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1. Introduction

In this article, we simplify and improve the asymptotic analysis of the solutions of the Navier-
Stokes problem given in [8]. This problem is characterized by the presence of a small term which
corresponds to the inverse of Reynolds number Re very large for the Navier-Stokes equations
(Re >> 1). This small parameter is called the viscosity and denoted hereafter ε (ε = 1/Re).
Thus, when the viscosity ε goes to zero, a particular phenomenon named boundary layers occurs
in the interior or near the boundary of the domain considered for the Navier-Sotkes problem.
The comprehension of these boundary layers makes the subject of many scientific works. For
the mathematical point of view, see for example [4], [5], [6], [7], and [9] among many others.

We consider the Navier-Stokes equations in a channel Ω∞ = R2 × (0, h) with a permeable
boundary, making the boundaries z = 0, h, non-characteristic. More precisely we have





∂uε

∂t
− ε∆uε + (uε.∇) uε +∇pε = f, in Ω∞,

div uε = 0, in Ω∞,
uε = (0, 0,−U), on Γ∞,
uε is periodic in the x and y directions with periods L1, L2,
uε|t=0 = u0,

(1)

which is equivalent to





∂vε

∂t
− ε∆vε − UD3v

ε + (vε.∇) vε +∇pε = f, in Ω∞,

div vε = 0, in Ω∞,
vε = 0, on Γ∞,
vε is periodic in the x and y directions with periods L1, L2,
vε|t=0 = v0.

(2)

Here Γ∞ = ∂Ω∞ = R2 × {0, h} and we introduce also Ω and Γ :

Ω = (0, L1)× (0, L2)× (0, h), Γ = (0, L1)× (0, L2)× {0, h}.

We assume that f and u0 are given functions as regular as necessary in the channel Ω∞,
and that U is a given constant; at the price of long technicalities, we can also consider the case
where U is nonconstant everywhere.

The main objective of this work is to give a simple representation of the solution uε in some
sobolev spaces to be specified later on. Mathematically, this is equivalent to give an asymptotic
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expansion of vε when ε approches zero. Thus, firstly we must determine the limit solution and
then study the convergence between vε and its limit denoted by v0.
We recall here the limit problem which is the Euler problem and its solution v0 satisfies :





∂v0

∂t
− UD3v

0 + (v0.∇) v0 +∇p0 = f, in Ω∞,

div v0 = 0, in Ω∞,

v0
3 = 0, on Γ0,

v0 = 0, on Γh,

v0 is periodic in the x and y, directions with periods L1, L2,

v0|t=0 = v0.

(3)

It is obvious that we can not expect a convergence result between vε and v0 (in H1(Ω) for
example) and more precisely we are leading with a boundary layer problem close to some parts
of the boundary Γ. In order to understand this fact, we introduce a corrector term. The tech-
nique of correctors consists a fundamental tool in the theory of singular perturbations. See for
instance [6] and [1] for the definition and the approches related to the use of correctors. This
development can be extended to higher order in ε giving thus a complete asymptotic expansion.
This is the main objective of our work.

The article is organized as follows : in Section 2., we deal with the linearized Navier-Stokes
problem which will be useful to understand the nonlinear NS; we state and prove a convergence
result giving an asymptotic expansion of the solution at all the orders. The last section (Section
3.) is devoted to the study of the full NS problem for which a simple representation of its
solution is explicitly given. The proofs of our results are not given in details. For that purpose,
we address the reader to [3] where we can find these results and their complete proofs besides
other questions treated in this article.

2. The linear Navier-Stokes problem.

In this paragraph we study the linear NS problem. Besides its intrinsic interest, it will be helpful
for the derivation of the corrector in the (full) nonlinear NS problem. We note that even for the
linear NS problem (with characteristic boundary), the question of asymptotic analysis of the
solution is still open. This will be the object of a forthcoming work; see [2].

