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Abstract: In this paper, 3-dimensional linear instability analysis has been carried out for unsteady pipe 
flow. An inflectional velocity profile from [2] has been considered and the stability analysis of it has been 
carried out for  (axisymmetric mode) and 0=n 2&1=n . It was revealed that the profile is unstable for 
both axisymmetric and non-axisymmetric modes. The mode 1=n  was observed to be most unstable for 
this particular case considered.  Both upstream and downstream moving disturbances have been observed 
as reverse flow exists in this flow. The vector plot of the disturbances showed the full shape and nature of 
the disturbances in the flow field. The predicted instability characteristics could explain the exact nature of 
visualized results of [2]. Wavelength of unstable disturbance from stability analysis and experimental 
observation of [2] matched well. The 3-D instability shows the observed helical nature of the flow. 
 

1. Introduction:  
Two types of unsteady viscous flow namely, zero and non-zero mean pulsatile flow and unsteady 
bluff body flow have received considerable attention in the literature. Pulsatile flow is important 
in the design of pumps and other process equipment. Blood flow in arteries and respiratory flow 
in trachea are also pulsatile in nature. Dynamic stall, related to unsteady boundary layer 
separation, is of importance in various aerodynamic applications including aircraft with high 
maneuverability, helicopter rotors, wind turbines, and jet engine compressor blades. A common 
feature in both these types of flows is the existence of inflection-point velocity profiles (often 
with reverse flow) that are unsteady [1-3]. 
 
Other than arterial hydrodynamics, pulsatile flow is also important in its application to MEMS 
microfluidic engineering applications. In many microfluidic devices that incorporate micro-scale 
pumping the flow is a pulsatile [4,5]. Flow pulsations provides a potential laminar mixing 
strategy for MEMS devices [6,7]. Our purpose in this paper is to understand the stability and 
transition to turbulence of such flows. 
 
The oscillating flow may be generated by an oscillating piston in a pipe [1-2, 8-11]. In all cases 
the velocity profile is unsteady, often with reverse flow. In spite of the vast amount of literature a 
number of features regarding the stability and transition of such flows are not fully explained. In 
the experiments of Das & Arakeri [2] it was observed through flow visualization that unsteady 
velocity profiles with reverse flow in a pipe becomes unstable and forms series of vortices (see 
figure 1). The picture was taken illuminating a diametric plane with a light sheet. The vortices 
observed, appears to be a helical vortex in figure1. Ring vortices were also observed in some 
cases [2]. The exact explanation of the above phenomena is absent in literature. There is a need to 
solve the complete three-dimensional linear instability problem in cylindrical co-ordinate to 
understand the exact nature of the transition process.  

mailto:das@iitk.ac.in


                           
Figure 1. Flow visualization pictures showing development of azimuthal instability during 
deceleration stage of case II of [2]: (a) t = 9:88 s, t*= 2:42, (b) t = 11:80 s, t*=  = 3:17. 
There is no satisfactory linear stability analysis for time dependent flows in cylindrical co-
ordinates with three-dimensional disturbances. Shen [12] has first carried out stability analysis for 
velocity profiles which are unsteady, but similar. Two common methods for stability analysis of 
unsteady flows have been the quasi-steady approximation and Floquet theory, which is only 
appropriate for periodic flows. The quasi-steady approximation explains observed instability in 
many unsteady situations [1-2, 13-15]. Direct numerical simulation [16] of oscillating pipe flow 
shows that infinitesimal disturbances evolve as would be predicted by quasi-steady stability 
analysis. Nonlinearity and secondary instability come into the picture only at later times and are 
essential to describe the final stages of transition.  

2. Present problem: 

In this paper complete three-dimensional linear instability analysis is carried out in cylindrical co-
ordinate to understand and explain some of the phenomena observed in [1-2]. Considering 
axisymmetric parallel flow as the basic flow (solution is available in [1, 2 & 17]), perturbation 
equations can be obtained for Navier-Stokes equations and continuity equation. These four 
perturbation equations are linearized and further simplified assuming exponential dependence of 
the perturbation quantities on axial and angular space coordinates and on time as done in [18]. 
Temporal analysis of linear stability is done in many ways and is available in the literature. Four 
simultaneous equations are solved in [19] to obtain the eigenvalues. The power-series method and 
also the step by step contour integration method were used where as in [19] the matrix eigenvalue 
calculation for the linear stability of Hagen Poiseuille flow is carried out. The results in [19] are 
again corrected and presented in [20]. 
 
Among other methods available in the literature is discussed in [21], where all the velocity 
components can be eliminated to obtain a homogeneous equation in terms of pressure. As an 
alternative to the pressure formulation, the radial vorticity and the radial velocity can be used 
which results in two coupled equations. In [22] the stability analysis is done using the Sexl 
equation where the variables are changed to obtain two coupled ordinary differential equations of 
six degree. 
 
