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1. Introduction

Adjoint consistency - in addition to consistency - is the key requirement for discontinuous
Galerkin (DG) discretizations to be of optimal order in L2 as well as measured in terms of
target functionals. Furthermore, adjoint consistency is closely related to the smoothness of dis-
crete adjoint solutions. Whereas adjoint solutions based on the (non-adjoint-consistent) NIPG
method are discontinuous between element interfaces, where the jumps in the adjoint solutions
even persist as the mesh is refined, [4], the adjoint solutions based on the (adjoint-consistent)
SIPG method are essentially continuous, see also [3] for an appropriate modification of a specific
target functional for the Laplace equation. Furthermore, we also refer to the topic of asymptotic
adjoint consistency of stabilized finite element methods, [8]. Recently, [9] proposed a specific
discretization of the boundary fluxes and the target functional to recover an adjoint consistent
DG discretization of the compressible Euler equations.

In this paper, we provide a general framework for analyzing adjoint consistency of DG
discretizations and introduce so-called consistent modifications of target functionals in Section
2. Whereas the standard DG discretization of compressible Euler equations, e.g. [2, 6], is not
adjoint consistent, we use the outlined framework to derive the adjoint consistent discretization of
the compressible Euler equations proposed in [9]. Numerical experiments demonstrate the effect
of adjoint consistency on the smoothness of discrete adjoint solutions and on the a posteriori

error estimation on adaptively refined meshes. The developed framework is particularly useful
for deriving adjoint consistent discretizations of more complex nonlinear problems, see [5].

2. Consistency and adjoint consistency

On an bounded open domain Ω ⊂ R
d with boundary Γ we consider following nonlinear problem

Nu = 0 in Ω, Bu = g on Γ, (1)

where N is a nonlinear differential (and Fréchet-differentiable) operator and B is a (possibly
nonlinear) boundary operator. Let J(·) be a (nonlinear) target functional

J(u) =

∫

Ω
jΩ(u) dx +

∫

Γ
jΓ(u) ds, (2)

with Fréchet derivative

J ′[u](w) =

∫

Ω
j′Ω[u]w dx +

∫

Γ
j′Γ[u]w ds,

where jΩ(·) and jΓ(·) may be nonlinear with derivatives j′Ω and j′Γ. Here, ′ denotes the Fréchet
derivative and the square bracket [·] denotes the state about which linearization is performed.
Then, the adjoint problem to (1) is given by

(N ′[u])∗z = j′Ω[u] in Ω, (B′[u])∗z = j′Γ[u] on Γ, (3)
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where (N ′[u])∗ and (B′[u])∗ denote the adjoint operators to N ′[u] and B′[u], respectively. Let
Ω be subdivided into shape-regular meshes Th = {κ} consisting of elements κ and let Vh be a
discrete function space on Th. Finally, let problem (1) be discretized as follows: Find uh ∈ Vh

such that
N (uh,v) = 0 ∀v ∈ Vh, (4)

where N is a semi-linear form. Then, the discretization (4) is said to be consistent if the
solution u to the primal problem (1) satisfies following equation:

N (u,v) = 0 ∀v ∈ V. (5)

where V is an appropriately chosen function space. The discretization (4) is said to be adjoint
consistent if the exact solution z to the adjoint problem (3) satisfies following equation:

N ′[u](w, z) = J ′[u](w) ∀w ∈ V, (6)

where N ′[u] denotes the Fréchet derivative of N . In other words, a discretization is adjoint con-
sistent if the associated discrete adjoint problem is a consistent discretization of the continuous
adjoint problem. Finally, we note, that the definition in (6) of adjoint consistency for nonlinear
problems, see also [9], generalizes the definition of (linear) adjoint consistency in that for linear
problems and target functionals it reduces to the definition of (linear) adjoint consistency as
given in e.g. [1].

