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1. Introduction

In the case of boundary value problems for elliptic convection-diffusion equations, the order of
the ε-uniform convergence of well known special methods based on classical grid approxima-
tions does not exceed 1. To improve accuracy of discrete solutions for regular boundary value
problems, the Richardson method (see, e.g., [1] and also the bibliography therein) turned out to
be very effective. The same method was successfully applied for improvement of the ε-uniform
convergence order of solutions for linear singularly perturbed boundary value problems (see, e.g.,
[2]–[5] and also the bibliography therein). Using new approaches based on the Richardson tech-
nique, ε-uniformly convergent finite difference schemes with improved accuracy were constructed
in the case of the Dirichlet problem for quasilinear singularly perturbed equations of parabolic
type [7] and elliptic type [6]) (reaction-diffusion on a strip).

In the present paper we study a mixed boundary value problem for the quasilinear singularly
perturbed elliptic convection-diffusion equation on a vertical strip. The singularly perturbed third

kind boundary condition admitting both Dirichlet and Neumann conditions is given on that part
of the domain boundary in a neighbourhood of which a boundary layer appears. For such a
problem, solutions of difference schemes constructed on the basis of classical approximations,
in general, are not ε-uniformly bounded. We construct a base (nonlinear) scheme on a piece-
wise uniform mesh condensing in the boundary layer that converges ε-uniformly at the rate
O

(

N−1
1 lnN1 +N−1

2

)

, where N1 +1 and N2 +1 are the number of nodes in meshes with respect
to the x1-axis and on a unit interval on the x2-axis, respectively. On the basis of this nonlinear
base scheme, using the Richardson technique, we construct a linearized iterative scheme con-
vergent ε-uniformly at the rate O

(

N−2
1 ln2N1 +N−2

2 + qt
)

, here t is the number of iterations,
q < 1. The use of upper and lower solutions of the iterative Richardson scheme as a stop-
ping criterion allows us during the computational process to define a current iteration under
which the same ε-uniform accuracy of the solution is achieved as for the nonlinear Richardson
scheme O

(

N−2
1 ln2N1 +N−2

2

)

.

2. Problem formulation

On a vertical strip D
D = {x : 0 < x1 < d, x2 ∈ IR}, (2.1)

we consider the mixed boundary value problem for the quasilinear singularly perturbed elliptic
convection-diffusion equation in that case, when the one of the boundary conditions is of the
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04–01–89007–NWO a), by the Dutch Research Organisation NWO (grant No. 047.016.008), and also the Boole
Centre for Research in Informatics at the National University of Ireland, Cork.
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first kind and the second one is of the third kind that is singularly perturbed, 1

L(2.2)

(

u(x)
)

≡ L2
(2.2) u(x) − f

(

x, u(x)
)

= 0, x ∈ D, (2.2)

l u(x) = ψ(x), x ∈ Γ1, u(x) = ϕ(x), x ∈ Γ2.

Here Γ = D \D, Γ = Γ1 ∪ Γ2, Γ1 and Γ2 are the left and right parts of the boundary Γ,

L2
(2.2) = L

(2)
(2.2) + L

(1)
(2.2), L

(2)
(2.2) ≡ ε

∑

s=1,2

as(x)
∂2

∂x2
s

, L
(1)
(2.2) ≡

∑

s=1,2

bs(x)
∂

∂xs

− c(x), x ∈ D,

l ≡ −εαR(x)
∂

∂x1
+ βR(x), x ∈ Γ1,

the functions as(x), bs(x), c(x), f(x, u) and αR(x), βR(x), ψ(x), ϕ(x) are assumed to be suffi-
ciently smooth on D, D × IR Γ1, Γ2 respectively, moreover,2

a0 ≤ as(x) ≤ a0, b0 ≤ bs(x) ≤ b0, s = 1, 2, |c(x)| ≤ c0, x ∈ D; (2.3a)

|f(x, u)| ≤M, c1 ≤ c(x) +
∂

∂u
f(x, u) ≤ c1, (x, u) ∈ D × IR;

