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1. Introduction

In this work we are interested in solving singularly perturbed parabolic boundary value problems
given by 

L~ε~u ≡
∂~u

∂t
+ Lx,~ε~u = ~f, (x, t) ∈ Q = Ω× (0, T ] = (0, 1)× (0, T ],

~u(0, t) = ~0, ~u(1, t) = ~0, ∀t ∈ [0, T ],
~u(x, 0) = ~0, ∀x ∈ Ω,

(1)

where

Lx,~ε ≡

(
−ε1 ∂2

∂x2

−ε2 ∂2

∂x2

)
+A, A =

(
a11(x) a12(x)
a21(x) a22(x)

)
,

with 0 < ε1 ≤ ε2 ≤ 1. The components of the right hand side ~f(x, t) = (f1(x, t), f2(x, t))T and
the matrix A are supposed smooth enough and also that the following positivity condition is
satisfied

ai,1 + ai,2 ≥ α > 0, aii > 0, i = 1, 2, aij ≤ 0 if i 6= j. (2)

In addition, we suppose that sufficient compatibility conditions among the data of the dif-
ferential equation hold, in order that the exact solution ~u ∈ C4,3(Q̄), i.e, continuity up to fourth
order in space and up to third order in time.

This problem is a simple model of the classical linear double–diffusion model for saturated
flow in fractured porous media (Barenblatt system) developed in [1]. Also this problem can be
used to model diffusion process in bones (see [4]). It is well–known that the exact solution of these
problems has a multiscale character, i.e., there are boundary layers. Therefore, it is necessary
to dispose of efficient numerical methods (uniformly convergent methods) to approximate the
solution independently of the values of the diffusion parameters ε1 and ε2.

Recently some papers (see [7], [8], [9] [10] and [11]) study uniform convergent numerical meth-
ods to solve singularly perturbed elliptic linear systems on a special piecewise uniform Shishkin
mesh, for different relations between the diffusion parameters: i) ε1 = ε, ε2 = 1; ii) ε1 = ε2 =
ε; iii) ε1, ε2 arbitrary. Here, we are interested in increasing the uniform convergence order of
the numerical method given in [6], which was used to solve a parabolic coupled system of type
(1). With this aim we will combine the Crank-Nicolson method to discretize the time variable
joint to the central finite differences discretization in space. Previously this method has been
used in the framework of singularly perturbed problems; for instance, in [2] it was considered to
solve a class of 1D parabolic problems of convection-diffusion type.

We denote by Γ0 = {(x, 0) |x ∈ Ω}, Γ1 = {(x, t) |x = 0, 1, t ∈ [0, T ]}, Γ = Γ0 ∪ Γ1 and
~ε = (ε1, ε2)T , with 0 < ε1 ≤ ε2 ≤ 1, the vectorial singular perturbation parameter. We write

∗This research will be partially supported by the project MEC/FEDER MTM 2004-01905 and the Diputación
General de Aragón.
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~v ≤ ~w if vi ≤ wi, i = 1, 2, |~v| = (|v1|, |v2|)T , ~C = (C,C)T , where C is any positive constant
independent of the diffusion parameters ε1, ε2 and the discretization parameters N and ∆t,
‖f‖H is the maximum norm of f on the closed set H and ‖~f‖H = max{‖f1‖H , ‖f2‖H}.

2. The numerical method: uniform convergence

Before defining the numerical method we give some results showing the asymptotic behaviour
of the exact solution of the problem (1); the proofs of these results can be found in [3] and [6].
First, it is easy to prove that the differential operator satisfies a maximum principle: If ~ψ ≥ ~0
on Γ and L~ε

~ψ ≥ ~0 in Q, then ~ψ ≥ ~0 for all (x, t) ∈ Q̄.
Now we consider the decomposition ~u = ~v+ ~w, where the regular component ~v is the solution

of the problem 
L~ε~v = ~f, in Q,
~v(x, 0) = ~0, on Γ0,
~v = ~z, on Γ1,

(3)

where ~z satisfies the following initial value problem{
~zt +A~z = ~f, (x, t) ∈ {0, 1} × (0, T ],
~z(x, 0) = ~0 x ∈ {0, 1},

(4)

and the singular component ~w is the solution of the problem{
L~ε ~w = ~0, in Q,
~w = ~u− ~v, on Γ.

