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Paper presents results of theoretical and experimental investigations of the interaction 

process of three basic disturbance modes: acoustic, vortical and thermal, with the super-
sonic boundary layer (BL). Excitation of Tollmien-Schlichting (TS) waves in the super-
sonic BL by a pair of acoustic waves have been also studied. Receptivity coefficients 
and the range of wave parameters where generation of TS waves takes place are deter-
mined numerically. Problem for the disturbances of compressible BL caused by a small 
amplitude sinous surface roughness has been formulated mathematically and solved in 
the linear approximation. Nonlinear excitation of the instability waves by the sound 
wave and the surface roughness was investigated . It is established, that the maximal ex-
citation occurs when angle between the wave front of roughness and the mean flow di-
rection is equal to the Mach angle. Paper present results of detailed investigation of the 
interaction of vortical and thermal perturbations, generated by a turbulizer grid, with the 
supersonic BL. 

Nomenclature 
Amax = mass flux perturbation maximum 
R = Reynolds number 
Pr = Prandtl number 
M = Mach number 
χ = angle between the wave front and the plate leading edge 
c = phase speed 
α,β = streamwise and spanwise wave numbers 
ω = frequency 

*m  = mass flux relative amplitude 
K  = receptivity coefficient 
Umax = streamwise velocity disturbance maximum across the BL 
I  = growth rate 

1. Introduction 
Generation of initial unstable eigen disturbances inside the BL by external perturbations is an ac-

tual problem nowadays in the investigation of laminar-turbulent transition. Morkovin [1] was the first 
who has formulated this so called BL receptivity problem. Up to now a lot of experimental and theo-
retical works studying subsonic BL has been performed. The detailed review of these efforts can be 
found in [2,3]. The knowledge about the supersonic BL is much shorter at the present moment. The 
existing papers are devoted mainly to the investigation of external acoustic field interaction with a su-
personic BL on a smooth flat plate [4-6]. However an oncoming supersonic flow always comprises not 
only acoustic but also vortical and thermal (entropy) perturbations [7]. To the authors knowledge, 
there is a unique paper [8], where the interaction of such hydrodynamic waves with the supersonic BL 
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has been considered. This paper presents results concerning irrotational external disturbances with 
zero damping in the direction of the main flow. Present paper is devoted to the investigation of distur-
bance excitation in sub- and supersonic BL by external vortical and thermal waves. Interaction of the 
acoustic waves with the BL on the non-smooth surface has also been investigated and is reported here. 
 
2. Basic equations 

Parallel approximation.   In the parallel approximation flow parameters do not depend of the stream-
wise coordinate. We normalize the basic equations in a normal way, introducing characteristic length 
(Blasius scale) e e ex Ud m r*= , time scale , where eUt d= x *  – is the distance from the plate lead-
ing edge. Consider BL on a flat insulated plate. We introduce nondimensional viscosity, velocity and 
temperature by their values at BL outer edge: . To describe the disturbance flow-field we 

use linear approximation which is applicable for infinitesimal amplitudes of incident acoustic wave. 
Parameters of an external wave could be described by means of the vector 

e e eU Tm , ,

( ) ([1 1 1 1 1 1 0 100 exp )]x y z t i x z y tqQ e a b l w, , , = + + -
r r , where e  – is wave amplitude in the ac-

cepted normalization. Here the coordinate 1x  is directed parallel to the main flow, y  – is normal to the 
plate,  – in spanwise direction. Perturbations inside the BL could be expressed by  a relation 1z

( ) ([ 1 1expQ q y i x z ta b w= + )]- .
r r  Then the eight order system of governing equations under some 

additional assumptions could be reduced to the six-order system [1], the well-known Dunn-Lin system 
[8]:  

 1 6i
ij j

dq a q i j …
dy

= , , = , , .  (1) 

Here  and  – are disturbance velocities in 1q 3qa x – and – directions,  and  – are 
disturbance pressure and temperature;  and  – are the derivatives of  and  in y , 

y ( 2
4M cos qg c ) 5q

2q 6q 1q 5q g  – specific 
heat ratio, M  – is flow Mach number, a  – is speed of sound. Coefficients a  do not depend 

of , wave parameters 
eU a= / ij

y 2a a b= + 2 a and , the Reynolds number cw = cosR R= c  and the 
Mach number M M cos c= , where R U , χ = arctg (β/α)). The ordinary no-slip boundary 
conditions are applied on the surface  

/e e

0 .

