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1. Introduction

Aeronautical aerodynamics is characterized by compressible flows at high Reynolds numbers, so
that the turbulence modeling is essential for predicting the flow field in agreement with experi-
ments. A standard approach for this purpose is based on the so-called Reynolds-averaged Navier-
Stokes (RANS) equations, where for compressible flow simple averages φ and mass weighted
averages φ̃ are distinguished. In particular the RANS momentum equation reads in tensor
notation
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where ρ is the density, Ui the velocity vector and p is the pressure.
Usually a Newtonian fluid is considered, assuming that the viscous stress tensor keeps its

mathematical form under averaging, i. e.
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where µ is the dynamic viscosity of the fluid and δij is the Kronecker tensor.

The term ∂(ρR̃ij)/∂xj represents the averaged contribution of the velocity fluctuations to
the mean flow momentum. Searching for a suitable representation of the so-called Reynolds
stress tensor ρR̃ij in terms of mean flow quantities, i. e. mean velocity derivatives, is therefore
the major focus of any RANS turbulence modelling.

The classical approach of tackling the turbulent closure problem is Boussinesq’s hypothesis,
assuming the same dependence of the Reynolds stresses on the traceless strain rate tensor as for
the viscous stresses of a Newtonian fluid:

ρR̃ij = −2µ(t)S̃∗
ij +

2

3
ρk̃δij . (3)

The proportionality coefficient µ(t) is called eddy viscosity, the respective model class eddy
viscosity turbulence models (EVM). Note, that the second term, involving the specific kinetic
turbulence energy k̃, is introduced for ensuring the correct trace of the Reynolds stress tensor.

There exist various types of EVMs. Algebraic or zero-equation EVMs like the Baldwin-
Lomax model [1] provide the eddy viscosity directly as function of the mean flow quantities.
These models usually rely strongly on the assumption of boundary layer flow and are no longer
considered sufficiently accurate.

One-equation models provide a single transport equation for some quantity from which the
eddy viscosity can be directly computed. In aeronautical appcliations models of the Spalart-
Allmaras type [18, 4] are particularly popular.
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Two-equation models usually provide one transport equation for the specific kinetic turbu-
lence energy k̃ and one for some length scale supplying variable like ε or ω. In aeronautical
applications k̃-ω models are favoured due to their superior performance in the near wall re-
gion [15]. Besides the original Wilcox model [21] the Shear Stress Transport (SST) model of
Menter [14] has shown of great value for aeronautical aerodynamics due to its higher sensitvity
to separation.

The major drawback of EVMs is, that the underlying assumption of the Boussinesq hypo-
thesis, the Reynolds stress tensor being parallel to the traceless strain rate tensor, does not hold
in reality. Furthermore close to walls EVMs yield isotropic normal Reynolds stresses, opposing
to what is observed in measurements. Therefore a couple of deficiencies are known to occur
with that type of models: The prediction of shock positions in transonic flows, the prediction of
separation regions and a too rapid dissipation of free vortices with two-equation models.

Besides with the SST model [14] some improvement might be gained by so-called Explicit
Algebraic Reynolds Stress Models (EARSM) like the one by Wallin and Johansson [20], partic-
ularly for the prediction of shock locations. However mathematically EARSMs take on the form
of a non-linear extension of Boussinesq’s hypothesis. Furthermore they rely on some background
transport equations used also for EVMs, so that the gain in accuracy is restricted.

In order to overcome the described lack of accuracy and also generality of EVMs, clearly
the Boussinesq hypothesis for the Reynolds stress tensor must be dropped. This is achieved by
so-called differential Reynolds stress models as presented in the following.

2. The SSG/LRR-ω Differential Reynolds Stress Turbulence Model

From the momentum equation a transport equation for the Reynolds stress tensor can be derived
(e. g. [22]), reading
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In this equation the production term
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is exact, while all other terms on the right hand side need modelling.
In the EU-project FLOMANIA [8] the SSG/LRR-ω model [5, 6] has been developed, trans-

fering the ideas of Menter’s SST model [14] into the framework of differential Reynolds stress
models. In particular the re-distribution term has been blended between the Launder-Reece-
Rodi model (LRR) [12] near walls, omitting the so-called wall-reflexion terms as suggested by
Wilcox [22], and the Speziale-Sarkar-Gatski model (SSG) [19] towards the far field. The resulting
re-distribution term can be written in the following unified notation

ρΠij = −

(
C1ρε +

1

2
C∗

1ρPkk

)
b̃ij

+C2ρε

(
b̃ik b̃kj −

1

3
b̃mnb̃mnδij

)
+
(
C3 − C∗

3

√

II
)