(5)

Lemma 1 The regular component ~v = (v1, v2)T satisfies∥∥∥∥∂k~v

∂tk

∥∥∥∥
Q̄

≤ C, 0 ≤ k ≤ 3,
∥∥∥∥∂k~v

∂xk

∥∥∥∥
Q̄

≤ C, k = 1, 2,∥∥∥∥∂kv1
∂xk

∥∥∥∥
Q̄

≤ Cε
1−k/2
1 ,

∥∥∥∥∂kv2
∂xk

∥∥∥∥
Q̄

≤ Cε
1−k/2
2 , k = 3, 4,∥∥∥∥ ∂2~v

∂t∂x

∥∥∥∥
Q̄

≤ C,

∥∥∥∥ ∂3~v

∂t∂x2

∥∥∥∥
Q̄

≤ C,

∥∥∥∥ ∂3~v

∂t2∂x

∥∥∥∥
Q̄

≤ C,

∥∥∥∥ ∂4~v

∂t2∂x2

∥∥∥∥
Q̄

≤ C.

(6)

To establish the behaviour of the singular component we introduce the auxiliary function
Bγ(x) = e−x

√
α/γ + e−(1−x)

√
α/γ , where γ is an arbitrary positive constant and α was defined

in (2).

Lemma 2 The singular component ~w = (w1, w2)T satisfies∣∣∣∣∂k ~w

∂tk

∣∣∣∣ ≤ Bε2(x)~C, ∀(x, t) ∈ Q̄, 0 ≤ k ≤ 3, (7)
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and also

|w1(x)| ≤ CBε2(x), |w2(x)| ≤ CBε2(x), (8)∣∣∣∣∂w1

∂x

∣∣∣∣ ≤ C(ε−1/2
1 Bε1(x) + ε2

−1/2Bε2(x)),
∣∣∣∣∂w2

∂x

∣∣∣∣ ≤ Cε2
−1/2Bε2(x), (9)∣∣∣∣∂2w1

∂x2

∣∣∣∣ ≤ C(ε−1
1 Bε1(x) + ε2

−1Bε2(x)),
∣∣∣∣∂2w2

∂x2

∣∣∣∣ ≤ Cε2
−1Bε2(x), (10)∣∣∣∣∂3w1

∂x3

∣∣∣∣ ≤ C(ε−3/2
1 Bε1(x) + ε2

−3/2Bε2(x)), (11)∣∣∣∣∂3w2

∂x3

∣∣∣∣ ≤ Cε2
−1(ε−1/2

1 Bε1(x) + ε2
−1/2Bε2(x)), (12)∣∣∣∣∂4w1

∂x4

∣∣∣∣ ≤ C(ε−2
1 Bε1(x) + ε2

−2Bε2(x)), (13)∣∣∣∣∂4w2

∂x4

∣∣∣∣ ≤ Cε2
−1(ε−1

1 Bε1(x) + ε2
−1Bε2(x)). (14)

To approximate the solution of (1), firstly we use the Crank–Nicolson method to discretize
in time. This scheme, on a uniform mesh ω̄M = {k∆t, 0 ≤ k ≤M, ∆t = T/M}, can be written
as

~u0 = ~u(x, 0) = ~0,
(
I +

∆t
2
Lx,~ε

)
~un+1 =

∆t
2

(~fn + ~fn+1) +
(
I − ∆t

2
Lx,~ε

)
~un, n = 0, 1, · · · ,M − 1,

~un+1(0) = ~0, ~un+1(1) = ~0,
(15)

where ~fn = ~f(x, tn). In order to study the convergence of this method, we consider the following
auxiliary problem

~̂u
n

= ~u(x, tn),
(
I +

∆t
2
Lx,~ε

)
~̂u

n+1
=

∆t
2

(~fn + ~fn+1) +
(
I − ∆t

2
Lx,~ε

)
~u(x, tn),

~̂u
n+1

(0) = ~0, ~̂u
n+1

(1) = ~0.