0 ≤ αR(x), βR(x) ≤M, αR(x) + βR(x) ≥ m, |ψ(x)| ≤M, x ∈ Γ1;

|ϕ(x)| ≤M, x ∈ Γ2; a0, b0, c1 > 0;

the perturbation parameter ε takes arbitrary values in the half-open interval (0, 1].
For αR(x) = 0, x ∈ Γ1 problem (2.2), (2.1) is a Dirichlet problem; for βR(x) = 0, x ∈ Γ1 is

a mixed problem with Neumann conditions on the set Γ1. For simplicity, we assume that the
following condition is satisfied

either αR(x) = 0, or αR(x) ≥ m, x ∈ Γ1. (2.3b)

When the parameter ε tends to zero, a boundary layer appears in a neighbourhood of the set
Γ1

(

the part of the boundary Γ, through which characteristics of the reduced equation passing
through points x ∈ D, leave the set D

)

.
Our aim is for the boundary value problem (2.2), (2.1) with using a Richardson technique,

to construct a difference scheme convergent ε-uniformly with the accuracy order more than one.

3. Base scheme for problem (2.2), (2.1)

We give a-priori estimates of solutions and derivatives for boundary value problem (2.2), (2.1).
We represent the solution of the problem as the sum of functions

u(x) = U(x) + V (x), x ∈ D, (3.1)

where U(x) and V (x) are the regular and singular parts of the solution.
For U(x), V (x), using the technique from [6, 7], we obtain the estimates

∣

∣

∣

∣

∣

∂k

∂xk1
1 ∂x

k2
2

U(x)

∣

∣

∣

∣

∣

≤M [1 + εn+1−k], (3.2a)

∣

∣

∣

∣

∣

∂k

∂xk1
1 ∂x

k2
2

V (x)

∣

∣

∣

∣

∣

≤M [ε−k1 + ε1−k] exp(−mε−1 x1), x ∈ D, k ≤ K, (3.2b)

1 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that these operators (constants, grids)
are introduced in formula (j.k).

2 Throughout this paper, M, Mi (or m) denote sufficiently large (small) positive constants that do not depend
on ε and on the discretization parameters.
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where m is an arbitrary number in the interval (0,m0), m0 = minD [a−1
1 (x)b1(x)]; K = n + 2

for sufficient smoothness of the data of boundary value problem (2.2), (2.1).

Theorem 1 Let the data of the boundary value problem (2.2), (2.1) satisfy the condition

as, bs, c ∈ C3n+2+α(D), f ∈ C3n+2+α(D × IR), αR, βR, ψ ∈ Cn+2+α(Γ1), ϕ ∈ C3n+2+α(Γ2),
s = 1, 2, n ≥ 1, α > 0. Then for the solution of the boundary value problem and its component

in the representation (3.1) the estimates (3.2), where K = n+ 2, are satisfied.

First we give ε-uniformly convergent finite difference scheme constructing on the base of
classical approximation of problem (2.2), (2.1). We will use the solutions of the base scheme for
construction of discrete solutions with improved accuracy order.

On the set D we introduce the rectangular mesh

Dh = ω1 × ω2, (3.3)

where ω1 and ω2 are arbitrary, in general, nonuniform meshes on the interval [0, d] and at the
x2-axis respectively. Let hi

s = xi+1
s − xi

s, x
i
s, x

i+1
s ∈ ω1 for s = 1 and xi

s, x
i+1
s ∈ ω2 for s = 2;

let hs = maxi h
i
s, h = maxs hs. Assume that h ≤ M N−1, where N = min[N1,N2]; N1 + 1 and

N2 + 1 are the number of nodes in the mesh ω1 and the minimal number of nodes in the mesh
ω2 on a unit interval.