ρk̃S̃∗
ij

+C4ρk̃

(
b̃ikS̃

∗
jk + b̃jkS̃

∗
ik −

2

3
b̃mnS̃∗

mnδij

)
+ C5ρk̃

(
b̃ikW̃jk + b̃jkW̃ik

)
, (6)

which is formally identical with the SSG model and where b̃ij = R̃ij/(2k̃)−δij/3 is the anisotropy

tensor with its second invariant II = b̃ij b̃ij. Note, that the specific kinetic turbulence energy is

equivalent to half the trace of the specific Reynolds stress tensor, i. e. k̃ = 1/2R̃ii.
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Furthermore W̃ij = 1/2
(
∂Ũi/∂xj − ∂Ũj/∂xi

)
is the mean rotation tensor. Finally ε =

Cµk̃ω, where Cµ = 0.09, and ω is provided by Menter’s BSL equation [14] given further below.
The dissipation term is modeled by an isotropic tensor according to Rotta [17], reading

ρεij =
2

3
Cµρk̃ωδij. (7)

Simple gradient or generalized gradient diffusion models can be used alternatively, the latter
being used in the applications presented below. According to [3] it reads
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Finally the contribution due to mass fluctuations, ρMij , is neglected, as is common practice
for transonic flows.

The turbulence model is closed by Menter’s BSL ω-equation [14]
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The blending between the SSG and the LRR regions is obtained by blending all model

coefficients φ = Ci, C
∗
i , D̂, α, β, σ, σd between the corresponding values according to

φ = F1φ
(LRR) + (1 − F1) φ(SSG), (10)

where Menter’s blending function
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is used [14]. Note, that d denotes the distance from the nearest wall. The bounding values of
all closure coefficients for the SSG and LRR region are given in Table 1.

C1 C∗
1 C2 C3 C∗

3 C4 C5 D̂ α β σ σd

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4 2.44 0.44 0.0828 0.856 1.712

LRR 3.6 0 0 0.8 0 2.0 1.11 0.5 0.5556 0.075 0.5 0

Table 1: Bounding values of closure coefficients in the SSG and the LRR region of the combined
SSG/LRR-ω model.

3. Numerical Considerations

The numerical solution of the complete system of RANS equations, Reynolds stress transport
equations and the length scale equation is usually considered a major challenge [13, 22] which
has for a long time prevented the application of differential Reynolds stress models to industrial
problems. The reasons for the numerical difficulties can be found in the mathematical properties
of the equation system.
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As one can see from equations (1) to (3), the RANS momentum equation of an eddy viscosity
model can be written as
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Obviously the Boussinesq hypothesis can be viewed as a redefinition of the pressure p∗ = p +
2
3ρk̃ and the viscosity µ∗ = µ + µ(t). Whereas the pressure modification is usually considered
negligible, the eddy viscosity exceeds the molecular viscosity in a boundary layer by an order
of magnitude. Thus the eddy viscosity enhances the damping effect of the second derivatives of
the velocities and hence stabilizes the numerical solution.

In contrast, with a differential Reynolds stress model the RANS momentum equation keeps
the form of equation (1), where the Reynolds stresses enter via a divergence term. These first
derivatives tend to destabilize the numerical solution, while at the same time the stabilizing
influence of an eddy viscosity is missing. Furthermore the Reynolds stress transport equation
(4) is dominated by the source terms of the right hand side, where the abbreviating tensor
notation of equations (5) and (6) hides the true number of individual contributions. Therefore
it is virtually impossible to ad hoc separate stabilizing and destabilizing terms, as might be done
with one- or two-equation models.

For solving the problem, a detailed stability analysis of the complete system of RANS equa-
tions, Reynolds stress transport equations and the length scale equation has been carried out.

As it comes out, the spectral radius has to be altered to λmax =
√

ã2 + 2k̃, where ã denotes the
speed of sound. Furthermore the production and re-distribution terms (5) and (6) are carefully
linearized, in order to allow properly for an implicit integration scheme. As will be demonstrated
below, these measures indeed lead to a robust and efficient numerical method, that is applicable
to industrial aeronautical flow problems up to very high complexity.

4. Applications

In the EU-project FLOMANIA [8] the SSG/LRR-ω model has been implemented into DLR’s
block-structured flow solver FLOWer [16], that is based on a central second order space dis-
cretizaton with artificial dissipation [9] for the RANS equations and a first order upwind dis-
cretization for the turbulence equations.

The RANS equations are integrated by an explicit hybrid five-stage Runge-Kutta method,
that is accelerated by local time stepping, implicit residual smoothing and multigrid [10], whereas
the turbulence equations are integrated by a DDADI scheme on the finest grid level only, which
has proven to be robust with one- and two-equation models [7].

The implementation has been validated and the robustness of the numerical method has
been proven for a wide variety of test cases, some of which are presented in the following.