In present work, the pressure and the axial component of velocity perturbation are eliminated to 
obtain two coupled equations with the highest degree as four for radial perturbation equation and 



that of azimuthal component as three. Therefore, we derived total seven boundary conditions and 
solved for the eigenvalue using matrix method after discretising by finite difference technique. 
The results have been validated with the available literature data [20, 23 & 24] for the parabolic 
case and for both axisymmetric and non-axisymmetric modes. Further, using this method quasi-
steady stability analysis is carried out for velocity profiles of different cases for flow, generated 
by trapezoidal piston motion [2]. 

3. Derivation of the Eigenvalue Problem: 
 

The disturbance stream-function is assumed to be of the following form … 

{ } ( ) ( ) ( ) ( ){ } [ ]θα inctzirprwrvrupwvu +−= )(exp,,,,,,    (1) 

Both axisymmetric and non-axisymmetric mode of instability analysis is carried out with the 
quasi-steady assumption. As n is the node of the disturbance in the θ-direction, putting n=0 in the 
solution will give the formulation for the axisymmetric part. The disturbance quantities are 
substituted in perturbed Navier-Stokes equations in cylindrical coordinates and obtained are the 
governing equations for linear stability analysis as given in Eq.(1-5) [18] and [25]. 
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4. z-momentum: 

 0)(Re)Re(1 2
2

2

=−′−⎥
⎦

⎤
⎢
⎣

⎡
−++−′+′′ pireWvwcWi

r
nw

r
w ααα   (5) 

Above ODE’S can be solved as an eigenvalue problem to obtain the linear instability 
characteristics of the velocity profiles. 

From the continuity equation, the expression for w is obtained as: 
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The above expression, Eq.8 can be used to determine w′  and w ′′  in terms of ,  which can be 
substituted in the z-momentum equation to obtain the expression of pressure, . With this 

expression, 

u v
p

p  and  can be eliminated from the r and θ-momentum equations (Eq.3 and Eq.4 
respectively). So that would give two coupled equations in u  and v . 

p′
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The two equations are discretized using the central finite difference and it is written in the form 

. Then they are solved for the eigenvalues of , for a particular value of [ ] [ ]( ) 0=
⎭
⎬
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⎩
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v
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and Re, using MATLAB. This is for the temporal stability analysis of the problem and one can go 
ahead in the same manner for the spatial stability analysis also. 

3.1. Boundary Conditions: 
To obtain the solution, the boundary conditions should be properly determined. In these two sets 
of equations  has the highest 4th derivative while v  has the highest 3rd derivative. Thus seven 
boundary conditions are required to solve these two coupled equations. Following are the 
boundary conditions given for different values of n . 
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(center-

line) 
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>2 
R=1 

(at wall) 0=u  0=v  0=′u     

Table 1.  Boundary conditions for perturbation velocities at wall and the centerline 
a. For n=0, the two equations decouple to give a fourth order equation in u  and a 

second order equation in v . So the boundary conditions given in the above table are 
enough. 

b. For n=1, the available boundary conditions are not enough. One more condition will 

be required and it is given in the form  when [25] 
1−∝ nru 0lim →r

4. Validation: 
The results are obtained in the form of eigenvalues and eigenvectors for different α  and different 
Reynolds number on temporal stability analysis. For the case of axisymmetric perturbation, the 
plot of imaginary part of eigenvalue versus the real part for 1=α  and  for pipe-
parabolic flow is represented. This gives three distinct families of eigenvalues which exhibit a Y-

shaped pattern in the -plane. This can be directly compared with the results obtained in 
[23] using spectral method and also the results available of [24], where the asymptotic approach 
is followed. 
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Fig.2 real vs imaginary part of eigenvalues for 1=α &  5000Re =

In the report of [26], the less stable modes for 1=α  and 3000Re =  of pipe-parabolic flow for 
different (azimuthal modes), i.e. both axisymmetric and non-axisymmetric cases have been 
presented. So, the eigenvalues for pipe parabolic flow for the same 

n
α  and Reynolds number have 



been calculated and have compared with the first few eigenvalues given in that paper. This 
validates our approach for the solution. 

Meseguer & Trefethen (2003) Our Solution n creal cimaginary creal cimaginary
0.9114655676 -0.0412756446 0.9111601994 -0.0414589291 
0.3709350926 -0.0616190180 0.3709315590 -0.0616170543 
0.9582055429 -0.0883460251 0.9579140577 -0.0882260328 1 

0.8547888174 -0.0888701566 0.8544419785 -0.0890151521 
0.8882976587 -0.0602856895 0.8853215894 -0.0617827903 
0.3525549270 -0.0878989803 0.3525437419 -0.0878832734 
0.8328933609 -0.1088383407 0.8297223598 -0.1096865226 2 

0.9394972195 -0.1120016161 0.9367328226 -0.1112532186 
0.8643639210 -0.0832539769 0.8643760018 -0.0833083876 
0.3464019533 -0.1057084073 0.3463783096 -0.1056676461 
0.2149198697 -0.1168779213 0.2148760543 -0.1169101726 3 