For analyzing consistency of a discontinuous Galerkin discretization, we rewrite (4) in fol-
lowing primal residual form: Find uh ∈ Vh such that

∑

κ∈Th

∫

κ

R(uh) · v dx +
∑

κ∈Th

∫

∂κ\Γ
r(uh) · v ds+

∫

Γ
rΓ(uh) · v ds = 0 ∀v ∈ Vh, (7)

where R(uh), r(uh) and rΓ(uh) denote the element, interior face and boundary residuals, re-
spectively. According to (5), the discretization is consistent if the exact solution u to (1) satisfies

∑

κ∈Th

∫

κ

R(u) · v dx +
∑

κ∈Th

∫

∂κ\Γ
r(u) · v ds+

∫

Γ
rΓ(u) · v ds = 0 ∀v ∈ V, (8)

which holds if u satisfies

R(u) = 0 in κ, κ ∈ Th, r(u) = 0 on ∂κ \ Γ, κ ∈ Th, rΓ(u) = 0 on Γ. (9)

To analyze adjoint consistency, we rewrite the discrete adjoint problem: Find zh ∈ Vh such that

N ′[uh](w, zh) = J ′[uh](w) ∀w ∈ Vh, (10)

in adjoint residual form: Find zh ∈ Vh such that

∑

κ∈Th

∫

κ

w ·R∗(zh) dx +
∑

κ∈Th

∫

∂κ\Γ
w · r∗(zh) ds+

∫

Γ
w · r∗Γ(zh) ds ∀w ∈ V, (11)

where R∗(zh), r∗(zh) and r∗Γ(zh) denote the element, interior face and boundary adjoint residu-
als, respectively. According to (6), the discretization (4) is adjoint consistent if the exact solution
z to (3) satisfies

∑

κ∈Th

∫

κ

w · R∗(z) dx +
∑

κ∈Th

∫

∂κ\Γ
w · r∗(z) ds+

∫

Γ
w · r∗Γ(z) ds ∀w ∈ V, (12)

which holds if z satisfies

R∗(z) = 0 in κ, κ ∈ Th, r∗(z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ(z) = 0 on Γ.
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Given a target functional of the form (2), we see that R∗(zh) depends on jΩ(·), and r∗Γ(zh)
depends on jΓ(·). For obtaining adjoint consistent discretizations, it is, in some cases, see e.g.
the following section, necessary to modify the target functional as follows

J̃(uh) = J(i(uh)), (13)

where i(·) is a vector-valued function and will be specified in Section 3. A modification of a
target functional is called consistent if J̃(u) = J(u) holds for the exact solution u to the primal
problem (1). Thereby, the modification in (13) is consistent if the exact solution u satifies
i(u) = u. Although the true value of the target functional is unchanged, the computed value
J(uh) of the target functional is modified, and more importantly, J̃ ′[uh] differs from J ′[uh]. This
modification can be used to recover an adjoint consistent discretization.

3. Adjoint consistency analysis for the discontinuous Galerkin discretization of the

compressible Euler equations

In this section we consider the two-dimensional stationary compressible Euler equations

∇ · F(u) = 0 in Ω ⊂ R
2, (14)

subject to various boundary conditions, e.g. slip-wall boundary conditions at solid wall bound-
aries ΓW ⊂ Γ = ∂Ω, where a vanishing normal velocity

Bu = v · n = v1n1 + v2n2 = 0 on ΓW (15)

is imposed. In two space–dimensions, the vector of conservative variables u and the convective
fluxes F(u) = (f1(u), f2(u)) are defined by

u =









ρ
ρv1
ρv2
ρE









, f1(u) =









ρv1
ρv2

1 + p
ρv1v2
ρHv1









and f2(u) =









ρv2
ρv1v2
ρv2

2 + p
ρHv2









,

where ρ, v = (v1, v2)
⊤, p and E denote the density, velocity vector, pressure and specific total

energy, respectively. Additionally, H is the total enthalpy given by H = E + p
ρ

= e+ 1
2v

2 + p
ρ
,

where e is the specific static internal energy, and the pressure is determined by the equation of
state of an ideal gas p = (γ − 1)ρe, where γ = cp/cv is the ratio of specific heat capacities at
constant pressure, cp, and constant volume, cv ; for dry air, γ = 1.4.

