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1. Introduction

The use of stepped channels together with unsteady laminar flow provides a powerful mixing
mechanism that is particularly applicable to processes where the fluid contains delicate elements,
for example, applications involving mass transfer in blood or in a cell culture. In such channel
flows there are parameter regimes where the flow is described by the two-dimensional unsteady
Navier–Stokes equations. In [1], it was shown both experimentally and numerically that a
standing wave of separated regions develops behind a channel step during oscillatory flow and
the resulting flow was called a vortex wave. Included in the experimental observations were
vortex waves of extreme longitudinal extent and it was conjectured that the wave formed was,
under the correct parameter conditions, virtually undamped in the streamwise direction. We
have undertaken calculations in a slightly different parameter region and find that a sequence of
two events occurs: one is the formation of a vortex wave of finite extent (typically 3-5 vortices
alternating on the two walls behind the step), the second is a subsequent rapidly propagating
wave of regular but slightly smaller vortices. The speed of propagation of this second wave is
such that its resolution would have been beyond that of the apparatus used in [1]. In describing
these waves we shall refer to the vortex wave as a V-wave and the second wave as a KH-wave.
An example of the waves is illustrated in figure 1 where streamlines of a flow are shown for one
time in a cycle.

V-wave KH-wave

Figure 1: Instantaneous streamlines

In order to understand the genesis of KH-waves we have undertaken a study of starting
flows where the fluid is accelerated from rest to either steady channel flux or a flux with an
oscillatory component. The results presented below are for pure oscillatory flow. We test two
hypotheses: one that the KH-wave results from the evolution of an inviscid rotational core flow
that is described by an evolutionary linearised Kortweg-de Vries (KdV) equation. That this
might be a plausible hypothesis comes from results in [3] which show the evolution of waves in
solutions of an evolutionary KdV equation. The second hypothesis is that the KH-wave results
from an Orr-Sommerfeld type instability of nearly parallel but non-Poiseuille like flow. This has
lead us to study stability of a base flow u0(y) = (3/2)(1 − σy)(1 − y2), −1 ≤ y ≤ 1, where
σ = 0 is Poiseuille flow and σ > 1 indicates reverse flow near one wall.

The paper is divided into four sections. We briefly describe the numerical solution of the
unsteady Navier–Stokes equations and illustrate the development of a KH-wave. We integrate
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velocities in time to obtain particle paths and use these to help interpret the development of the
flows. We describe solutions of an evolutionary linearised KdV equation and their interpretation.
We consider solutions of an Orr-Sommerfeld equation for a parallel flow with a reverse flow region
and investigate unstable solutions to that system.

While much work is still in progress, the results we have indicate that it is unlikely that the
KH-wave is the result of evolution of an inviscid rotational core flow and instead, that it is more
likely the result of a linear instability mechanism described by an Orr–Sommerfeld equation but
with growth rates that are orders of magnitude greater than those for disturbances to symmetric
Poiseuille flow and with instability occuring at relatively low Reynolds number. The complexity
of unsteady flows calculated from the full Navier–Stokes equations is remarkable and it is likely
that flows in other parameter regimes may be dominated by entirely different mechanisms.

2. Numerical solution of the unsteady Navier–Stokes equations

We consider incompressible viscous flow in a two dimensional periodic channel with inlet width
h and a sudden expansion to a width 2h. We take h as a length scale, (x, y) as non-dimensional
coordinates with x as the channel streamwise direction and fluid kinematic viscosity ν. We let
L denote the non-dimensional length of one section of the channel and Lh the non-dimensional
length of the expansion. We show such a channel in figure 2 which has L = 96 and Lh = 84. It
is such large values of L and Lh that allow enough room for the fast waves to develop.
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Figure 2: Schematic of two-dimensional channel

If the flux per unit width of channel is Q(t̂/Ts) where t̂ is dimensional time and Ts a char-
acteristic timescale imposed by the oscillation, define non-dimensional time t = t̂/Ts. Assuming
that the peak flux is 2Qmax so that for some q(t), Q = 2Qmaxq(t), define a velocity scale
U0 = Qmax/h, a Reynolds number Re and a Strouhal number St as

Re =
U0h

ν
=
Qmax

ν
, St =

h

U0Ts

=
h2

QmaxTs

.

For oscillatory flow we have q(t) = sin 2πt, while if there is a mean flow Q̄ (typically < 1),
the ratio of mean forward flux to peak forward flux, a more general form of q(t) is q(t) =
Q̄+ (1 − Q̄) sin 2πt with Q̄ = 1 implying steady flow.

