on Boundary and Interior Layers
BAIL 2006

G.Lube, G.Rapin (Eds)

O University of Gottingen, 2006

Turbulent Boundary Layers: Reality and Myth

Matthias H. Buschmanr®*
Privatdozent, Institut fur Stromungsmechanik, Testiné Universitat Dresden, Dresden, Germany
Mohamed Gad-el-Hak
Caudill Professor and Chair of Mechanical Engiregri
Virginia Commonwealth University, Richmond, VA 2328015, USA

1. Introduction

Hundred years after Ludwig Prandtl’'s fundamentatuee on boundary layer theory, the mean-
velocity profile and the shear-stress distributidrihe seemingly simplest case of wall-bounded flow
the zero-pressure-gradient turbulent boundary 18¥8G TBL), still appears to brra incognita.
Even less is known about confined and semi-confit@ads undergoing pressure gradients, such as
pipe and channel flows and wall-bounded flows apphing pressure-driven separation. The problem
is of course related to the lack of analytical sohs to the instantaneous, nonlinear Navier—Stokes
equations that govern the stochastic dependerdhlas of almost all turbulent flows. What little we
know about turbulence comes from experiments anddteE modeling, not first-principles solutions.

One of the fundamental tenets of classical bountiamr research is the idea that, for a given
geometry, any statistical turbulence quantity (meers, Reynolds stress, etc.) measured at different
facilities and at different Reynolds numbers willllapse to a single universal profile when non-
dimensionalized using the proper length and velosdales. This is termed self-similarity or self-
preservation and allows convenient extrapolatioomfrthe low-Reynolds-number laboratory
experiments to the much higher-Reynolds-numbeasiins encountered in typical field applications.

During the mid 1990’s, a new debate intensifiedardmg the nature of the mean-velocity profile
of canonical turbulent wall-bounded flows. Causgdniew unconventional approaches questioning
two of the cornerstones of modern fluid mechanidsetogarithmic law of turbulent boundary layers
and the independence of its parameters on the Risynamber, several new scalings were developed.
In conjunction with these theoretical investigaiphigh-quality experiments in zero-pressure-gradie
turbulent boundary layers and turbulent pipe andnokl flows were undertaken. In general, the
physical picture of wall-bounded flow is now mucloma complex than was thought a decade ago.
However, the physical picture seems to be also roon¢roversial than ever before. Which of these
new approaches will survive and contribute subgthyto fluid mechanics in the future is still ape

In the present paper, we will focus on recent adearn analytical and asymptotic approaches. We
will apply a general rule proposed by Fernholz &l€y (1996) in their review paper of ZPG TBIx
the absence of any complete or convenient theoretical approach, our primary function is to describe
what we see. However, based on these descriptions and phyaigaments, we will additionally make
judgments with respect to the different approadtissussed here. The discussion will be restriated t
steady, incompressible flows over smooth walls the¢ two-dimensional in the mean. The
experimental data sets by Osterlund et al. (2000ZPG TBL, by McKeon et al. (2004) for fully-
developed pipe flows and by Zanoun et al. (2008)cfeannel flows will be used as benchmarks to
validate theoretical ideas. Two standard statistmals—plotting the theoretical mean velocity vedu
versus the corresponding experimental data andréotional difference plots—will be employed.
Any potential Reynolds number effects will be vikzed by coloring the curves representing the
mean-velocity profiles according to their individieynolds number.
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2 Experimental Work and Following Theories

Since the first experimental research on turbuienindary layers done by L. Prandtl (1904) and
his students, the zero-pressure-gradient boundgey takes a centre stage. To decrypt the fundtiona
form of the mean velocity profile and the behawbthe Reynolds shear stress, very often many “real
world flow” features are separated out and the alted@ canonical turbulent boundary layer is
investigated. The main attributes of such a bountdger are:

* No pressure gradient in the streamwise direction.

* Incompressible, isothermal, and two-dimensiondhaamean.

« Sufficiently high Reynolds number (Bgin = 350—730) to ensure that the main features of

fully developed turbulence occur.

* Neither affected by surface roughness, wall cuneatu outer turbulence.

* No upstream disturbances like tripping deviceqstc.

Other canonical flows are the flow in straight, hgdinamically smooth circular pipes and
rectangular channels with infinitely large aspexter (width/height). However, there is a signifitan
difference between the canonical ZPG TBL on one siad pipe and channel flows on the other side.
While the latter are parallel flows, all boundagyérs show diverging and in some cases even
converging streamlines.