(16)

To study the local error and also the uniform-stability of this method, we follow similar ideas
to these ones developed in [2], and therefore we obtain the following result.

Theorem 3 The local and global errors associated to the Crank-Nicolson method satisfy

‖~u(x, tn+1)− ~̂u
n+1

(x)‖Ω̄ = O((∆t)3), ‖~u(x, tn+1)− ~un+1(x)‖Ω̄ = O((∆t)2).

Then, the Crank-Nicolson method is uniformly convergent of second order.

Nevertheless, for the posterior analysis we need a more precise information about the asymp-
totic behaviour of the components and their derivatives of the exact solution of the problem
(16). Then, we write this solution as a sum of the regular and the singular components, i.e.,

~̂u
n+1

= ~̂v
n+1

+ ~̂w
n+1

, which are respectively the solution of the following problems:(
I +

∆t
2
Lx,~ε

)
~̂v

n+1
(x) =

∆t
2

(~fn + ~fn+1) +
(
I − ∆t

2
Lx,~ε

)
~v(x, tn), x ∈ (0, 1), (17)(

I +
∆t
2
A

)
~̂v

n+1
(x) =

∆t
2

(~fn + ~fn+1) +
(
I − ∆t

2
A

)
~v(x, tn), x = 0, 1, (18)
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and (
I +

∆t
2
Lx,~ε

)
~̂w

n+1
=
(
I − ∆t

2
Lx,~ε

)
~w(x, tn), (19)

~̂w
n+1

(0) = ~̂u
n+1

(0)− ~̂v
n+1

(0), ~̂w
n+1

(1) = ~̂u
n+1

(1)− ~̂v
n+1

(1), (20)

where ~v is the regular component, solution of (3)-(4), and ~w is the singular component, solution
of (5).

Lemma 4 The regular component ~̂v
n+1

= (v̂n+1
1 , v̂n+1

2 )T satisfies∥∥∥∥dkv̂n+1
i

dxk

∥∥∥∥
Ω̄

≤ C, 0 ≤ k ≤ 2,
∥∥∥∥dkv̂n+1

i

dxk

∥∥∥∥
Ω̄

≤ Cε
1−k/2
i , 3 ≤ k ≤ 4, i = 1, 2. (21)