The most important target quantities in inviscid compressible flows are the pressure induced
drag and lift coefficients, cdp and clp, defined by

J(u) =

∫

Γ
j(u) ds =

1

C∞

∫

ΓW

pn · ψ ds, (16)

where j(u) = 1
C∞

pn ·ψ on ΓW and j(u) ≡ 0 elsewhere. Here, C∞ = 1
2γp∞M

2
∞ l̄ = 1

2γ
|v∞|2

c2
∞

p∞ l̄ =
1
2ρ∞|v∞|2 l̄, where M denotes the Mach number, c the sound speed defined by c2 = γp/ρ, l̄
denotes a reference length, and ψ is given by ψd = (cos(α), sin(α))⊤ or ψl = (− sin(α), cos(α))⊤

for the drag and lift coefficient, respectively. The subscripts ∞ indicate free-stream quantities.
In order to derive the continuous adjoint problem, we multiply the left hand side of (14) by

z, integrate by parts and linearize about u to obtain
(

∇ ·
(

F ′[u](w)
)

, z
)

Ω
= −

(

F ′[u](w),∇z
)

Ω
+

(

n · F ′[u](w), z
)

Γ
,

where F ′[u] denotes the Fréchet derivative of F with respect to u. Thereby, the variational
formulation of the continuous adjoint problem is given by: Find z such that

−
(

w,
(

F ′[u]
)⊤

∇z
)

Ω
+

(

w,
(

n · F ′[u]
)⊤

z
)

Γ
= J ′[u](w) ∀w,
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and the (continuous) adjoint solution z satisfies following problem in strong form

−
(

F ′[u]
)⊤

∇z = 0,
(

n · F ′[u]
)⊤

z = j′[u] on Γ. (17)

Using F(u) · n = p(0, n1, n2, 0)
⊤ on ΓW , and the definition of j(·) in (16) we obtain

p′[u](0, n1, n2, 0) · z =
1

C∞
p′[u]n · ψ on ΓW ,

which reduces to the boundary conditions of the adjoint compressible Euler equations,

(B′[u])∗z = n1z2 + n2z3 =
1

C∞
n · ψ on ΓW . (18)

Before introducing the DG discretization of (14) we define the finite element space V
p
h of

discontinuous piecewise vector-valued polynomial functions of degree p ≥ 0 by

V
p
h = {vh ∈ [L2(Ω)]4 :vh|κ ◦ σκ ∈ [Qp(κ̂)]4 if κ̂ is the unit hypercube, and

vh|κ ◦ σκ ∈ [Pp(κ̂)]4 if κ̂ is the unit simplex;κ ∈ Th},

where Qp := span {x̂α : 0 ≤ αi ≤ p, 0 ≤ i ≤ d} and Pp = span {x̂α : 0 ≤ |α| ≤ p}. On interior
edges e = ∂κ∩ ∂κ′ between two adjacent elements κ and κ′, by v±

κ (v± for short) we denote the
traces of v taken from within the interior of κ and κ′, respectively. Furthermore, we define the
jump of u by ⌊u⌋ = u+ − u−.

Then, the discontinuous Galerkin discretization of (14) is given by: Find uh ∈ V
p
h such that

N (uh,v) ≡ −

∫

Ω
F(uh) : ∇hv dx +

∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u
−
h ,n

+)v+ ds

+

∫

Γ
H̃(u+

h ,uΓ(u+
h ),n+)v+ ds = 0 ∀v ∈ V

p
h, (19)

where H and H̃ may be any Lipschitz continuous, consistent and conservative numerical flux
functions, see e.g. [6], approximating the normal flux, n · F(uh). H takes into account the
possible discontinuities of uh at element interfaces. On the boundary Γ, H̃ may depend on the
interior trace u+

h and a consistent boundary function uΓ(u+
h ). We note that H̃ may be different

from H. In fact, we will see below, that depending on the specific choice of H̃ the discontinuous
Galerkin discretization (19) is adjoint consistent or not.

Using integration by parts we obtain equation (7) where the primal residuals are given by

R(uh) = −∇ · F(uh) in κ, κ ∈ Th,

r(uh) = n · F(u+
h ) −H(u+

h ,u
−
h ,n

+) on ∂κ \ Γ, κ ∈ Th, (20)

rΓ(uh) = n · F(u+
h ) − H̃(u+

h ,uΓ(u+
h ),n+) on Γ.