2.1 Zero-pressure-gradient turbulent boundary layer
The analysis of the ZPG TBL data by Osterlund et(2000) basically confirmed the classical
assumption of a Reynolds-number-independent Idgaritegion. However, this region is found

abovey®=200, which contradicts the classical view that the lagv region starts at about
y"=50-70. The outer limit of the overlap region was foudbe aty/ d =0.15. Following these

findings an overlap region with an universal lam ¢herefore exist only above a minimal Reynolds
number ofRe, > 2000. The parameters found by Osterlund et al. (2069xa 0.38 for the Karman

constantB =4.1 andB,=3.6 for the additive constants. Differently the low Rejds number data
by Osaka et al. (1998) reveal thathas a constant value of 0.41, whileslightly depends on the
Reynolds number but reaches a constant value otitab® forRe,> 5.000. The latter is in

agreement—within the bounds of experimental acguragith Fernholz & Finley (1996) who found
the constants to be 0.40 and 5.1.

Law of the wall: u* :%In( y* ) +B ; Defect law: Ueu - =—% In(/7) +B (2.1a, b)

The very brief survey given above might lead to ¢baclusion that the classical view and recent
results of high-Reynolds-number experiments aregortistic. That this is not necessarily the case
was shown by Buschmann & Gad-el-Hak (2003). Howeleovercome this seeming discrepancy, a
persisting influence of viscosity throughout thdirenboundary layer even at very high Reynolds
numbers has to be considered. It must be statggrieral that the classical logarithmic law is not
merely an approximate equation for the mean velqmibfile. From the point of view of composite

expansion (Panton, 2005), the log law is the limgjtbehavior of the zeroth-order term of the inner
Poincaré series expansiofg,( y" ) asy’ - o, and the limiting behavior of the first-order teaithe

outer Poincaré series expansiﬁp( n ) asn - 0. Therefore the parameters of the classical Idyaiit
law are somewhat circumstantial.
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Traditionally, semi-log plots ofu® versus y* are used to compare the inner law with

experimental data. This is only useful if the amaly mean-velocity profiles do not depend on any
additional parameters. Therefore, we show heranptiofiles according to Equation (2.2a) below. In
case the theoretical mean-velocity profiles aragneement with the experimental data, all points in
such a linear-linear plot would collapse on a gtraiine passing by the origin and having a slope o
45 degree. Additionally, the so-call&@ctional difference (2.2b) is plotted. The smaller th® is, the
better the agreement between theory and experiment.

In(y*)zk(u*—B,); FD=100%[In(y+)—/((u+—BI)/In(y*)] (2.2a, b)
Using the limit established by Osterlund et al.0@0 only data abovéRe, > 6000 are plotted in

Figure 2.1. The velocity plot shows a nearly pdrfagreement between Osterlund’s data with the
logarithmic law withx =0.38 andB, =4.1. The agreement is remarkably better than the breired

with George & Castillo power law (Figure 4.1). Emmyphg classical parameters=0.41, B =5.1,

only for the highest Reynolds numbers, a satisfgcigreement is obtained. Of course the quality of
both laws is different in different regions of tipeofile. Comparing only the profiles having the
highest Reynolds numbers th® plots show that lower border of Osterlund’s lotfariic law almost
joins the upper border of the classical log lawiarg

2.2 Pipe flow

In the following we will concentrate on the so-ealbuperpipe experiments recently conducted at
Princeton University (McKeon et al., 2004). The exygipe is a closed-loop air facility, and the whole
system is pressurized to obtain Reynolds numbets 8p millions built with pipe diameter (12.9 cm)
and bulk velocity.

Analyzing the superpipe data, McKeon et al. (20fidyovered that two regions are distinguished,
one following a power law and another followingogdrithmic law. The log law having the constant
parameters ok =0.421+0.002 andB =5.60+0.08 is observed in the superpipe data for Reynolds

numbers larger than about 218", The range of wall-normal coordinate covere@d<y* <0.125".

The power law region exists close to the wald€y* <300). Both the multiplicative factor and the

exponent are Reynolds number independent. Thailegadre very close to the numbers known from
Nikuradse’s (1932) 1fZpower law. Any power law with positive sign chasgthe straight line
known from the usual semi-logarithmic plot to a cave shape. To meet the profile of the viscous
sublayer, the profile therefore has to form a “blroplow the power law region. The existence of
such a bump in ZPG TBL was shown by Buschmann & &adak (2003).