3l- ,

d n=

  (2) ( ) ( ) ( )1 3 50 0 0q q q= = =

Outside of the BL the solution could be expressed as 
  (3) 0 1 2(0) (1) (2) (3)

1 2 3
i y i y y yq e I e I e I eq q q ql l l- -= + + +r r r r r

where ( )2 2
1 M 11 cl a» -- , ( ) 2

2 1i R cl a» - + a , ( ) 2
3 P r 1i R cl a= - a+

l
, 

, Pr – is the Prandtl number. The first term in (3) corresponds to external wave under the 
accepted normalization. The third and fourth terms in (3) describe thermal and vorticity perturbations. 
The second term describes the potential (acoustic) wave radiated from the BL. One have to consider 
the wave corresponding to , as reflected from the BL. System (1–3) allows calculate the reflection 
coefficient  of the wave as an eigen-value of the problem, while distribution of the disturbance am-
plitude inside the BL  could be determined as the eigen-function of the correspondent boundary 
value problem.  

0 kl = -

kl
kI

( )iq y
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Parabolized equations.   We consider flow of compressed gas in a BL on a flat plate. BL perturba-
tions we treat in the orthogonal coordinate system [10,13] ( , defined by stream surfaces of the
main flow in the shape: 

), , zx y
( ) (, expa i i z i t )x y a x b+ -% w

)
. Here  is a mean flow stream-function;

which is for the flat plate could be expressed as . We assume the gas as a perfect
with constant Prandtl number Pr. Using estimates by integer powers of the Reynolds number R and
omitting the terms of the order  relative to the principal terms of the linearized Navier-Stokes
equations in the critical layer [10,13], the following basic equations have been obtained:

. Here prime denotes the derivative in 

y
( 2Rx Ox -= +

2R-

( )A D¢= + ¶Z Z h ; ( ) /d d uh y= R , R x= ,

0, 5 R¶ = ¶ ¶ ;. ( )12 23, , , , , , ,p v u w h qt t=Z %% %% % % % % ,  - are square matrices composed of known func-

tions of . 

,A D

R, h ( ), , , ,p v u w h%% %% %  - are the disturbance amplitudes of pressure, normal-to-the-wall, stream-

wise and spanwise velocity components and enthalpy. Explicit expressions for (  could be)12 23, ,qt t% % %
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found in references [10,13]. 

)
For three-wave resonant interaction problem one can obtain parabolized system of equations like: 

(= +1 2KZ N Z Z
) ) ) )

, where , K N
)

 − are linear and nonlinear differential operators, 1, 2Z Z
) )

 ─ are solu-
tions of corresponding linear equations, and operator  A D Rhº ¶ ¶ = + ¶ ¶K . The structure of 

the nonlinear operator can be found in [14]. 
 
3. Interaction of acoustic waves with a boundary layer. 

Steady Mach waves and streamwise acoustic waves.   We have performed computations for differ-
ent Mach and Reynolds numbers as well as for different frequencies and wave vector orientation an-
gles of the incident acoustic wave relative to mean flow direction. The viscosity-temperature depend-
ency was assumed in the shape of Sutherland law. Constant Prandtl number  was chosen.  P r 0 72= .

First we present here the results for the case of BL interaction with steady 
periodic in streamwise and spanwise directions external perturbations. Such stationary inhomogenei-
ties of the external flow could be produced for example, by roughness on supersonic wind tunnel test 
section walls. These perturbations are also the Mach waves of zero frequency, capable to induce early 
transition in the model BL. Fig.1 presents computational results for  and parameters: 

1( 0c w= = )  potential 

cmax max( )A A=
2M = , , =0.2(1), 0.05(2), 0.03(3), 0.02(4)). One can easily see that for short-wave ex-

ternal perturbation ( ) interaction is stronger for two-dimensional (2D) waves (2D, c ), 
while for  3D disturbance induces inside the BL inhomogeneity with higher amplitude than 
at .  

500R = a
0 05a ³ . 0= o

0 03a £ .
0c ¹ o

For streamwise acoustic wave (SAW) (  1 0l = , 1 1/ Mc = - ) the separation onto the incident 
and reflected waves makes no sense, and therefore the indefiniteness in mathematical formulation of 
the problem (1–3) arises. Acoustic wave propagating along the model surface induces on the BL outer 
edge an additional flow with non-zero values of q d . Functions  are shown at Fig.2. The 
obtained results are similar to the case of steady inhomogeneities (compare with Fig.1), however 
maximal values of  are much higher (A  at ). Theoretical results for acoustic 
waves of non-zero incidence angle were presented earlier in [12]. 

( )3 1 max( )A c

A 2
max 10> 40c » o
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Diffraction of acoustic waves on plate leading edge.   Experiments [6] dealt with the interaction of 
the BL only with the diffraction wave. At large distances from plate leading edge the diffraction wave 
at BL outer edge becomes SAW with wave fronts inclined under different angles relative to the plate 
leading edge. Theory predicts that SAW is able to induce oscillations of high intensity inside the BL. 
Therefore small amplitude diffraction waves induce strong fluctuations inside the BL. This fact ex-
plains a strong influence of small-amplitude acoustic field acting in the vicinity of the leading edge 
onto the BL eigen unstable oscillations far downstream. Unfortunately it is not possible to measure the 
amplitude of the diffraction wave in the experiment because it is very small. This amplitude, therefore, 
should be assumed to be given for theoretical analysis and as a consequence it is not possible to make 
a direct comparison of theory with measurements. Therefore we have developed a procedure to calcu-
late the intensity of the diffraction wave from the known (for instance, measured) distribution of the 
mass flux oscillations in the sound field at the level of the plate upstream of it. 