The singular component ~̂w
n+1

= (ŵn+1
1 , ŵn+1

2 )T satisfies

|ŵn+1
1 (x)| ≤ CBε2(x), |ŵn+1

2 (x)| ≤ CBε2(x), (22)∣∣∣∣dŵn+1
1

dx

∣∣∣∣ ≤ C(ε−1/2
1 Bε1(x) + ε2

−1/2Bε2(x)),
∣∣∣∣dŵn+1

2

dx

∣∣∣∣ ≤ Cε2
−1/2Bε2(x), (23)∣∣∣∣d2ŵn+1

1

dx2

∣∣∣∣ ≤ C(ε−1
1 Bε1(x) + ε2

−1Bε2(x)),
∣∣∣∣d2ŵn+1

2

dx2

∣∣∣∣ ≤ Cε2
−1Bε2(x), (24)∣∣∣∣d3ŵn+1

1

dx3

∣∣∣∣ ≤ Cε−1
1 (ε−1/2

1 Bε1(x) + ε2
−1/2Bε2(x)), (25)∣∣∣∣d3ŵn+1

2

dx3

∣∣∣∣ ≤ Cε2
−1(ε−1/2

1 Bε1(x) + ε2
−1/2Bε2(x)), (26)∣∣∣∣d4ŵn+1

1

dx4

∣∣∣∣ ≤ Cε−1
1 (ε−1

1 Bε1(x) + ε2
−1Bε2(x)), (27)∣∣∣∣d4ŵn+1

2

dx4

∣∣∣∣ ≤ Cε2
−1(ε−1

1 Bε1(x) + ε2
−1Bε2(x)). (28)

Moreover, if ε1 < ε2, then the singular component can be decomposed as

ŵn+1
1 = ŵn+1

1,ε1
+ ŵn+1

1,ε2
, ŵn+1

2 = ŵn+1
2,ε1

+ ŵn+1
2,ε2

,

where ∣∣∣∣∣d2ŵn+1
1,ε1

dx2

∣∣∣∣∣ ≤ Cε−1
1 Bε1(x),

∣∣∣∣∣d3ŵn+1
1,ε2

dx3

∣∣∣∣∣ ≤ Cε1
−1ε2

−1/2Bε2(x), (29)∣∣∣∣∣d2ŵn+1
2,ε1

dx2

∣∣∣∣∣ ≤ Cε2
−1Bε1(x),

∣∣∣∣∣d3ŵn+1
2,ε2

dx3

∣∣∣∣∣ ≤ Cε2
−3/2Bε2(x). (30)

Also, if ε1 < ε2 the singular component can be decomposed as

ŵn+1
1 = ẑn+1

1,ε1
+ ẑn+1

1,ε2
, ŵn+1

2 = ẑn+1
2,ε1

+ ẑn+1
2,ε2

,

where ∣∣∣∣∣d2ẑn+1
1,ε1

dx2

∣∣∣∣∣ ≤ Cε−1
1 Bε1(x),

∣∣∣∣∣d4ẑn+1
1,ε2

dx4

∣∣∣∣∣ ≤ Cε1
−1ε2

−1Bε2(x), (31)∣∣∣∣∣d2ẑn+1
2,ε1

dx2

∣∣∣∣∣ ≤ Cε2
−1Bε1(x),

∣∣∣∣∣d4ẑn+1
2,ε2

dx4

∣∣∣∣∣ ≤ Cε2
−2Bε2(x). (32)
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Remark 5 We note that the bounds given in Lemma 4 for the third and fourth derivatives of ŵ1,
are worse (with respect to the diffusion parameters) than the corresponding ones for the singular

component
∂3w1

∂x3
and

∂4w1

∂x4
of the continuous problem. Fortunately, these different bounds do

not introduce any additional difficulty in the posterior analysis of the uniform convergence of
the spatial discretization of our numerical scheme, because of these derivatives are scaled with
the corresponding diffusion parameter ε1.

Now we use the classical central difference operator defined on a piecewise uniform mesh
Ω̄N of Shishkin type (see [5]), to discretize the problem (15). To construct this mesh, we must
have into account that the solution of the continuous problem, in the spatial direction, has two
overlapping boundary layers at both end points x = 0 and x = 1. Then, the mesh is defined by
using two transition parameters (see [8] for a theoretical justification), which are defined by

τε2 = min
{

1/4, 2
√
ε2/α lnN

}
, τε1 = min

{
τε2/2, 2

√
ε1/α lnN

}
.

In the five subintervals [0, τε1 ], [τε1 , τε2 ], [τε2 , 1−τε2 ], [1−τε2 , 1−τε1 ] and [1−τε1 , 1] we distribute
uniformly N/8 + 1, N/8 + 1, N/2 + 1, N/8 + 1 and N/8 + 1 mesh points respectively. So, the
mesh points are given by

xj =


jhε1 , j = 0, . . . , N/8,
xN/8 + (j −N/8)hε2 , j = N/8 + 1, . . . , N/4,
xN/4 + (j −N/4)H, j = N/4 + 1, . . . , 3N/4,
x3N/4 + (j − 3N/4)hε2 , j = 3N/4 + 1, . . . , 7N/8,
x7N/8 + (j − 7N/8)hε1 , j = 7N/8 + 1, . . . , N,

where hε1 = 8τε1/N, hε2 = 8(τε2 − τε1)/N, H = 2(1− 2τε2)/N . If τε1 6= 1/8 and τε2 = 1/4,
we modify slightly the mesh points that lie in [τε2 , 1 − τε2 ] in order that the mesh be uniform
outside the boundary layers. Then, in this case, the mesh points are defined by

xj =


jhε1 , j = 0, . . . , N/8,
xN/8 + (j −N/8)Ĥ, j = N/8 + 1, . . . , 7N/8,
x7N/8 + (j − 7N/8)hε1 , j = 7N/8 + 1, . . . , N,