Let us recall now the system satisfied by the linear NS solution :




∂vε

∂t
− ε∆vε − UD3v

ε +∇pε = f, in Ω∞,

div vε = 0, in Ω∞,
vε = 0, on Γ∞,
vε is periodic in the x and y directions with periods L1, L2,

v0|t=0 = v0.

(4)

So, we have the following theorem :

Theorem 2..1 For each N ≥ 1, there exists C > 0 and for all k ∈ [0, N ] an explicit given

function θ
k,ε

such that :

‖vε −
N∑

k=0

εk(vk + θ
k,ε

+ εϕk)‖L∞(0,T ;L2(Ω)) ≤ C εN+1, (5)

∥∥vε −
N∑

k=0

εk(vk + θ
k,ε

+ εϕk)
∥∥

L2(0,T ;H1(Ω)) ≤ C εN+1/2, (6)
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where L2(Ω) = (L2(Ω))3, H1(Ω) = (H1(Ω))3, ϕk is a known function independent of ε and
C denotes a constant which depends on the data (and N) but not on ε. Here vk denotes the
solution of the limit problem (ε = 0) at order k.

Sketch of the Proof : Step 1. We first write the limit solution at order zero which is the
Euler problem solution. More precisely, it follows from this work that the limit solution, denoted
by v0, is solution (for all time) of the following system :





∂v0

∂t
− UD3v

0 +∇p0 = f, in Ω∞,

div v0 = 0, in Ω∞,

v0
3 = 0, on Γ0,

v0 = 0, on Γh,

v0 is periodic in the x and y, directions with periods L1, L2,

v0|t=0 = v0,

(7)

We note that the problem of existence and uniqueness of v0 is trivial.
Now, we observe the difference between the boundary values of vε

τ and v0
τ on the boundary Γ0

(see (4)3 and (7)3); they do not match. Hence, the corrector function recovering this variation
is given by the following system :





−εD2
3θ

0,ε − UD3θ
0,ε = 0, on (0, h),

div θ0,ε = 0, in Ω∞,

θ0,ε = −γ0v
0, on Γ0,

θ0,ε = 0, on Γh,

(8)

where D3 = ∂/∂z and γ0 (resp. γh) is the trace on z = 0 (respectively on z = h).
Our method here is quit different of that proposed in [8] since we give a simple representation of
the corrector and we extend the asymptotic expansion of the solution of the linear NS problem
at all orders. More precisely, we solve approximatively the system 8; we derive the tangential
component of θ0,ε and then by using the incompressibility condition we deduce its normal com-
ponent. In order to simplify as much as possible the expression of our corrector, we neglect all
the exponentially small terms (e.s.t.) in the expression of the corrector θ0,ε and we consider its

approximation, denoted θ
0,ε

, as the final form of our corrector.
This simplification in our method generates some losses in the desired boundary conditions.
Most of them are e.s.t.; they will be treated for all the orders together at the last step. But, the
boundary value of the normal component of the corrector θ0,ε is about O(ε). Hence, we treat
it differently by considering an additional corrector denoted by ϕ0,ε = εϕ0, which is solution of
the following system :





−∆ϕ0 +∇π0 = 0, in Ω∞,

div ϕ0 = 0, in Ω∞,

ϕ0
τ = 0, on Γ0 ∪ Γh,

ϕ0
n = −1

ε
γ0θ

0,ε
n =

1
U

divτ (γ0v
0
τ ), on Γ0,

ϕ0
n = 0, on Γh.

(9)

It is easy to obtain an approximation θ
0,ε

of the corrector θ0,ε as described previously. We have
thus :





θ0,ε = θ
0,ε

+ e.s.t .,

θ
0,ε
τ = a0

0e−Uz/ε, θ
0,ε
n = εb0

0e−Uz/ε,

a0
0 = −γ0v

0
τ , b0

0 = − 1
U

divτ (γ0v
0
τ ).