Given the consistency of the numerical flux, H(w,w,n) = n · F(w), and the consistency of the
boundary function, i.e. uΓ(u) = u for the exact solution u to (14), we find that u satifies

R(u) = 0 in κ, κ ∈ Th, r(u) = 0 on ∂κ \ Γ, κ ∈ Th, rΓ(u) = 0 on Γ. (21)

We conclude that (19) is a consistent discretization of (14).
Given the target functional J(·) defined in (16) with Fréchet derivative, J ′[u](·), the discrete

adjoint problem is given by (10), where

N ′[uh](w, zh) ≡ −

∫

Ω

(

F ′[uh]w
)

: ∇hzh dx

+
∑

κ∈Th

∫

∂κ\Γ

(

H′
u

+(u+
h ,u

−
h ,n

+)w+ + H′
u
−(u+

h ,u
−
h ,n

+)w−
)

z+
h ds

+

∫

Γ

(

H̃′
u

+

(

u+
h ,uΓ(u+

h ),n+
)

+ H̃′
u
−

(

u+
h ,uΓ(u+

h ),n+
)

u′
Γ(u+

h )
)

w+z+
h ds. (22)
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Here v → H′
u

+(v+,v−,n) and v → H′
u
−
(v+,v−,n) denote the derivatives of the flux function

H(·, ·, ·) with respect to its first and second arguments, respectively. From the conservativity of
the numerical flux, H(v,w,n) = −H(w,v,−n), we conclude

H′
u
−(v,w,n) =

∂

∂w
H(v,w,n) = −

∂

∂w
H(w,v,−n) = −H′

u
+(w,v,−n).

Using this, the discrete adjoint problem (10) is rewritten as follows: Find zh ∈ V
p
h such that

−

∫

Ω

(

F ′[uh]w
)

: ∇hzh dx +
∑

κ∈Th

∫

∂κ\Γ
H′

u
+(u+

h ,u
−
h ,n

+)w+⌊zh⌋ ds

+

∫

Γ

(

H̃′
u

+

(

u+
h ,uΓ(u+

h ),n+
)

+ H̃′
u
−

(

u+
h ,uΓ(u+

h ),n+
)

u′
Γ(u+

h )
)

w+z+
h ds = J ′[uh](w),

for all w ∈ V
p
h. We see that the discrete adjoint solution zh must satisfy following problem

−(F ′[u])⊤∇z = 0 in κ, κ ∈ Th, (23)

subject to inter-element conditions

(

H′
u

+(u+,u−,n+)
)⊤

⌊z⌋ = 0 on ∂κ \ Γ, κ ∈ Th, (24)

and boundary conditions

(

H̃′
u

+ + H̃′
u
−u′

Γ(u)
)⊤

z = j′[u] on Γ, (25)

where H̃′
u

+ := H̃′
u

+(u+,uΓ(u+),n+) and H̃′
u
−

:= H̃′
u
−
(u+,uΓ(u+),n+).

Comparing the discrete adjoint boundary condition (25) and the continuous adjoint boundary
condition in (17), we see, that not all choices for H̃ give rise to an adjoint consistent discretization.
In fact, we require H̃ to have following properties: In order to incorporate boundary conditions
in the primal discretization (19), H̃ must depend on uΓ(u+), hence H̃′

u
−
6= 0. Furthermore, we

require H̃′
u

+ = 0, as otherwise the left hand side of (25) involves two summands which is in

contrast to (17). Finally, we recall that H̃ is consistent, H̃(v,v,n) = n · F(v), and conclude
that H̃ is given by H̃(u+

h ,uΓ(u+
h ),n) = n · F(uΓ(u+

h )). Employing a modified target functional

J̃(uh) = J(i(uh)), (25) yields

(

n ·
(

F ′[uΓ(u+
h )]

)

u′
Γ(u+

h )
)⊤

z = j′[i(u+
h )]i′(u+

h ). (26)

We find the modification i(uh) = uΓ(uh) which is consistent as i(u) = uΓ(u) = u holds for the
exact solution u. Thereby (26) reduces to

