141 0.0612 0.0240
2−22 0.1816 0.1161 0.0621 0.0243
2−24 0.1843 0.1177 0.0628 0.0245
2−26 0.1865 0.1189 0.0634 0.0246
2−28 0.1882 0.1199 0.0638 0.0248

EN 0.1882 0.1199 0.0638 0.0248

Table 7: Computed orders of convergence pN
ε for Schwarz

Method 3 applied to problem (1).

Number of intervals N
ε 16 32 64
1 -0.17 -0.10 -0.07

2−1 -0.30 -0.13 -0.09
2−2 -0.74 -0.23 -0.14
2−3 0.50 -0.18 -0.29
2−4 0.42 0.01 -0.01
2−6 0.63 0.74 0.00
2−8 0.43 0.66 0.70
2−10 0.36 0.55 0.68
2−12 0.35 0.53 0.62
2−14 0.35 0.53 0.62
2−16 0.34 0.54 0.63
2−18 0.34 0.55 0.64
2−20 0.34 0.56 0.65
2−22 0.34 0.56 0.65
2−24 0.34 0.57 0.66
2−26 0.34 0.57 0.66
2−28 0.34 0.57 0.66

In conclusion, while the results obtained by Schwarz Methods 1 and 2 applied to problem
(1) are an improvement on those obtained by the Direct Method for this problem, further
development of the method is required in order to solve problem (1) ε-uniformly.
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