(10)
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Step 2. We proceed now with the construction of the corrector at order 1. we note that this
order is different of the zeroth order and the orders higher than 2. This disparity takes place in
the equation of the corrector and in the mode equation called also the Prandtl equation which
reads as follows :





∂v1

∂t
− UD3v

1 +∇p1 = −∂ϕ0

∂t
+ UD3ϕ

0 + ∆v0, in Ω∞,

div v1 = 0, in Ω∞,

v1
3 = 0, on Γ0,

v1 = 0, on Γh,

v1 is periodic in x and y.

(11)

The corrector θ1,ε satisfies the following system :




−εD2
3θ

1,ε − UD3θ
1,ε = −1

ε

∂θ
0,ε

∂t
, in Ω∞,

div θ1,ε = 0, in Ω∞,

θ1,ε = −v1, on Γ0 ∪ Γh.

(12)

Identically as in Step 1, an additional corrector ϕ1,ε = εϕ1 is introduced :





−∆ϕ1 +∇π1 = 0, in Ω,

div ϕ1 = 0, in Ω,

ϕ1
τ = 0, on Γ0 ∪ Γh,

ϕ1
n = −1

ε
γ0θ

1,ε
n = −b1

0, on Γ0,

ϕ1
n = 0, on Γh.

(13)

Step 3. At this stage, we consider N ≥ 2, and assume that all the orders preceding the order
N are treated. Hence, the equations of the mode vN have the following form :





∂vN

∂t
− UD3v

N +∇pN

= −∂ϕN−1

∂t
+ UD3ϕ

N−1 + ∆vN−1, in Ω,

div vN = 0, in Ω,

vN
3 = 0, on Γ0,

vN = 0, on Γh,

vN is periodic in x and y.

(14)

The final form of the corrector at this order is an approximation of θN,ε solution of




−εD2
3θ

N,ε
τ − UD3θ

N,ε
τ = −1

ε

{∂θ
N−1,ε
τ

∂t
−∆θ

N−2,ε
τ

}
, on (0, h),

div θN,ε = 0, in Ω,

θN,ε
τ = −vN

τ , on Γ0 ∪ Γh,

(15)

and the additional corrector ϕN,ε = εϕN verifies :




−∆ϕN +∇πN = 0, in Ω,

div ϕN = 0, in Ω,

ϕN
τ = 0, on Γ0 ∪ Γh,

ϕN
n = −1

ε
γ0θ

N,ε
n = −bN

0 , on Γ0,

ϕN
n = 0, on Γh.

(16)
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Finally, to conclude the estimates stated in Theorem 2..1 we introduce





wN,ε = vε −
N∑

k=0

εk(vk + θ
k,ε

+ ϕk,ε + ϕ̃k,ε),

pε =
N∑

k=0

εk(pk + πk,ε),

(17)

where ϕ̃k,ε is the corrector introduced to recover the e.s.t. losses. More precisely, it is defined
as follows :





−ε ∆ϕ̃N,ε +∇π̃N,ε = 0, in Ω,

div ϕ̃N,ε = 0, in Ω,

ϕ̃N,ε
τ = 0, on Γ0,

ϕ̃N,ε
τ = − 1

εN

N∑

k=0

εkγhθ
k,ε
τ = O(ε−2N e−Uh/ε), on Γh,

ϕ̃N,ε
n = 0, on Γ0,

ϕ̃N,ε
n = − 1

εN

N∑

k=0

εkγhθ
k,ε
n = O(ε−2N+1 e−Uh/ε), on Γh.

(18)

Then, we write the equations and boundary conditions verified by wN,ε and pε. Thereafter, we
multiply the equation of wN,ε by wN,ε and integrate over Ω, we obtain an energy inequality. By
the use of Hardy’s inequality, we deduce the desired result.

3. The full nonlinear Navier-Stokes problem.

Firstly, we note that the equations corresponding to this problem are given in the introduction
by the system (2).
In the same way, our aim here is to derive a complete asymptotic expansion of the solution vε

when ε → 0. We limit ourselves to the order 0 and 1. But, we believe that this work can be
extended to higher orders.