Despite McKeon’s power law is Reynolds number iredefent we use the plots described for for
Barenblatt's Reynolds-number-dependent power laW, .

2.3 Channel flow

High-quality channel flow data covering a wide raraf Reynolds number are rare. One of the few
data sets available was taken by Zanoun et al.3j2@0air using single hot-wire probe. The channel
had an aspect ration (width:height) of 12:1 (€80 mnf). The wall skin-friction was determined
independently of any assumptions concerning thenrfieav profile. The research team employed oil

film interferometry, and the Reynolds number ramges 5.33x10°<Re, <2.27x10°. The major
finding of Zanoun’s work is the confirmation of tbkassical logarithmic law, in straight channelbeT
parameters are again different, howe(/a‘rz 1/e=0.368..., B =10/e= 3.678...) .
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Figure 2.3 Zanoun'’s log law for ZPG TBL and fraati difference of this law, classical log law and
fractional difference of this law. Channel flow datre from Zanoun et al. (2003).

3. Power Law by G. I. Barenblatt

In a series of papers G. |. Barenblatt, A. J. Ghamd V. M. Prostokishin developed, based on
principle of intermediate asymptotic, a power-layé scaling law for the mean velocity profile of
zero-pressure gradient TBL and pipe flow. One & findamental ideas of this group is the
distinction betweewromplete andincomplete similarity.

Outgoing from the finding that the Karman constahtMillikan’s logarithmic law (Millikan,
1938), reveals a systematic dependence on the Risynamber Barenblatt (2003) postulates two
hypotheses:

First hypothesis There is an incomplete similarity of the mean velocity gradient in the
parameter y* = uy /v and no kind of similarity in the Reynolds number.

Second hypothesis The gradient of average velocity tends to a well-defined limit as the
viscosity vanishes.

According to the first hypothesis, the influencetioé viscosity remains at arbitrary large Reynolds
numbers in the entire boundary layer, not jushatiscous sublayer.

The gradient of the mean-velocity profile is adoptes starting point for the derivation of the
functional form of the profile. It is assumed tliae governing parameters arg, o andy, their
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dimensions are independent. Introducing the locaitién velocityu, the following similarity
numbers are obtained

y' =uy/v; and Re, =Au/v (3.1a, b)

While y* is a local Reynolds number with respect to thd-watmal coordinateRe, is the global

Reynolds number. Rewriting (3.1b) it becomes obwithat the latter is actually the ratio of outed an
inner length scales. Barenblatt and co-workersraesucomplete similarity and get

you_..ou

u, 0y - oy"
The strong assumption here is that the functiooahfof (3.2) behaves as a power law. Integrating
under the assumption that the integration constamero, Barenblatt’'s power law is obtained. The
remaining parameters were found by Barenblatt &tashin (2003) by analyzing the classical pipe
flow data-base of Nikuradse (1932).

=g(Re, )xy™™ with a=a(Re,) (3.2)

u"=C(Re, )y"™"; = C=iln(Re)+g=@ (3.3a, b, c)

" 2in(Re)’ J3

3.2 Experimental evidence of Barenblatt's power &

Plotting experimental data according to (3.5, Ghgighe usual “+” variables leads to a band of
curves. Due to the inherent Reynolds number depmedano collapse of the data can be achieved.
Equation (4.5) has therefore to be reformulatediiain a universal relation (3.4a). Additionallget
fractional difference of (3.3a) is plotted in thetiom portion of Figure 3.1,

iny" )= In(%]; FD = 100%[In( v)-2 In(uéH/ln( y')  (34ab)

Using the super-pipe data by McKeon et al. (2004) plot in Figure 3.1 Barenblatt's power law. The
figures reveal the following:

I. For high Reynolds numbers there might be a pdawrregion that can be seen as plateau in
the lower left diagram. But this plateau shows grieéds number dependent albeit constant
departure from a zero fractional difference.

II. The smaller the Reynolds number becomes, thallemthe plateau becomes. For the
smallest Reynolds number involved, the plateaupgisars completely and is displaced by a
steep line.
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Figure 3.1 Barenblatt's power law and fractiondletence. Pipe flow data by McKeon et al. (2004).