Since the flow field is two-dimensional we use the streamfunction-vorticity formulation, so
that the velocities in the (x, y) directions are u = (u, v), respectively. We define a streamfunction,
ψ, and vorticity, ω, by

u = ψy, v = −ψx, ω = −uy + vx = −∇2ψ. (1)

The Navier–Stokes momentum equations reduce to

St
∂ω

∂t
+ (u · ∇)ω =

1

Re
∇2ω. (2)

The boundary conditions are ψ = −q(t) on the lower wall, ψ = q(t) on the upper wall, and
∇ψ ·n = 0 on both walls, where n is normal to the walls. We impose a periodicity condition on
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Figure 3: Instantaneous streamlines showing the development of a vortex wave and subsequent
KH-waves. The flow is at St = 0.005 and Re = 200 (i) and Re = 600 (ii) at times t = 2.0 (a),
t = 2.1 (b), t = 2.2 (c), t = 2.3 (d), t = 2.4 (e) and t = 2.5 (f). Note that the channel spect
ratio is highly distorted with length L = 96 and maximum width 2.

both ψ and ω in the streamwise direction,

ψ(x, y, t) = ψ(x+ L, y, t), ω(x, y, t) = ω(x+ L, y, t).

The equations are integrated in time by using a semi-implicit Crank–Nicolson method with
standard central differences used for spatial derivatives.

We show in figure 3, the development of vortex waves and the fast waves by plotting the
streamlines of the computed fluid flow for Reynolds numbers 200 (i) and 600 (ii) and Strouhal
number St = 0.005 over half a period of oscillation. At t = 2.0 (a), the vortices from the
preceding half cycle are still present in the channel. As the flow is accelerated to t = 2.1 (b),
these effects are eroded and at t = 2.2 (c), long wavelength vortex waves, characterised by 3 or
4 counter-rotating vortices are seen to develop. When the flow starts to decelerate at t = 2.3,
(d) the flow at Re = 600 starts to shed shorter wavelength fast-moving waves which travel
far downstream (e). The flow at Re = 200 however, does not possess this structure and only
develops the long wavelength vortex waves. At t = 2.5, (f) the flux returns to zero and the
flow is a reflection of that at t = 2.0 (a). In subsequent half cycles, the patterns reverse and
the sequence of vortex wave formation and fast wave shedding repeats. In the case Re = 600,
St = 0.005, the Navier–Stokes solutions suggest that the wavelength of the KH-wave is 3-5
non-dimensional units and the frequency near 22 times that of the imposed oscillation.

3. Particle paths

In this section we investigate the movement of particles in oscillatory flow in a channel. The
time dependent solutions of the Navier–Stokes equations developed in the preceding section, will
be used to trace the trajectories of a cloud of particles which is initially uniformly distributed
in one section of the periodic channel. We denote by

(

x(n), y(n)
)

the position of particle n and
hence the equations of motion associated with the particle are

St x
(n)
t = u(x(n), y(n), t), St y

(n)
t = v(x(n), y(n), t), (3)
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where u and v are the time dependent velocity fields of the fluid given by the solution of the
Navier–Stokes equations. This assumes that the particles move in the fluid without affecting
the underlying flow and that they move as fluid particles. We denote by Np the total number of
particles and we have performed the computations for three values of Np, Np = 2880, Np = 11520
and Np = 46080. Our calculations show that the results obtained to not vary significantly with
the number of particles.

(a)

(b)

(c)

(d)

(e)

(f)

(i) Re = 200 (ii) Re = 600

Figure 4: Particle trajectories for flows at Re = 200 (i) and Re = 600 (ii) at Strouhal number
St = 0.005. The particles are initially uniformly distributed at t = 1 (a) and are subsequently
shown at t = 1.1 (b), t = 1.2 (c), t = 1.3 (d), and t = 1.4 (e).

We show in figure 4, the motion on particles. The figure shows a scatter plot of the positions
of the particles at different times during one cycle of oscillation. The figure shows particles for
the Reynolds numbers 200 (i) and 600 (ii) and Strouhal number St = 0.005 with the particles are
coloured black or gray depending on the half of the channel in which they are initially positioned.
The diagram illustrates the increase in transverse mixing at the higher Reynolds number.