where now Ĥ = 4(1− 2τε1)/(3N).
We denote the local step sizes by hj = xj − xj−1, j = 1, . . . , N . On this piecewise uniform

mesh, the finite difference scheme is defined by
~U0

j = ~0, 0 ≤ j ≤ N,
For n = 0, . . . ,M − 1,

LN
~ε
~Un+1

j ≡
(
I +

∆t
2
LN

x,~ε

)
~Un+1

j =
(
I − ∆t

2
LN

x,~ε

)
~Un

j +
∆t
2

(~fn+1
j + ~fn

j ),

~Un+1
0 = ~Un+1

N = ~0,

(33)

where

LN
x,~ε ≡

(
−ε1

−ε2

)
δ2 +AI, δ2Zj =

2
hj + hj+1

(
Zj+1 − Zj

hj+1
− Zj − Zj−1

hj

)
.

In order to prove the uniform convergence of the totally discrete scheme (33), first we must study
the convergence of the central finite difference scheme used to discretize the auxiliary problem
(16). The, the scheme is given by

~̂U
n

j = ~̂u
n
(xj), 0 ≤ j ≤ N, LN

~ε
~̂U

n+1

j ≡
(
I +

∆t
2
LN

x,~ε

)
~̂U

n+1

j =
(
I − ∆t

2
Lx,~ε

)
~̂u

n
(xj) +

∆t
2

(~fn+1
j + ~fn

j ), 0 < j < N,

~̂U
n+1

0 = ~̂U
n+1

N = ~0.
(34)
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Theorem 6 Let ~̂u
n+1

(x) the solution of (16) and { ~̂U
n+1

j } the solution of (34). Then, the error
satisfies

‖~̂u
n+1

(xj)− ~̂U
n+1

j ‖Ω̄N ≤ C(N−1 lnN)2. (35)

Then, the spatial discretization is uniformly convergent with order almost two.

Proof. We only give the outlines of the proof. First, it is easy to prove that the discrete operator
LN

~ε is uniformly stable and also satisfies a discrete maximum principle.
To obtain appropriate bounds of the local error, we consider a decomposition in the form

~̂U
n+1

= ~̂V
n+1

+ ~̂W
n+1

, n = 0, 1, · · · ,M−1, where the regular part is the solution of the problem
~̂V

n

j = ~̂v
n
(xj), 0 ≤ j ≤ N, LN

~ε
~̂V

n+1

j ≡
(
I +

∆t
2
LN

x,~ε

)
~̂V

n+1

j =
(
I − ∆t

2
Lx,~ε

)
~̂v

n
(xj) +

∆t
2

(~fn+1
j + ~fn

j ), 0 < j < N,

~̂V
n+1

0 = ~̂v
n+1

(0), ~̂V
n+1

N = ~̂v
n+1

(1),
(36)

and the singular component is the solution of the problem
~̂W

n

j = ~̂w
n
(xj), 0 ≤ j ≤ N, LN

~ε
~̂W

n+1

j ≡
(
I +

∆t
2
LN

x,~ε

)
~̂W

n+1

j =
(
I − ∆t

2
Lx,~ε

)
~̂w

n
(xj), 0 < j < N,

~̂W
n+1

0 = ~̂w
n+1

(0), ~̂W
n+1

N = ~̂w
n+1

(1).

(37)

Then, using Taylor expansion and the barrier function technique it is possible to obtain the
required result (see [3] for details).

Theorem 7 Let ~u(x, t) be the solution of (1) and {~Un+1
j } the solution of (33). Then, the error,

at the mesh points, satisfies the bound

‖~u(xj , tn+1)− ~Un+1
j ‖Q̄N ≤ C(N−2+q ln2N + (∆t)2), 0 < q < 1, (38)

where N,∆t and q are such that N−q ≤ C∆t.

Proof. We split the global error at the time tn+1 in the form

‖~u(xj , tn+1)− ~Un+1
j ‖Q̄ ≤ ‖~u(xj , tn+1)− ~̂u

n+1
(xj)‖Q̄ + ‖~̂u

n+1
(xj)− ~̂U

n+1

j ‖Q̄ + ‖ ~̂U
n+1

j − ~Un+1
j ‖Q̄.