(

n · F ′[uΓ(u+
h )]

)⊤
z = j′[uΓ(u+

h )], (27)

which represents a discretization of the continuous adjoint boundary condition in (17). In order
to obtain a discretization of the adjoint boundary condition at solid wall boundaries (18), we
require BuΓ(u+

h ) = 0 on ΓW . This condition is satisfied by

uΓ(u) =









1 0 0 0
0 1 − n2

1 −n1n2 0
0 −n1n2 1 − n2

2 0
0 0 0 1









u on ΓW , (28)
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which originates from u by subtracting the normal velocity component of u, i.e. v = (v1, v2)
is replaced by vΓ = v − (v · n)n which ensures that the normal velocity component vanishes,
vΓ · n = 0. In summary, let uΓ be given by (28) and H̃ and J̃ be defined by

H̃(u+
h ,uΓ(u+

h ),n) = n · FΓ(u+
h ), J̃(uh) = JΓ(uh), (29)

where FΓ(u+
h ) := F(uΓ(u+

h )), JΓ(uh) := J(uΓ(uh)) and jΓ(uh) := j(uΓ(uh)), then the discrete
adjoint problem (30) is given by: Find zh ∈ V

p
h such that

−

∫

Ω

(

F ′[uh](w)
)

: ∇hzh dx +
∑

κ∈Th

∫

∂κ\Γ
H′

u
+(u+

h ,u
−
h ,n

+)w+[zh] ds

+

∫

Γ

(

n · F ′
Γ[u+

h ]
)

w+z+
h ds = J ′

Γ[uh](w), (30)

for all w ∈ V
p
h. Hence, we have (11) where the adjoint residuals are given by

R∗(zh) =(F ′[u])⊤∇zh in κ, κ ∈ Th,

r∗(zh) = −
(

H′
u

+(u+,u−,n+)
)⊤

⌊zh⌋ on ∂κ \ Γ, κ ∈ Th,

r∗Γ(zh) =
(

j′Γ[u+
h ] − n · F ′

Γ[u+
h ]

)⊤
z+

h on Γ. (31)

In particular, the discretization (19) together with (29) is adjoint consistent as the exact solution
z to the continuous adjoint problem (17) satifies

R∗(z) = 0 in κ, κ ∈ Th, r∗(z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ(z) = 0 on Γ. (32)

We note, that the standard discontinuous Galerkin discretizations of the compressible Euler
equations, see e.g. [2, 6, 7] among several others, take the same numerical flux function on
the boundary Γ as in the interior of the domain, and simply replace u−

h in H(u+
h ,u

−
h ,n) by

the boundary function uΓ(u+
h ) resulting in H̃(u+

h ,uΓ(u+
h ),n). Furthermore, the definition of

uΓ in e.g. [2, 6] based on vΓ = v − 2(v · n)n ensures a vanishing average normal velocity,
v̄ · n = 1

2 (v + vΓ) · n = 0. However, vΓ · n = 0 and BuΓ(u+
h ) = 0, as required in (27), is not

satisfied. Thereby, the discontinuous Galerkin discretization based on the standard choice of H̃
and uΓ is not adjoint consistent. In fact, already [6] noticed large gradients, i.e. an irregular
adjoint solution, near solid wall boundaries. Recently, in [9], it has been demonstrated for an
inviscid compressible flow over a bump, that a discretization based on (29) is adjoint consistent
and gives rise to a smooth adjoint solution.

4. Numerical experiments

In this section, we will demonstrate the effect on the smoothness of the discrete adjoint solution
when employing the adjoint consistent discretization based on (29) in comparison to the standard
(classical) approach of choosing H̃(u+

h ,uΓ(u+
h ),n) and an unmodified target functional J(uh).

Furthermore, we show the effect of the smoothness of the adjoint solution on the a posteriori
error estimation, see [6]. To this end, we revisit the M = 0.5, α = 0◦ inviscid flow around
the NACA0012 airfoil test case considered in [6]. In Figure 1 we compare the (primal) flow
solutions uh ∈ V1

h for the standard and the adjoint consistent DG discretizations and find no
visible difference. However, when comparing the adjoint solutions, see Figure 2, we notice that
the discrete adjoint solution to the standard DG discretization is irregular near and upstream
the airfoil. In contrast to that, the adjoint solution to the adjoint consistent discretization is
entirely smooth.