In the experiment we have detected mass flux perturbations at a given frequency in the region 
 at . The acquired data were later processed by means of the Fourier transformation in 

time  and spanwise coordinate . Thus from measurement one can obtain the distribution 
0x < 0y =
t z

1( 0)m x yw b, , , = 0<
)

 at x , where  – is reduced frequency,  – is the wave number in -
direction. Mass flux produced by the acoustic wave is =r+, where r, u  are perturbations 
of density and streamwise velocity, which should satisfy to the wave equation. Using Fourier trans-
formation and the equations of gas dynamics, one can show, that mass flux fluctuations along the plate 
could be completely determined by means of the jump of normal-to-the-wall disturbance velocity at 
the plate leading edge. This normal disturbance velocity 

w b z
1(m t z x y, , ,

( )v x  upstream of the plate leading edge is 
determined by the distribution of the mass flux in the region  by the following relation: 0x <

0 2
02

1 1(0) 1 ( )
21

v a M
M

a= - -
-

%m . Mass flux at the plate surface as a function of x has the form: 

2
1 0 0

1( ) 1 ( ) ( ) exp(
2

m x a M m J ax i xb w a a, , = - - % 0 ) . Here 0J  – is the Bessel function of zero order, 

, . At large values of x mass 
flux oscillations could be described by the following identity: 

2 2
0 ( 1), 2 2 2 2

0 ( 1M Ma w= / - a a Mb= + / - 2 2 2 2 2
0 ( 1)a M Mw= / -)

2

1 0
1( ) ( )

2 2
M am x m

x
b w a

p
-, , » - ×%  , where 1 2[exp[ ( 4)] exp[ ( 4)]]i x i xa p a p× - / + + /

1 2 ( 1)M Ma w, = / m , cosM m c= a, . That means that intensity of the mass 
flux fluctuation is reducing with distance from the leading edge and is dependent of the orientation of 
the incident wave. The obtained formulas give the relations of the mass flux in the region  with 
its distribution at , that solves the problem fromulated in the beginning. Unfortunately theoreti-
cal results obtained here have not been compared with measurements up to now. Therefore it is diffi-
cult to confirm their reliability. 

1 2arctan( / )c b ,=

0x >
0x <
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Excitation of instability waves in the BL by a pair of acoustic waves.   Fig.3 demonstrates the 
process of excitation of Tollmien-Schlichting wave by a pair of sound waves, one of them is steady 
and another one is at the frequency  with wave number  
at 

6
1 4 10w w -= = × 5

1 2 2 10b b b -= + = ×
2M = . Curve 1 corresponds to  and  for different values of  of 

steady waves: solid lines are for , while dash-dotted lines represent 
, and dotted are for . For 

5
1 3,1 10a -= × 5

1 3.7 10b -= × 2a
5

2 2,1 10a -= - ×
5

2 1, 9 10a -= - × 5
2 1, 8 10a -= - × R  being high enough in the region 

 the excited oscillations do not actually differ from eigen unstable 
disturbance. Outside of this region Tollmien-Schlichting wave is not excited. Similar results obtained 
at  and , are presented by curves 2. Solid lines represent the value 

, dash-dotted lines are for , dotted - . 

5
2 1, 9 10 2,1 10a -= - × ¸ - × 5-

6
1 1, 01 10a -= × 6

1 5, 73 10b -= ×
6

2 9, 5 10a -= × 5
2 1,1 10a -= × 5

2 1, 2 10a -= ×

Acoustic excitation of instability waves in the BL on the plate with roughness.   Curves 1-3 at 
Fig.4 show profiles of the relative amplitudes of the mass flux * wm m m= % % , m u ur= +% % r%, com-

puted for R = 1000; α =3⋅10−5 (1 ⎯ 0.02M = ; χ = 0; 2 ⎯ 2M = ; χ = 0; 3 ⎯ 1M = ; χ = 0; 4 ⎯ 
2M = ; χ = 600). Subscript w stands here for values at the wall. One can easily see that at 1M =  

(ß=0) mass flux disturbances in the main part of the BL are in reality zero. Considerable damping of 
disturbances takes also place for oblique roughness waves at ⎯Μ = 1 (⎯Μ = Μ cos χ, χ = arctg (β/α)), 
(curve 4). 
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Efficiency of the excitation of unstable wave is based upon computations of the dependency of 
maximum across BL value of the mass flux A  from R. Growth rates 0, 5 lnI d , for М = 0,6; 