As a measure of the scatter of the particles we compute the variance σ2
x of the longitudinal

position

σ2
x(t) =

1

Np − 1

Np
∑

i=1

(xi(t) − x̄(t))2,

where x̄(t) = 1
Np

∑Np

i=1 xi(t) is the mean of the distribution. We can therefore approximate

the instantaneous dispersion coefficient [4] D(t) = 1
2

dσ2
x

dt
and integrating this over one cycle of

oscillation gives a cycle dispersion coefficient

K =

∫

cycle
D(t)dt =

1

2
∆σ2

x

∣

∣

∣

∣

cycle

Figure 5 (i) shows the instantaneous variance σ2
x of the longitudinal position at St = 0.005

for Re = 200 and Re = 600. This shows an overall linear growth of the variance over time with
oscillations at the same frequency as the underlying flow. The dipersion coefficient over one
cycle K is shown in figure 5 (ii) as a function of the Reynolds number at St = 0.005. This shows
that the dispersion increases with Re until Re > 500 when it begins to decline thus revealing
that a rapid increase in mixing occurs when the KH-wave forms.
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Figure 5: (i) Instantaneous variance σ2
x(t) of the longitudinal position of particles at St = 0.005

and Re = 200 (solid) and Re = 600 (dashed). (ii) Cycle dispersion coefficient K as a function
of Re at St = 0.005 computed over the interval t ∈ [1, 2].

4. Inviscid Theory

We develop, in this section, an inviscid theory for the generation of the vortex wave. The work
described here follows closely, the theory developed by [2] and [3]. We consider a smooth-walled
channel in which the size of indentations is small compared to the width of the channel. We
suppose that the lower wall of the channel is fixed at y = −1 and that the upper wall is defined
by y = 1 + ǫF (x) where ǫ ≪ 1 and F is a smooth function. A long wavelength approximation
is made for the vortex wave and we introduce λ ≫ 1 as a streamwise lengthscale. With this
lengthscale the Navier–Stokes equations are transformed so that the streamwise momentum
equation is

λStut + uux + vuy = −px + λRe−1(uxx + λ−2uyy).

We assume a long wavelength approximations [1, 3]

u = U0(y, t) + ǫA(x, t)U0y(y, t) +O(ǫ2), p = P0(x, t) + ǫ2P (x, t) + ǫ2ρAxx

∫ y

−1
U2

0 dy+O(ǫ3),

where A(x, t) is as yet an unknown function that indicates the displacement of the centre stream-
lines. Substituting these expansions into the flow equations and imposing kinematic boundary
conditions of zero normal velocity at the walls, we get a linearised KdV equation for the stream-
line displacement A given by [3]

(γA)t − βAxxx = −εγ2(FFx + FAx + FxA), (4)

with γ(t) = U0y(−1, t) being the lower wall shear and β(t) =
∫ 1
−1 U

2
0 (y, t)dy.

The unperturbed flow upstream is taken to be unsteady Poiseuille-like flow given by u =
U0(y, t), v = 0 and p = P0(x, t) = λRe−1xp0(t) satisfying

ReSt U0t = −p0(t) + U0yy

with the boundary conditions U0(±1, t) = 0 and the flux condition
∫ +1
−1 U0(y, t)dy = 2q(t). Here

p0 is an unknown unsteady pressure gradient and is determined to satisfy the flux condition.
This equation is solved using a Chebyshev collocation method with Clenshaw-Curtis quadrature
used to approximate the flux conditions (see for example [5]).

With reference to figure 2 we solve (4) with the boundary function

F (x) = 0.5 {tanh[α(x− 6)] − tanh[α(x − 90)]} ,
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which approaches the desired sudden expansion as α → ∞. We use exponential time stepping
with periodic Fourier spectral discretisation for spatial derivatives as described in [6]. We solve
the equation for x in the interval [0, 128] which is longer than the channel used in the numerical
simulations but reduces the effect of the downstream boundary.

0 6 90 96 128

(a)

(b)

(c)

(d)

x

Figure 6: Displacement of centre streamlines A(x, t) given by the solution of (4). The plot of A
is given at t = 1 (a), t = 2 (b), t = 3 (c) and t = 4 (d).

Figure 6 shows the streamline displacement A as a function of x at the different times and
reveals that a wave develops at the expansion and is propagated downstream. There is another
smaller wave that develops at the point where the channel width returns to 1. The speed at
which these waves propagate is of order 1 and small compared to KH-waves which have speeds of
order St−1 calculated from solutions of the Navier–Stokes equations. The waves computed from
the KdV equation have wavelengths that are in the regime of the vortex waves that develops
before the flow begins to shed KH-waves.