In Tables 1 and 2 we collect the data of a goal-oriented (adjoint-based) adaptive refinement
algorithm, [6], tailored to the accurate computation of the drag coefficient, cdp, for the standard

6
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Figure 1: M = 0.5, α = 0◦ inviscid flow around the NACA0012 airfoil: Mach isolines of the (pri-
mal) flow solution uh to (left) the standard and (right) the adjoint-consistent DG discretization.
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Figure 2: M = 0.5, α = 0◦ inviscid flow around the NACA0012 airfoil: z1 isolines of the discrete
adjoint solution zh to (left) the standard and (right) the adjoint-consistent DG discretization.

and the adjoint-consistent DG discretization, respectively. Here, we show the number of elements
and degrees of freedom, the true error J(u) − J(uh) based on the true value J(u) = 0, the
estimated error based on the approximate error representation η = −N (uh, zh) =

∑

κ ηκ with
zh ∈ V2

h, and the value η̃ =
∑

κ |ηκ| after applying the triangular inequality, together with the
corresponding effectivity indices θ1 = η/|J(u) − J(uh)| and θ2 = η̃/|J(u) − J(uh)|. Whereas
both histories of adaptively refined meshes are almost identical, we see that on all corresponding
meshes the adjoint-consistent discretization is by a factor of about 1.3-2.4 more accurate than
the standard DG discretization. Furthermore, we see that in both cases the error estimation
is quite accurate represented by the fact that θ1 is close to one. The error estimation for the
adjoint-consistent discretization is improved on coarser grid but slightly degraded on finer meshes
in comparison to the standard DG discretization. Finally, θ1 and θ2 in Table 1 differ, indicating
that the standard DG discretization causes an extensive error cancellation, which is also seen in
the irregular adjoint solution. In contrast to that the adjoint solution to the adjoint consistent
DG discretization is smooth, no cancellation effects occur and θ1 and θ2 in Table 2 coincide.

5. Concluding remarks

In this article, we have provided a general framework for analyzing adjoint consistency for DG
discretizations, introduced consistent modifications of target functionals, and derived an adjoint
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# cells # dofs J(u) − J(uh) η =
P

κ
ηκ θ1 η̃ =

P

κ
|ηκ| θ2

768 12288 -5.008e-03 -3.279e-03 0.65 7.290e-03 -1.46

1242 19872 -1.783e-03 -1.531e-03 0.86 3.875e-03 -2.17

2061 32976 -5.422e-04 -5.206e-04 0.96 1.382e-03 -2.5

3339 53424 -1.617e-04 -1.632e-04 1.01 4.792e-04 -2.96

5535 88560 -5.060e-05 -5.270e-05 1.04 1.639e-04 -3.24

Table 1: A posteriori error estimation for the standard DG discretization.

# cells # dofs J(u) − J(uh) η =
P

κ
ηκ θ1 η̃ =

P

κ
|ηκ| θ2

768 12288 -3.800e-03 -3.267e-03 0.86 3.270e-03 0.86

1242 19872 -8.833e-04 -8.352e-04 0.95 8.376e-04 0.95

2022 32352 -2.302e-04 -2.139e-04 0.93 2.150e-04 0.93

3327 53232 -8.405e-05 -7.607e-05 0.91 7.658e-05 0.91

5577 89232 -3.754e-05 -3.369e-05 0.90 3.392e-05 0.90

Table 2: A posteriori error estimation for the adjoint-consistent DG discretization.

consistent discontinuous Galerkin discretization for the compressible Euler equations originally
proposed in [9]. Numerical experiments have demonstrated the effect of adjoint consistency on
the smoothness of discrete adjoint solutions and on the a posteriori error estimation on locally
refined meshes. Future research [5] will be dedicated to the adjoint consistency analysis of the
interior penalty DG discretization of the compressible Navier-Stokes equations [7].
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