Problem (2.2), (2.1) is approximated by the finite difference scheme

Λ
(

z(x)
)

≡ Λ2 z(x) − f(x, z(x)) = 0, x ∈ Dh, (3.4)

λ z(x) = ψ(x), x ∈ Γ1h. z(x) = ϕ(x), x ∈ Γ2h.

Here Dh = D
⋂

Dh, Γih = Γi

⋂

Dh, i = 1, 2,

Λ2 z(x) ≡

{

ε
∑

s=1,2

as(x) δxscxs +
∑

s=1,2

bs(x) δxs − c(x)

}

z(x), x ∈ Dh,

λ z(x) ≡
{

−εαR(x) δx1 + βR(x)
}

z(x), x ∈ Γ1h,

δxs z(x) and δxscxs are the first (forward) and second difference derivatives; for example,
δ
x1 cx1 z(x) = 2 (hi

1 + hi−1
1 )−1 [δx1z(x) − δx1z(x)], x = (xi

1, x2).
Scheme (3.4), (3.3) is monotone ε-uniformly.

Lemma 1 Solutions of difference schemes (3.4), (3.3) are not ε-uniformly bounded. In the case

of the condition βR(x) = 0, x ∈ Γ1, the condition N−1
1 = O (ε) is sufficient for the boundedness

of the discrete solutions; under the condition βR(x) ≥ m, x ∈ Γ1, the discrete solutions are

ε-uniformly bounded.

Let us consider a scheme on piecewise uniform meshes.
On the set D we construct the mesh

Dh = ω∗
1 × ω2, (3.5a)

Here ω2 = ωu
2 is a uniform mesh, ω∗

1 is a mesh with a piecewise constant step-size. When
constructing the mesh ω∗

1, the interval [0, d] is divided into two parts [0, σ], [σ, d], σ is a parameter

in the interval (0, d). In each interval the step-sizes are constant and equal to h
(1)
1 = 2σ N−1

1 in

[0, σ] and h
(2)
1 = 2 (d− σ)N−1

1 in [σ, d]. The parameter σ is defined by

σ = σ(ε,N1, d; l,m) = min[2−1 d, l m−1 ε lnN1], (3.5b)

where m = m(3.2), l > 0 is a mesh parameter; N = min[N1, N2]. The mesh ω∗
1, and hence the

mesh Dh = Dh(l) are constructed.
For solutions of boundary value problem (2.2), (2.1) we use the scheme (3.4) on the mesh

Dh = Dh(3.5)(l = 1). (3.6)
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Lemma 2 Solutions of difference schemes (3.4), (3.6) are ε-uniformly bounded.

For solutions of difference scheme (3.4), (3.6), i.e, a nonlinear base scheme, we obtain the
ε-uniform estimate

|u(x) − z(x)| ≤M
[

N−1
1 lnN1 +N−1

2

]

, x ∈ Dh. (3.7)

Theorem 2 Let solutions of boundary value problem (2.2), (2.1) satisfy a priori estimates

(3.2) for K = 3. Then the solution of nonlinear base difference scheme (3.4), (3.6) for

N → ∞ converges ε-uniformly to the solution of the boundary value problem at the rate

O
(

N−1
1 lnN1 +N−1

2

)

. For the discrete solution the error estimate (3.7) is valid.

4. Richardson method for problem (2.2), (2.1)

On the set D we construct meshes

D
i

h = ω∗i
1 × ωi

2, i = 1, 2, (4.1a)

uniform in x2 and piecewise-uniform in x1. Here D
2
h is Dh(3.5a), where

σ = σ(3.5b)(ε, N1, l) for l ≥ 2; (4.2)

D
1
h is a “coarse” mesh. For the parameters σi, which define piecewise uniform meshes ω ∗i

1 =
ω ∗i

1 (σi), we impose the condition σ1 = σ2, where σ2 = σ(4.2), i.e., intervals on which the meshes
ω∗1