5. Linear Stability Theory

In the long channel flows we are considering, there are significant regions of almost parallel flow
so it is natural to consider whether the genesis of the KH-wave can be explained by considering
stability of a parallel flow. There is a substantial classical theory that considers linear distur-
bances to a parallel flow although its application to symmetric channel flow has in recent times
been deprecated because predicted growth rates when the underlying flow is unstable are so
small that the time or travel distance needed for a disturbance to develop are unrealistically
long. The model we examine here takes the unperturbed flow to be

u0(y) =
3

2
(1 − σy)(1 − y2), −1 ≤ y ≤ 1, (5)

with wall shear at y = 1 given by u′(1) = 3(σ − 1) so that the profile can represent reverse
flow near one wall when σ > 1. The choice of profile is significant because it preserves the flux
through a channel as σ is varied. Example profiles are shown in figure 7.

When the parallel flow, (5), is perturbed as

u ∼ u0(y) + eik(x−ct)ψ′(y), v ∼ −ikeik(x−ct)ψ(y), (6)

the function ψ(y) of the perturbation satisfies an Orr-Sommerfeld equation

(uo − cSt)D2ψ − u′′0ψ =
1

ikRe
D4ψ, (7)
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Figure 7: Example parallel flow velocity profiles for σ = 0, 1.0, 1.5, 2.0

where D2 = d2/dy2 − k2 and ψ(±1) = ψ′(±1) = 0. It is well known that the symmetric case,
σ = 0, becomes unstable to small disturbances (ci = Im(c) > 0) at a critical value Re ≈ 3848
(because of scaling in (5), value is 2/3 of 5772) but also that at Reynolds numbers above
this critical value, the amplification of disturbances is minute, for example at Re = 4000, the
maximum amplification per cycle of the disturbance is 1.0156, implying near 148 cycles for a
disturbance to grow by one order of magnitude. However, it is not generally appreciated that the
symmetric case is in a sense an anomalous case, and that when the parallel flow is asymmetric,
the predictions of linear stability theory are much different. In figure 8 the critical reynolds
number for loss of stability is shown as the asymmetry parameter σ is varied. For small values
of σ the critical Reynolds number increases but for values where reverse flow exists at one wall,
the critical Reynolds number decreases to less than 100.
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Figure 8: Critical Reynolds number for instability as the asymmetry parameter σ is varied.

In order to compare the predictions to computed Navier–Stokes flows it is useful to observe
that the disturbance is essentially like

ekciteik(x−crt),

so that the wavelength of a disturbance is λ = 2π/k, the frequency of a disturbance is Ω =
kcr/2πSt and the amplification per cycle, denoted ζ, is ζ = exp(2πci/cr). At Re = 600 and
σ = 1.5, the maximum growth per cycle is 3 and an order of magnitude growth occurs in only
a few cycles. The growth rate is even larger for higher values of σ, see figure 9 so that near
σ = 2, an order of magnitude growth occurs in only one cycle. Furthermore, the frequency of
disturbances is very high, for example in a periodic flow with Re = 600, St = 0.005, σ = 2, Orr-
Sommerfeld solutions predict the frequency of a disturbance to be around 19 times the imposed
oscillatory frequency and a non-dimensional wavelength near 6.

6. Discussion

The KH-wave illustrated above is, we believe, a previously unreported flow pattern associated
with unsteady flow through channels. Our work so far tends to exclude modelling the wave
as the result of a long wave-length disturbance to a rotational core flow. Our preliminary
results when modelling the wave using linear stability theory show some correspondence but
are not conclusive. Computations of the Navier–Stokes equations at Re = 600, St = 0.005
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Figure 9: (i) Contours of Stci as σ and k are varied. The flow is unstable where ci > 0.
The dashed line shows values of wavenumber k where ci is maximum for fixed σ. (ii) Real and
Imaginary parts of maximum eigenvalue Stc and corresponding growth per cycle, ζ, for Re = 600
as σ is varied.

indicate the KH-wave has approximate wavelength 3-5 and frequency around 22 the imposed
frequency whereas the Orr-Sommerfeld prediction for σ = 2 is wavelength 6 and frequency
multiple 19. Of course the Navier–Stokes solutions are for an evolving flow so perhaps this
degree of correspondence is the best that will emerge. In addition, studying the distribution of
vorticity for the Navier–Stokes solutions suggest that the emergence of this fast travelling wave
also follows a Kelvin-Helmholz roll instability of the vorticity layer between vortices near a wall
and the main flow but there are still questions as to why such an instability occurs near specific
vortices and not near all.
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