We deduce the result from Theorems 3 and 6 and using a recursive argument (see [2]).

Remark 8 Theorem 7 proves the second order of uniform convergence of the method (except by
the logarithmic factor), under the relation N−q ≤ C∆t between the discretization parameters N
and ∆t. Nevertheless, from the numerical point of view, this is an artificial relation that we have
never needed to obtain the good results based on our numerical method. Then, we conjecture that
this restriction is not necessary, but theoretically it is an open question.

3. Numerical results

Here we show the maximum errors and the numerical orders of uniform convergence obtained
using the method (33) to solve two different problems. The first one is given by

∂u1

∂t
− ε1

∂2u1

∂x2
+ (2 + x)u1 − (1 + x)u2 = x2(1− x)2,

∂u2

∂t
− ε2

∂2u2

∂x2
+ (ex + 1)u2 − (1 + x)u1 = x2(1− x)2,

 (x, t) ∈ (0, 1)× (0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, T ], u(x, 0) = 0, x ∈ (0, 1],

(39)
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for which the exact solution is unknown; then to find the pointwise errors at the mesh points
{(xj , tn)}, we use a variant of the double mesh principle (see [5]). Then, we calculate the

numerical solution { ~̂Un
j } on the mesh {(x̂j , t̂n)} that contains the mesh points of the original

mesh and their midpoints, i.e.,

x̂2j = xj , j = 0, . . . , N, x̂2j+1 = (xj + xj+1)/2, j = 0, . . . , N − 1,
t̂2n = tn, n = 0, . . . ,M, t̂2n+1 = (tn + tn+1)/2, n = 0, . . . ,M − 1.

At the mesh points of the coarse mesh we calculate the maximum errors and the uniform errors
by ~d~ε,N,∆t = max0≤n≤M max0≤j≤N |~Un

j − ~̂U2n
2j |, ~dN,∆t = maxS d~ε,N,∆t, where for each fixed value

de ε2, the set S = {ε1 |ε1 = ε2, 2−2ε2, . . . , 2−58, 2−60} in order to permit that the maximum
errors stabilize.

¿From these values we obtain the corresponding orders of convergence and the uniform orders

of convergence in a standard way: ~p =
log(~d~ε,N,∆t/~d~ε,2N,∆t/2)

log 2
, ~puni =

log(~dN,∆t/~d2N,∆t/2)
log 2

.

Tables 1 and 2 display the results obtained in this case. From they we see that the method gives
second order of uniform convergence in agreement with Theorem 7.

Table 1: Maximum errors and uniform orders of convergence for the component u1 for the
example (39)

N=64 N=128 N=256 N=512 N=1024
∆t = 0.5 ∆t = 0.5/2 ∆t = 0.5/22 ∆t = 0.5/23 ∆t = 0.5/24

[~dN,∆t]1 2.624E-03 1.077E-03 3.419E-04 9.385E-05 2.315E-05
[~puni]1 1.284 1.656 1.865 2.019

Table 2: Maximum errors and uniform orders of convergence for the component u2 for the
example (39)

N=64 N=128 N=256 N=512 N=1024
∆t = 0.5 ∆t = 0.5/2 ∆t = 0.5/22 ∆t = 0.5/23 ∆t = 0.5/24

[~dN,∆t]2 2.626E-03 1.085E-03 3.461E-04 9.650E-05 2.398E-05
[~puni]2 1.275 1.648 1.842 2.009

The second problem that we consider is the Barenblatt system

∂u1

∂t
− ε1

∂2u1

∂x2
+ u1 − u2 = 1,

∂u2

∂t
− ε2

∂2u2

∂x2
+ u2 − u1 = 1,

 (x, t) ∈ (0, 1)× (0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, T ], u(x, 0) = 0, x ∈ (0, 1],

(40)

where again we use the same technique as before to find the maximum errors and the numerical
orders of convergence. Tables 3 and 4 display the results obtained in this case. ¿From they
we see that now the method does not give second order of uniform convergence and we observe
numerically the influence of the compatibility conditions between data in order to achieve the
required order of uniform convergence.
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