1 and ω∗2
1 have a constant step-size, are the same. Step-sizes in the mesh ω∗1

1 on the intervals
[0, σ], [σ, d] are k times larger than step-sizes in the mesh ω∗2

1 , and step-sizes in the mesh ω1
2

are k times larger than step-sizes in the mesh ω2
2; k

−1N1 + 1 and k−1N2 + 1 are the number of
nodes in the mesh ω∗1

1 and in the mesh ω1
2 on a unit interval, respectively. Let

D
0
h = D

1
h

⋂

D
2
h. (4.1b)

D
0
h = D

1
h if k is integer, (k ≥ 2); D

0
h 6= D

1
h if k is noninteger.

Let zi(x), x ∈ D
i

h, i = 1, 2 be solutions of the difference schemes

Λ(3.4)(z
i(x)) = 0, x ∈ Di

h, (4.3a)

λ(3.4) z
i(x) = ψ(x), x ∈ Γi

1h, zi(x) = ϕ(x), x ∈ Γi
2h, i = 1, 2.

Assume
z0(x) = γ z1(x) + (1 − γ) z2(x), x ∈ D

0
h, γ = γ(k) = −(k − 1)−1. (4.3b)

We call the function z0(x), x ∈ D
0
h the solution of the difference scheme (4.3), (4.1), i.e. the

scheme based on the Richardson method on two embedded meshes; the functions z1(x), x ∈ D
1
h

and z2(x), x ∈ D
2
h are called the components generating the solution of the difference scheme

(4.3), (4.1).
For justification of convergence to Richardson scheme (4.3), (4.1) under condition (4.2), we

apply a technique similar to one used in [4, 6]. It is suitable to consider a problem solution in
the form of a decomposition. Let us construct expansions for solutions of the difference scheme
(3.4), (4.1a) under the condition (4.2).

To the decomposition
u(x) = U(x) + V (x), x ∈ D (4.4a)

of the solution of boundary value problem (2.2), (2.1) (see the representation (3.1)) the following
discrete decomposition of the solution of difference scheme (3.4), (3.5), (4.2) corresponds:

z(x) = zU (x) + zV (x), x ∈ Dh. (4.4b)
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The functions zU (x), zV (x) in the representation (4.4b) are solutions of the problems

Λ(3.4)

(

zU (x)
)

= 0, x ∈ Dh,

λ(3.4) zU (x) = l(2.2) U(x), x ∈ Γ1h, zU (x) = U(x), x ∈ Γ2h;

Λ2
(3.4) zV (x) −

[

f
(

x, zU (x) + zV (x)
)

− f
(

x, zU (x)
)]

= 0, x ∈ Dh,

λ(3.4) zV (x) = ψ(x) − l(2.2) U(x), x ∈ Γ1h, zV (x) = V (x), x ∈ Γ2h.

From the representation (4.4) and the expansion of its components it follows

z(x) = u(x) +N−1
1 [u0

1(x) + u1
1(x)] +N−1

2 [u0
2(x) + u1

2(x)] + ρu(x), x ∈ Dh. (4.5)

For the components in expansion (4.5) for the function z(x) the following estimates hold

|u0
i (x)| ≤ M lnN1, |u1

i (x)| ≤M ε lnN1, x ∈ D, i = 1, 2,

|ρu(x)| ≤ M
[

N−2
1 ln2N1 +N−2

2

]

, x ∈ Dh.

Thus, for the function z0
(4.3b)(x), x ∈ D

0
h , we obtain the estimate

|u(x) − z0(x)| ≤M
[

N−2
1 ln2N1 +N−2

2

]

, x ∈ D
0
h . (4.6)

Theorem 3 Let solutions of the boundary value problem (2.2), (2.1) satisfy a priori estimates

(3.2) for K = 7. Then the function z0
(4.3b)(x), x ∈ D

0
h , i.e. the solution of the Richardson

scheme (4.3), (4.1) converges for N → ∞ to the solution of boundary value problem (2.2), (2.1)
ε-uniformly at the rate O

(

N−2
1 ln2N1 +N−2

2

)

; for the function z(x), x ∈ Dh the expansion

(4.5) is valid, and for the function z0(x), x ∈ D
0
h the error estimate (4.6) is valid.