M. H. Buschmann & M. Gad-el-Hak

4. The Approach by W. K. George and Colleagues

The school lead by W. K. George developed a power that is derived from the Prandtl’s
boundary layer equation (George & Castillo 1997stllla & George, 2001). Their approach is quite
different from that of Barenblatt and colleaguesosd power law stems from dimensional analysis.
Unlike Barenblatt’'s power law, however, George’svpolaw is valid only for ZPG TBL.

The approach by George and co-workers is associdtbdhree key concepts:
I. Search for similarity separately for the innerand the outer layer
Consider the complete boundary layer equation faornpressible, two-dimensional steady flow.
Arguing that ‘the no-dip condition precludes the possibility of similarity solutions for the entire
boundary layer” (George & Castillo, 1997), similarity solutionsrea sought that accomplish
asymptotically for infinite Reynolds number the degrated momentum equations for inner region
and the outer region separately.
II. Asymptotic Invariance Principle
The Asymptotic Invariance Principle (AIP) propodsdGeorge (1995) is based on three lemmata:

Lemmal The full mean momentum equation has Regnoidnber dependent terms that
disappear only foRe —» . Any similarity solution of this equation for fi

Reynolds numbers will therefore be Reynolds nundependent.
Lemma2 The degenerated mean momentum equatiottsefamner and the outer regions are
only exactly valid forRe - c. Any similarity solutions of these equations will

therefore be exactly valid only in this limit.
Lemma 3 Similarity solutions found for the degemedamean momentum equations have the
same functional shape as the sought scaling lawfinfte Reynolds number.
According to Lemma 1, the sought solutions mustagiswbe Reynolds number dependent. According
to Lemma 3, their functional shape can be deterthiojyg employing degenerated inner and outer
representation of mean momentum equation.
lll. Near Asymptotic
Having obtained the scaling by employing AIP, atreggp has to be undertaken to find the functional
forms of the mean velocity profile in the commongiom. This is done by assuming that inner and the
outer velocity profile degenerate at infinite Reldso number in different ways. For detailed
derivation, see George & Castillo (1997). For ZP& _The following profiles are obtained.

ur=C (0" )(y +a’ )V(‘r); u/uezco(d*)(§/+5)y(5) 4.1, 2)
The finding of a power law is not surprising be@twso different velocity scales are employed in
the inner region and the outer region. The oftsetwas originally introduced to make (4.1, 2)

invariant to coordinate transformation of the foym- y+a (George & Castillo, 1997). Later this

parameter was interpreted as an influence comiom fthe so-called mesolayer. Such a layer is
understood as a region where neither dissipationReynolds stress will become independent of
viscosity no matter how high the Reynolds number is

One of the consequences of the AIP is that, diffityeto the classical view based on Millikan’s
assumptions foRe - «, the shape paramete,/ & lingers larger than unity and the skin-friction

coefficientc, remains larger than zero. This is indeed surggiddecause the shape parameter

compares the boundary layer flow with the poterital and the skin-friction coefficient stands for
the no-slip condition occurring only in flows affed by molecular viscosity. The Millikan’'s
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assumptionid / 9)| - 1 andc; o 0 basically sayo viscosity, no boundary layer and no

Re - o

boundary-layer effects, which is in agreement with Prandtl’s ideas regaydavall-bounded flows.

Based on AIP and near asymptotic, Wosnik et al0@2Gound a logarithmic law for pipe and
channel flows. Whilst fully-developed pipe and chenflows are always parallel flows, any TBL
exhibits divergence or convergence of the mearastiees. Pipe and channel flow are therefore

characterized by only one velocity scale namglywhich leads following AIP to a logarithmic law

. 1

ut = u—u, 1

K(a_+)|n(y++a+)+Bl(5+); " :K(5+)|n(§+a)+80(5+) 4.3, 4)