0.8097468023 -0.1323924331 0.8098003259 -0.1325486670 

Table. 2 Four most unstable eigenvalues for 1=α  and  3000Re =

5. Results and Discussions 

In this section, an inflectional velocity profile is considered and the neutral stability curve is 
obtained for the same. The velocity profile considered here is one from the solutions obtained by 
Das & Arakeri (2000) for the flow created in a pipe by trapezoidal piston motion. After the piston 
has been stopped, the inflectional velocity profile is analyzed to obtain the range of α  for a given 
Reynolds number for which the flow is unstable and the value of α  for which the disturbance 
grows at the maximum rate. The aim is to predict the wave number and the growth-rate of 
disturbances that that will dominate the flow later on. Here, we have obtained the neutral stability 
curve for n 0, 1 and 2. For the larger n , the dissipation effect will be large enough to cause the 
flow be more stable for that mode. So, modes from higher  are not considered. In Fig.3 the plot 
of velocity profile is presented which has been used for the stability analysis. For this profile, the 
neutral stability curve has been obtained for 

=
n

=n 0, 1, 2. 
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Fig. 3.  Velocity Distribution that is used for stability analysis 

For this flow, the parameter are given as follows (caseII of [2]: 42.00 =t , , , 

 &  

68.31 =t 04.42 =t
24.6=pt 5.2036Re = 1591.0=pU 00 t−  is time for which piston accelerates linearly, 

is time for which piston moves constantly 10 tt − 21 tt −  is time for which piston decelerates to 



zero and is  time when a perceptible wave appears in pipe And the profile is obtained at pt

( )22 4
1 tttt p −+=

.  
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Fig. 4 Contour of real and imaginary part of the most unstable eigenvalue for n=0 and  1=n

In Fig.4 & 5 the contours for  and  for ic rc 2&1,0=n  respectively are presented. Contours of 

 and  values shows that the critical Reynolds number for this curve is approximately 395 for ic rc
3=α  and . Here, 1=n α  is non-dimensionalized with respect to radius of the pipe. In fig 6 all 

three neutral curves are presented. We observe that n=1 mode is most unstable. This we expect 
that the nature of disturbance will be helical as seen in figure 1. For comparison with 

experimental result of Das & Arakeri (1998), α  is rewritten as δ
α

, where δ  is the average 

boundary layer thickness over time  to t . With this non-dimensionalization the value of 1t

22.3≈
δ
λ

. Thus it matches with the wavelength observed in experiment the value of which is 
approximately 3.0. 
 

-0.07 -0.07 -0.07

-0.06
-0.06

-0.06
-0.06

-0.06

-0.05

-0.05

-0.05

-0.05

-0.05

-0.04

-0.04

-0.04

-0.03

-0
.04

-0.04

-0.04

-0.04
-0.04

-0.02

-0
.0

2

-0.02

-0.02
-0.02

0

0

0

0

0

0.02

0.02

Reynolds number (Re)

al
ph

a 
( α

)

Neutral Stability Curve for n=2

300 400 500 600 700 800 900
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
cr

ci

 
Fig. 5 Contour of real and imaginary part of the most unstable eigenvalue for  2=n



Reynolds number (Re)

al
ph

a 
( α

)

Neutral Stability Curve for n = 0, 1 & 2

200 300 400 500 600 700 800 900 1000 1100 1200
1

2

3

4

5

6

7

8
n=0
n=1
n=2

 
Fig. 6 Neutral Stability Curve for different  n

The eigenvector plots of the most unstable mode are presented for 3=α  and  and for 
both = 0 and = 1in fig 8 and 9. At a particular time the disturbances corresponding to the 
eigenvectors are also shown for n = 0 in fig 8. The vector plot is made in an axial and radial 
plane. For = 1, Fig.9 shows the nature of disturbances in 

800Re =
n n

n θ−r  plane. 
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Fig. 7. (a) Distribution of disturbance in angular-radial plane for(a) = 1, (b) n=0 for n 3=α  and 

800Re = . 
6. Conclusion: 
In this paper, 3-dimensional linear instability analysis has been carried out for unsteady pipe flow. 
The code has been validated for pipe parabolic flow by comparing with the data available in the 
literature. An inflectional velocity profile from [2] has been considered and the stability analysis 
of it has been carried out for  (axisymmetric mode) and 0=n 2&1=n . It was revealed that the 
profile is unstable for both axisymmetric and non-axisymmetric modes. 1=n  was observed to be 
most unstable for this particular case considered. For some Reynolds number, the real part of the 
most unstable eigenvalue was coming out to be negative. That referred to the fact that the 
disturbances moving in negative direction can grow as reverse flow exists in this flow. The vector 
plot of the disturbances showed the full shape and nature of the disturbances in the flow field. The 
predicted wavelength of unstable disturbance from stability analysis and experimental 
observation of [2] matched well. The 3-D instability shows the observed helical nature of the 
flow. 
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