5. Linearized iterative base scheme

On mesh (3.3) we consider an iterative monotone two-level difference scheme in which the
nonlinear term of the differential equation is computed using the sought function from the
previous iterative level. To the boundary value problem (2.2), (2.1) corresponds the difference
scheme

Λ(5.1)(z(x, t)) ≡ Λ2
(3.4)z(x, t) − p δt z(x, t) − f(x, z̆(x, t)) = 0, (x, t) ∈ Gh, (5.1a)

λ(3.4) z(x, t) = ψ(x), (x, t) ∈ S1h, z(x, t) = ϕ(x), (x, t) ∈ Sh \ S1h.

Here

Gh = Gh(Dh) = Gh

⋃

Sh, Gh = Dh × ω0, Gh = Dh × ω0, S1h = Γ1h × ω0, (5.1b)

ω0 is a uniform mesh on the semiaxis t ≥ 0 with the step-size ht = 1, the variable t ∈ ω0 defines
the number of iteration; Sh = SL

h ∪ Sh0, S
L
h = Γh × ω0 is the lateral part of the boundary;

δt z(x, t) = h−1
t [z(x, t) − z̆(x, t)], z̆(x, t) = z(x, t− ht), (x, t) ∈ Gh; the coefficient p satisfies

the condition

p−
∂

∂u
f(x, u) ≥ p0, (x, u) ∈ D × IR, p0 > 0, (5.1c)

ensuring the monotonicity of the difference scheme. The function ϕ(5.1)(x), x ∈ D on the

boundary Γ2 satisfies the condition ϕ(5.1)(x) = ϕ(2.2)(x), x ∈ Γ2, moreover, ϕ(5.1)(x), x ∈ D

is sufficiently arbitrary bounded function. We call the function z(x, t), (x, t) ∈ Gh, where
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Gh is generated by the mesh Dh(3.3), the solution of the linearized iterative difference scheme
(5.1), (3.3).

In the case of schemes (3.4), (3.6) and (5.1), (3.6), using the majorant function technique,
we find the following estimate for their solutions:

|z(x) − z(x, t)| ≤M q t, (x, t) ∈ Gh, (5.2)

where z(x) = z(3.4;3.6)(x), z(x, t) = z(5.1;3.6)(x, t); q ≤ q0 ≡ p0(c10 + p0)−1,

p0 = max
(

p−
∂

∂u
f(x, u)

)

, c10 = min
(

c(x) +
∂

∂u
f(x, u)

)

, (x, u) ∈ D × IR.

In the case of the mesh (3.6) we obtain the estimate

|u(x) − z(x, t)| ≤M
[

N−1
1 lnN1 +N−1

2 + q t
]

, (x, t) ∈ Gh, (5.3)

where q ≤ q0(5.2). Difference scheme (5.1), (3.6) converges ε-uniformly as N1, N2, t→ ∞.

Theorem 4 Let hypothesis of Theorem 2 be fulfilled. Then the solution of the linearized iterative

difference scheme (5.1), (3.6) for N1, N2, t→ ∞ converges to the solution of the boundary value

problem (2.2), (2.1) ε-uniformly at the rate O
(

N−1
1 lnN1 +N−1

2 + q t
0

)

, where q0 = q0(5.2). For

the discrete solutions the error estimates (5.2), (5.3) are valid.

6. Linearized iterative scheme of improved accuracy

We now give a linearized iterative difference scheme of improved accuracy which is constructed
using a Richardson technique.