4.1 Experimental evidence of the George—Castilloogver law

For testing George-Castillo power law OsterlundB& TBL data are employed. Wosnik’s
logarithmic law (4.3) is tested using the superpiata by McKeon et al. (2004). For plotting the
data, we either apply (3.4a, b) or (2.2a, b). Thever-law parameters are calculated according to
George & Castillo (1997) and the log-law paramegeestaken from Wosnik et al. (2000).
Figure 4.1 shows that employing the George—Castiler law most of Osterlund’s data collapse in a
straight line. However, this line does not coincidi¢gh the diagonal of the diagram. This indicates a
power law region may exist but with different paeders. Let's compare the George—Castillo power
law with the one found by Nikuradse (1932) for pifmv but very often employed for TBL. For
simplicity the parameters are set constant andechds/ (power) and 8.42 (coefficient). Again the
majority of Osterlund’s data collapse in a straigjhe and an almost parallel bunch of curves is
obtained in the fractional difference. Another tithe idea that the mean velocity profile of a ZPG
TBL might be at least partly described by a poveav is supported. One of the major differences
between the classical log law and the one propbgatfosnik is immediately visible from Figure 4.2.
Due to the internal additive constant, the dattaénbuffer layer are forced to collapse with the
diagonal. Further out, there seems to be a regiomgood agreement between predicted and
experimental values.

5. Higher order approaches

So far we have seen that recent approaches congetim¢ velocity profile of turbulent wall-
bounded flow do neither rule out log nor power laehaviour. Additionally, a Reynolds number
dependency of the mean-velocity profile cannot®ueled in general. From that the straightforward
conclusion follows that a much more complex funadiicform is needed to describe the profile.

The recent higher order approach by Buschmann &é&b#&thk (2003) is based on the assumption
that at sufficiently high Reynolds number the iefhge of the outer turbulence-structures scaling
with d diminishes on the inner zone, and the influencehef inner viscosity dominated structures

scaling withv/u, diminishes on the outer zone. The interaction behn®th zones decreases as well,

but never disappears totally and Reynolds-numidectsfwill persist also for high Reynolds numbers.
Based on that fundament two major hypotheses apboged by Buschmann & Gad-el-Hak (2003):
1. The classical two layer assumption is sufficiendescribe a wall-bounded flow.
2. Asymptotic matching can be applied to obtairhbigorder solutions for the mean velocity
profile in the overlap region.
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Nikuradse’s 1/-power. ZPG TBL data from Osterlund et al. (2000).
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Figure 4.2 Wosnik's log law for pipe flow and frewtal difference of this law. Pipe flow data from
McKeon et al. (2004).

Asymptotic expansions are formulated for inner aatér region separately
u*~2ug(y+)y0(5+) ; U~ZU0(r/)/'O(5+) (5.1a, b)
i=0 i=0

Herey, and/ represent gauge functions which depend onlyybbut do not necessarily have the
same functional shape. In general the strong adsomip here the separation of the Reynolds-number
dependence and the dependence on the wall-norroadinate into multiplicative functions. Because
turbulence is not a closed problem, the selectibthe gauge functions always needs additional
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assumptions. Preferably these assumptions are éduad first principles. Afzal (1976) introduced
based on a consideration of the governing equafidimle mean momentum of pipe and channel flow.

yi:/_i::l_/d+i (52)
Matching (5.1a) and (5.1b) properly leads to theegalized logarithmic law for the inner region
> E,. © i & E
o= in(y 4G+ S+ 3| in(y ) rC v B,y eE ok 69
Ky =1 Y i=1 K = i=1 Y

and an equivalent generalized defect law. The petens/«, ,C,,B, | ,E ;.c; b  ande ;j must be

determined from experimental data. Equation (5l&arty indicates that pure logarithmic regions do
not exist at least not in pipe and channel flow.e Tionlogarithmic, higher-order terms pf

andd" persist throughout the entire overlap region andafbfinite Reynolds numbers. Beside the
constant and the logarithmic terms two types oflogarithmic terms are found with (5.3). The first
group consists of terms becoming strong close ¢owthll and have functional forms &f /y+j .

These terms allow extending the classical logaiithiaw into the upper regions of the buffer-layer.
The second new group of terms consist of termsrheapstrong in the inner wake zone. For the inner

generalized log law these terms have the sha;ﬁ;pj'+j . All higher order terms mentioned above
disappear foRe - « and the classical log law (3.1a) remains.

5.1 Experimental evidence of the generalized logdihimic law

The generalized log law (5.3) contains an infimitenber of constants. Currently it is not known if
this manifold can be reduced to more complex fumsti Therefore the law has to be truncated
carefully. Here results of a second order soluicnpresented.