ω = 0,56⋅10

A dR=

%

-4; α1 = −0,7⋅10-4 and different values of α2 have been computed up to the end of the BL 
instability range. In the range α2 = (2,17 – 2.45)⋅10-4 disturbances at large enough R are identified as to 
be a Tollmien-Schlichting wave. Outside of this range the deviation becomes large, and after that the 
disturbances become stable. In computations the disturbance parameters were related to y p , while 
their real amplitudes – to δ

5Mw

wpsM. Here w yw= %d  − is the amplitude of the wave of roughness, while 
ps = ⏐p5⏐ and psM in the order R-1 correspond to amplitudes of pressure and velocity fluctuations in 
the incident acoustic wave. 

The parameter of the excited Tollmien-Schlichting wave which is not dependent of R is 
T SK A A= , where ⎯ATS − is a computed by stability theory relative (from the beginning of growth) 

amplitude.  defines the receptivity of the BL to external perturbations. Maximal receptivity coeffi-
cient (in the given range of α

K
2) is K = 94,2. In the reference system of the flow, positive values of θ1 

(in our case θ1 = 67,8о) correspond to positive components of the sound wave vector that means in the 
direction of plate motion, i.e. such sound waves are downstream (not upstream) propagating. Greatest 
values of K in the range of negative angles correspond to θ1 = −75,9о. Curves 1, 2 at Fig.5 represent K 
as a function of combination wave number α3 = α1 + α2 for a given direction of sound propagation. In 
both cases maximum is reached at values of α3 close to Tollmien-Schlichting wave numbers in the 
beginning of their growth range α∗ = 1,61⋅10-4. Curve 3 presents data of paper [15] for 0M = . The 
observed shift to higher α3 could be explained by higher values of α∗ = 1,73⋅10-4. At 0M =  it makes 
no difference in which direction the sound wave propagates – upstream or downstream. However al-
ready at 0.6M =  the maximal coefficients K for negative and positive values of the angle θ1 differs 
in more than 2 times. 

Computations have also been performed for oblique roughness waviness β2 = 4⋅10-5 и 2⋅10-5 at 
2M = ; ω =10-5. Excited disturbances are practically indistinguishable from Tollmien-Schlichting 

waves, starting from R , and they propagate under angles 622000»

>

о and 43о relative to main flow 
direction correspondingly. In the whole computations show that already at subsonic speed large 
enough the receptivity is strongly dependent on the sound propagation direction. At M  the insta-
bility could be excited by disturbances with wavelength much smaller than Tollmien-Schlichting 

1
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wavelength. Another important peculiarity of the supersonic flowing is that the maximal receptivity 
corresponds to the angle between the front of the roughness waviness and the direction of mean flow 
being equal to Mach angle. 

4. Interaction of the vorticity perturbations with the BL. 

The results obtained for external vorticity disturbances have been normalized by the velocity magni-
tude u= ( 2v%  + w̃2)1/2 near the turbulizer grid. The parameters of the problem are: αi , R, x0, where αi – is 
external disturbance damping rate along streamwise coordinate, x0 – nondimensional distance from the 
grid to plate leading edge, x - nondimensional distance from plate leading edge along main stream. 
Computations have been performed for the BL δ=η1=6 thick. Fig.6 presents streamwise disturbance 
velocity maxima  as function of the Reynolds number R at . Presented data were ob-
tained under the condition k=β/3: curve 1 – shows data of [16], curves 2,3- results of the present inves-
tigation (in local parallel approximation and by means of PSE correspondingly). Curve 4 demonstrates 
our results at k=β, corresponding to maximal values  as function of . Also at this diagram the 
symbol • depicts measured value taken from the paper [17], while symbol ♦ shows measurements of 
the paper [18]. The reasons of the discrepancy of our data with [16] are not clear up to now. However 
under the conditions  our results are in a complete agreement with theory [19], 
which should be applicable in this region. 

maxU ( 0M = )

b

maxU b

2R 1 Rb = =

Results for supersonic flow. The analysis shows that the dependency of  from the Reynolds 
number at  (for external vorticity perturbations) is very similar to the case of Mach number 

maxU
2M >

0M = . The low efficiency of the streamwise velocity generation takes place in the BL in compari-
son to the case of subsonic velocities, that is in a good agreement with conclusions of [9]. Computa-
tions show, that  is monotonously decreasing with the Mach number. This conclusion is demon-
strated at Fig.7 for , -α

maxU
600R = i=10-6, x0= 6.4·105 .  

Investigations presented in this paper have been performed under the financial support of the Rus-
sian Foundation for Basic Research (grant 05-01-00079-a). 
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