On the meshes

G
i

h = D
i

h × ω0, i = 1, 2, (6.1a)

where D
i

h = D
i

h(4.1), ω0 = ω0(5.1), we consider the functions zi(x, t), (x, t) ∈ G
i

h, i = 1, 2, i.e.
solutions of the iterative schemes

Λ(5.1)(z
i(x, t)) = 0, (x, t) ∈ G i

h (6.1b)

λ(3.4) z
i(x, t) = ψ(x), (x, t) ∈ Si

1h, zi(x, t) = ϕ(x), (x, t) ∈ Si
h \ Si

1h, i = 1, 2;

here ϕ(x) = ϕ(5.1)(x), (x, t) ∈ Si
h. Note that the solutions zi(x, t) of difference scheme (6.1b),

(6.1a) are ε-uniformly bounded.
On the set

G
0
h ≡ G

1
h

⋂

G
2
h = D

0
h × ω0, (6.1c)

where D
0
h = D

0
h(4.1), we define the function

z 0(x, t) = γ z 1(x, t) + (1 − γ) z 2(x, t), (x, t) ∈ G
0
h , (6.1d)

where γ = γ(4.3). We call the function z 0(x, t), (x, t) ∈ G
0
h , G

0
h = G

0
h(D

0
h(3.3)) the solution of

the linearized difference scheme (6.1), (4.1), i.e. linearized iterative scheme on the base of the

Richardson method on two embedded meshes (meshes D
1
h and D

2
h).

For the function z 0(x, t), by virtue of estimate (5.2), we have

|z 0(x) − z 0(x, t)| ≤M q t, (x, t) ∈ G
0
h , (6.2)

where z 0(x), x ∈ D
0
h is the solution of nonlinear improved Richardson difference scheme (4.3),

(4.1), q ≤ q0(5.2). Taking into account estimate (4.6), we find

|u(x) − z 0(x, t)| ≤M [N−2
1 ln2N1 +N−2

2 + q t], (x, t) ∈ G
0
h , q ≤ q0(5.2). (6.3)
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Theorem 5 Let hypothesis of Theorem 3 be fulfilled. Then the solution of the linearized iterative

difference scheme (6.1), (4.1) for N1, N2, t→ ∞ converges to the solution of the boundary value

problem (2.2), (2.1) ε-uniformly at the rate O
(

N−2
1 ln2N1 +N−2

2 + q t
0

)

, where q0 = q0(5.2). For

the discrete solutions the error estimates (6.2), (6.3) are valid.

We consider how to use the upper and lower solutions for estimation of solutions of the
nonlinear Richardson difference scheme.

We will denote by z (1)i(x, t), z (2)i(x, t), (x, t) ∈ G
i

h, i = 1, 2 the solutions of problem (5.1)

on the mesh D
i

h(4.1), satisfying at the ”initial moment” the condition

z (1)i(x, 0) ≤ z i(x) ≤ z (2)i(x, 0), x ∈ D
i

h, i = 1, 2, (6.4)

where z i(x), x ∈ D
i

h is the solution of nonlinear base difference scheme (3.4) on the meshes D
i

h,

i = 1, 2. For the functions z i(x), x ∈ D
i

h, the estimate holds

z (1)i(x, t) ≤ z i(x) ≤ z (2)i(x, t), (x, t) ∈ G
i

h, i = 1, 2,

moreover, maxx |z(j)i(x, t) − z i(x)| → 0, x ∈ D
i

h for t → ∞, i, j = 1, 2.

We call such functions z (1)i(x, t) z (2)i(x, t), (x, t) ∈ G
i

h the lower and upper solutions of

nonlinear base difference scheme (3.4) on the meshes D
i

h, i = 1, 2 from (4.1). On the basis

of the functions z (j)i(x, t), (x, t) ∈ G
i

h, i, j = 1, 2, we construct “improved” lower and upper

solutions, i.e. the lower and upper solutions for the function z 0(x), x ∈ D
0
h , i.e. the solution of

the difference scheme (4.3), (4.1).