Hence, The second result in this article concerns the solution of the full nonlinear problem
(2) and more precisely we prove analogous results to the NS linear problem unless that the
convergence results are only valid until a fixed time :

Theorem 3..1 For vε solution of the Navier-Stokes problem (2), there exist a time T∗ > 0,

corrector functions θ
0,ε

and θ
1,ε

explicitly given, and a constant κ > 0 depending on the data but
not on ε, such that :

‖vε − (v0 + θ
0,ε

+ εϕ0)− ε(v1 + θ
1,ε

+ εϕ1)‖L∞(0,T∗; L2(Ω)) ≤ κ ε2, (19)
∥∥vε − (v0 + θ

0,ε
+ εϕ0)− ε(v1 + θ

1,ε
+ εϕ1)

∥∥
L2(0,T∗; H1(Ω)) ≤ κ ε3/2. (20)

Sketch of the Proof . Notice that the limit problem at order 0 is already given by (3) and
that all the additional correctors ϕN,ε keep the same definitions as in the linear case. Also, we
keep the corrector θ

0,ε
. But, the mode v1 and the corrector of order 1 are here different.
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Thus, the mode v1 is solution of




∂v1

∂t
− UD3v

1 + (v1.∇) v0 + (v0.∇) v1 +∇p1

= −∂ϕ0

∂t
+ UD3ϕ

0 − (v0.∇) ϕ0 − (ϕ0.∇) v0 + ∆v0, in Ω∞,

div v1 = 0, in Ω∞,

v1
3 = 0, on Γ0,

v1 = 0, on Γh,

v1 is periodic in the x and y, directions with periods L1, L2.

(21)

The corresponding corrector θ1,ε is chosen as the solution of :




−εD2
3θ

1,ε
τ − UD3θ

1,ε
τ = −1

ε
[
∂θ

0,ε
τ

∂t
+ (θ

0,ε
τ .∇τ ) v0

τ + (v0.∇)θ
0,ε
τ ]−

−ϕ0
3D3θ

0,ε
τ − 1

ε
(θ

0,ε
.∇) θ

0,ε
τ , in Ω∞,

div θ1,ε = 0, in Ω∞,

θ1,ε = −v1, on Γ0 ∪ Γh.

(22)

Contrary to the linear case, it is important here to emphasize that equation (22)1 is valid only for
the tangential component of the corrector θ1,ε. The equation satisfied by the normal component
θ1,ε
n is different and it will be derived later on. It will be slightly different than for the tangential

corrector equation since the nonlinear term is not divergence free.
Of course, we derive an approximation θ

1,ε
of θ1,ε up to e.s.t. which will be considered for the

final form of the corrector at order 1.
Now, the normal component of θ1,ε satisfies :





−εD2
3θ

1,ε
n −UD3θ

1,ε
n

=− 1
2U

divτ [((γ0v
0
τ ).∇τ )(γ0v

0
τ ) + divτ (γ0v

0
τ )γ0v

0
τ ] e−2Uz/ε+

+
1
ε

∫ z

h
e−Uζ/εdivτ

[
[Uϕ0

3γ0v
0
τ − ((γ0v

0
τ ).∇τ )v0

τ ](x, y, ζ)

]
dζ−

−1
ε

∂θ
0,ε
n

∂t
− 1

ε
v0
nD3θ

0,ε
,

| γ0θ
1,ε
n | ≤ c ε, on Γ0,

θ
1,ε
n = O(ε e−Uh/ε), on Γh.

(23)

Finally, to recover all the e.s.t. losses we introduce the global additional corrector ϕ̃1,ε. We
define then the following quantity :

w1,ε = vε − (v0 + θ
0,ε

+ εϕ0)− ε(v1 + θ
1,ε

+ ϕ̃1,ε),

for which we write the corresponding equations and boundary conditions, then multiply by itself
and integrate over Ω. After some calculations this yields :

d

dt
‖w1,ε‖2

L2(Ω) + ε‖∇w1,ε‖2
L2(Ω) ≤ ≤ κε4 + c ‖w1,ε‖2

L2(Ω), (24)

to which we apply the Gronwall inequality to conclude the proof of Theorem 3..1. ¤
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