The successful application of the generalized &g flor ZPG TBL was shown by Buschmann &
Gad-el-Hak (2003). In here using the super-pipa dgtMcKeon et al. (2004) the superior application
to pipe flow is shown (Figure 5.1). One may argo@t tany higher-order solutions is condemned to
success because of the larger number of free ptgmniavolved (Panton, 2005). But this is only
partly true because a higher-order solution as gbeeralized law based on first principles and
adopting only a minimum of assumptions bears emglniore physics in it than a simple approach.

ut FD
4 “s‘\
30 2
0 >
20 2
-4
10 Generalized log law by 6
g Buschman & 2 4 6 8 02 ()
Gad-el-Hak (2003) y
0 T T
0 10 20 30 fQ(y’)
Figure 5.1 Buschmann & Gad-el-Hak’'s second ordenerdized log law and fractional

difference. Pipe flow data are from McKeon et 20@4).
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Collecting terms of identical functional form (loghmic, constant etc.) reveals that the well-
known parameters of the classical log law becomgnB®ds-number dependent functions. An
example is the Karmén constant.

1 > 1 1 (5.4)

K =07 K,
Figure 5.2 compiles the Reynolds-number dependeh®4)up to fourth order of (5.3). It has to be
emphasized that this parameter is only valid fpeglow because (5.3) covers parts of the usuabwak
region which is different for ZPG TBL, channel apipe flow. Interestingly enough for medium
Reynolds numbers the parameters calculated withdhmh-order solution are very close to the values
proposed by Zanoun et al. (2003) for channel fllewever, the Karman constant shows a slight
Reynolds number which is in excellent agreemertt wifunction fork given by Tennekes in 1968

Ky =295-4.40/ Y3 (5.5)

Remarkably Tennekes function has a similar form(sagd) except the power is not integer. The
agreement can be explained by the similarity ofléve investigated by Tennekes (pure logarithmic
law) and the zeroth-order solution (underlined ®oh(5.3)). The value of this finding is clear.rg
before the recent debate the Reynolds number depepdf the mean velocity profiles of pipe was
discovered, using a database which was compleatdbpiendent of nowadays pipe flow data.
The higher order solutions show that both parameteymptote nonmonotonically to values which
are very similar to the high Reynolds number patarsegiven by Wosnik et al. (2000) for turbulent
pipe and channel flow. The coincidence of both ltssis explainable by the facts that first both
theories are based on the two-layer assumptionaagpchptotic matching is employed to obtain the
mean velocity profile in the overlap region, secdmath theories demand the inclusion of finite
Reynolds number effects and third both approadded forRe — oo to pure logarithmic functions.

The major differences between the generalized dogdnd the law by Wosnik et al. (2000) are the
functional shape of the mean velocity profile atité Reynolds numbers and the functional
dependence of the parameters liken the Reynolds number.

To summarize the higher order approach propose®8uschmann & Gad-el-Hak (2003) show
excellent agreement with experimental pipe flow ZR& TBL data. Together with other higher order
approaches it clearly demonstrates that involviogh thigher order Reynolds-number effeetsd
higher order effects of the dependency on the n@lmal coordinate is advantageous. However, to be
successfully such an approach must be based ompfiingiples and has to employ only a minimum of
additional physical assumptions.
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6. Summary

In closing we summarize that in the last decadeea debate on the general behavior of wall-
bounded flows started. The majority of the attencpis be categorized as either:

I. deriving the shape and the corresponding paesetf the mean velocity profile directly

from high quality experimental data or

Il. employing theoretical considerations with the saasé.
Some of the later are based on first principle, samply asymptotical approaches others are founded
on dimensional analysis only. However, none of themirectly based on the modelling of turbulent
motion. Keeping in mind that the task of all apmioes discussed above is to find the time averaged
representation of arbulent motion this seems to be a general deficit. This is esfigdrue for any
theory which is not based on first principles askks instead more or less gratuitous assumptioas in
account. Unfortunately, due to the closing probtefnturbulence, incorporating physical assumptions
cannot be avoided completely.

Employing the probably best data sets currentlylavig world wide we have uncover the qualities
of several approaches. However, this still say$ingtabout the general physical correctness of a
certain approach. We therefore accompanied ourstigation with a discussion of the physical
features of these approaches. The outcome camimaanized with the following statement: The mean
velocity profile of turbulent wall-bounded flows isuch more complex than the classical log law or a
simple power law. A Reynolds number dependencéi®imiean profile persisting for arbitrarily high
but finite Reynolds numbers seems to be highlyljikAt least this dependence if not the whole
profile seems to be different for boundary layemsone side and confined flow (pipe, channel) on the
other side. Both experimental and theoretical wenkeeded to resolve these questions.
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