Introduce the functions z [1]0(x, t), z [2]0(x, t), (x, t) ∈ G
0
h , assuming

z [1]0(x, t) = γ z (2)1(x, t) + (1 − γ) z (1)2(x, t),

z [2]0(x, t) = γ z (1)1(x, t) + (1 − γ) z (2)2(x, t), (x, t) ∈ G
0
h , γ = γ(4.3).

For the functions z [1]0(x, t), z [2]0(x, t), the estimates are valid

z [1]0(x, t) ≤ z0(x) ≤ z [2]0(x, t), (x, t) ∈ G
0
h ,

moreover, maxx |z[j]0(x, t) − z0(x)| → 0, x ∈ D
0
h for t→ ∞, j = 1, 2.

We call the functions z [1]0(x, t) z [2]0(x, t), (x, t) ∈ G
0
h with such conditions the lower and

upper, respectively, solutions of the scheme (4.3), (4.1), i.e. nonlinear Richardson difference
scheme of improved accuracy.

Note that 0 ≤ z [2]0(x, t) − z [1]0(x, t) ≤M q t, (x, t) ∈ G
0
h , where q ≤ q0(5.2).

We will use the upper and lower solutions of improved nonlinear scheme (4.3), (4.1) in order
to define the number of iterations ensuring the same accuracy of linearized iterative solutions
as it is for the scheme (4.3), (4.1).

We choose the value T , i.e. the number of iterations in the scheme (6.1), (4.1), (6.4), so
that the error of the solution of the scheme (4.3), (4.1) and a difference between the solution
of the iterative scheme (6.1), (4.1) and the solution of the nonlinear scheme (4.3), (4.1) were
commensurable. We call the solution of the iterative scheme for t = T the solution, consistent
with respect to accuracy of the improved nonlinear scheme (4.3), (4.1).

We define the value T by the relations

max
D

0
h

[z[2]0(x, t) − z[1]0(x, t)] > M1 [N−2
1 ln2N1 +N−2

2 ], (6.5)

max
D

0
h

[z[2]0(x, T ) − z[1]0(x, T )] ≤M1 [N−2
1 ln2N1 +N−2

2 ], x ∈ D
0
h , t < T.
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The functions z
[j]0
(6.1;4.1)(x, T ), x ∈ D

0
h , j = 1, 2, are (upper for j = 2 and lower for j = 1) the

consistent solutions of scheme (6.1), (4.1), (6.4), (6.5), i.e. consistent with respect to accuracy
of the improved nonlinear scheme (4.3), (4.1).

For the consistent solution of the linearized iterative difference scheme (6.1), (4.1), (6.4),
(6.5) the estimate is valid

|u(x) − z[j]0(x, T )| ≤M2 [N−2
1 ln2N1 +N−2

2 ], x ∈ D
0
h , j = 1, 2; (6.6a)

and also, for the number of iterations T the following estimate holds

T ≤M3

(

ln q−1
0

)−1
lnN, (6.6b)

where T = T(6.5), q0 = q0(5.2), constants M1(6.5), M2(6.6), M3(6.6) are independent of q0; the value
T is defined according to the relations (6.5).

Theorem 6 Let hypothesis of Theorem 3 be fulfilled. Then the solution of the linearized iterative

difference scheme (6.1), (4.1), (6.4), (6.5) for N1, N2 → ∞ converges to the solution of the

boundary value problem (2.2), (2.1) ε-uniformly at the rate O
(

N−2
1 ln2N1 +N−2

2

)

. For the

discrete solutions the error estimates (6.6) are valid.

Thus, by virtue of ε-uniform estimate (6.6b) for the number of required iterations, the
iterative method of improved accuracy (6.1), (4.1), (6.4), (6.5) turns out to be close with re-
spect to computational expenses to the method (3.4), (3.6) for solving of a linear problem, i.e.
the linear problem (2.2), (2.1), where f(x, t, u) is f(x, t), convergent ε-uniformly at the rate
O

(

N−1
1 lnN1 +N−1

2

)

.
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