4..1. A-310 Airfoil in Landing Configuration

The A-310 airfoil in landing configuration consists of a main airfoil with deflected slat and flap
and has been used as test case in the EU-projects EUROLIFT and EUROLIFT-II investigating
high-lift flow. The computations were carried out at a subsonic Mach number of 0.22 and a
Reynolds number of 4.1 · 106, where the angle of attack was varied from the linear range until
lift break down. The grid consisted of 84000 cells distributed to 9 blocks, where the wall-normal
spacing satisfied the requirements for an appropriate resolution of the viscous sublayer.

As on can see in Figure 1, rather good agreement with the measured polar is achieved by
the SSG/LRR-ω model, while EVMs as the Menter SST show an overshoot and too massive lift
break down.
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4..2. LANN Wing

The LANN wing has been mainly used for studying unsteady flows [23], nevertheless there exist
a couple of steady measurements. Out of these the so-called test case CT9 (Mach number 0.82,
Reynolds number 7.17 · 106, incidence 2.60) is of particular interest, because of a shock induced
separation bubble extending over large parts of the wing span. The test case has been computed
on a grid, consisting of 4.3 · 103 cells, distributed to 4 blocks which is fine enough to achieve a
grid independent solution.

Figure 2 shows the pressure distributions at 47.5% span obtained with the SSG/LRR-ω
and two k-ω models. Clearly the Reynolds stress model solution is in fair agreement with the
experiments, whereas the Wilcox k-ω model predicts the shock too far downstream, because it
underestimates the separation. In contrast, the SST model overpredicts the separation bubble,
so that the pressure distribution is completely off.

4..3. DLR-F6 Generic Aircraft

The DLR-F6 generic aircraft model, depicted in Figure 3, has been selected as test case for
the 2nd AIAA Drag Prediction Workshop [11], where polar computations were carried out at a
Mach number of 0.75 and a Reynolds number of 3 · 106. Figure 4 shows the polar obtained on
the medium workshop grid, consisting of 8.3 · 106 cells distributed to 62 blocks. Note, that on
the abscissa the induced drag has been subtracted from the total drag (aspect ratio Λ = 9.5).
This test case not only demonstrates the applicability of the SSG/LRR-ω model to flows around
complex aircraft configurations, but also reveals its good predictive capabilities. Note, that
despite the observed deviations the agreement with the experiments is considered very good.

4..4. Dauphin Helicopter Fuselage

Another example, demonstrating the general applicability of differential Reynolds stress mod-
els to complex configurations, is the flow around the Dauphin helicopter fuselage depicted in
Figure 5. This test case has been investigated in the German/French cooperation CHANCE on
helicopter aerodynamics. ONERA has provided the grid, consisting of 6.8 · 106 cells distributed
to 97 blocks, where the flow is characterized by a Mach number of 0.0441, a Reynolds number
of 1.074 · 106 and an incidence of −30.

There are only few pressure measurements available for this flow which are difficult to in-
terpret. Therefore mainly the resolution of vortices occurring in the flow field has been studied.
Figure 6 shows a front view of the skin friction distribution and skin friction lines on the engine
casing and upper fuselage predicted wih the SSG/LRR-ω model. Compared to a two-equation
EVM (not presented here), the former resolves the formation of the vortex at the intersection
between the engine casing and the fuselage in much more detail and keeps it much stronger
downstream.

5. Conclusions

Appropriate turbulence modelling is essential for accurate predictions of complex aeronautical
flows. Eddy viscosity models, although currently widely used, suffer from the deficiencies of
the underlying Boussinesq hypothesis. This assumption is abandoned, when using differential
Reynolds stress turbulence models.

In the EU-project FLOMANIA the SSG/LRR-ω model has been developed, transferring
the ideas of Menter’s well-known SST model into the framework of Reynolds stress modelling.
No particular numerical difficulties are encountered with that model even in complex industrial
applications, when using a modified spectral radius and a careful linearization of the turbulence
equations in conjunction with an implicit integration scheme.
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The SSG/LRR-ω model performs well in various flow situations, including high-lift flow, flows
with three-dimensional shock induced separation and complex transonic and subsonic aircraft
flow. Depending on the test case and the reference model, the Reynolds stress model requires 1.5
to 2 times more CPU time per iteration and twice the memory of a two-equation eddy viscosity
model which is considered acceptable.

The SSG/LRR-ω model is currently transfered to DLR’s unstructured flow solver TAU, where
first results confirm the robustness of the numerical method observed with DLR’s structured
FLOWer code.

Figure 1: A-310 airfoil. Polar for landing con-
figuration.

Figure 2: LANN wing. Pressure distributions
for test case CT9 at 47.5% span.

Figure 3: DLR-F6 generic aircraft. Geometry
of the half model (2nd grid level).

Figure 4: DLR-F6 generic aircraft. Polar.
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Figure 5: Dauphin helicopter fuselage (full
model).

Figure 6: Dauphin, front view on engine cas-
ing/fuselage intersection. Skin friction predic-
tion by SSG/LRR-ω model.
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