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1. Introduction

Mathematical modeling in financial mathematics leads to the Cauchy problem for the parabolic
Black-Scholes equation [9] with respect to the value C = C(S, t′), i.e., a European call option,
where S and t′ are the current values of the underlying asset and time. Along with the solution
C = C(S, t′) itself, the first partial derivative (∂/∂S)C(S, t′) of the solution is of interest. The
change of variables leads to the Cauchy problem for the dimensionless parabolic equation, i.e., the
singularly perturbed equation with the perturbation parameter ε = 2−1 σ2 r−1, ε ∈ (0, 1]; σ and
r are some financial parameters (the volatility and the interest rate, respectively). Already for
finite values of the parameter ε, the solution of the Cauchy problem has singularities of different
types that are generated by the unboundedness of the domain where the problem is defined, the
discontinuity of the first derivative of the initial function and its unbounded growth at infinity.
For small values of the parameter ε, an additional singularity arises, such as an interior (moving
in time) layer. In this problem, primarily, we are interested in approximations to both the
solution and its first order derivative in a neighbourhood of the interior layer generated by the
piecewise smooth initial function.

In the present paper, in order to construct adequate grid approximations for the singularity of
the interior layer type, we consider, instead of the Cauchy problem for the dimensionless Black-
Scholes equation, a “simpler” singularly perturbed boundary value problem with a piecewise
smooth initial condition, i.e., the problem (2.2), (2.1) (see its formulation in Section 2). In
this boundary value problem in a bounded domain, except the interior layer, an additional
singularity appears, namely, a boundary layer with the typical width of ε; the typical width
of the interior layer is ε1/2. Moreover, the singularity of the boundary layer is stronger than
that of the interior layer, which makes it difficult to construct and study special numerical
methods suitable for the adequate description of the singularity of the interior layer type. Using
the method of special meshes that condense in a neighbourhood of the boundary layer and the
method of additive splitting of the singularity of the interior layer type, a special finite difference
scheme is designed that make it possible to approximate ε-uniformly the solution of the boundary
value problem on the whole domain, its first order derivative in x on the whole domain, except
the discontinuity point, however, outside a neighbourhood of the boundary layer, and also the
normalized derivative (the first order spatial derivative multiplied by the parameter ε) in a finite
neighbourhood of the boundary layer.

∗This research was supported in part by the NUS Academic Recearch Fund (grant No R-151-000-025-112),
the Russian Foundation for Basic Research under grant No. 04-01-00578, 04–01–89007–NWO a, by the Dutch
Research Organisation NWO under grant No. 047.016.008 and by the Boole Centre for Research in Informatics,
National University of Ireland, Cork.
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Boundary value problems in bounded domains for parabolic equations with a discontinuous
initial condition have been studied in [1, 5, 7]; however, an approximation of the derivative
itself was not considered. A boundary value problem on an interval for singularly perturbed
parabolic convection-diffusion equations with a piecewise smooth initial condition has been con-
sidered in [8]; approximations of the solution and the derivative were investigated. Here, in
contrast to those papers, a finite difference scheme based on the solution decomposition method
is constructed that allows us to resolve each singularity of the problem separately.

2. Problem Formulation. Aim of Research

On the set G with the boundary S,

G = G ∪ S, G = D × (0, T ], D = {x : x ∈ (−d, d)}, (2.1)

we consider the Dirichlet problem for the singularly perturbed parabolic convection-diffusion
equation ∗

L(2.2a) u(x, t) = f(x, t), (x, t) ∈ G, u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.2a)

Here L(2.2) ≡ ε a
∂2

∂x2
+ b

∂

∂x
− c − q

∂

∂t
, a, b, q > 0, c ≥ 0, the right-hand side f(x, t)

is a sufficiently smooth function on G; the parameter ε takes arbitrary values in the half-open

interval (0, 1]. The boundary function ϕ(x, t) is sufficiently smooth on the sets S
−
0 , S

+
0 , S

L
and

continuous on S. The first order derivative in x of the function ϕ(x, t) has a jump discontinuity
at the point S(∗) = {(0, 0)}, which is defined by the relation

[

∂

∂x
ϕ(x, t)

]

≡ lim
x1ցx

∂

∂x
ϕ(x1, t) − lim

x1րx

∂

∂x
ϕ(x1, t) 6= 0, (x, t) ∈ S(∗). (2.2b)

Here S −
0 = {(x, t) : x ∈ [−d, 0), t = 0}, S +

0 = {(x, t) : x ∈ (0, d], t = 0}, S0 = S
−
0

⋃

S
+
0 ,

S0 and SL are the lower and lateral parts of the boundary S, S L = Γ × (0, T ], Γ = D \ D.

Under the condition a = c = p = 1, b = 1 − ε, f(x, t) = 0, (x, t) ∈ G, the equation
(2.2a) becomes the dimensionless Black-Scholes one.

For simplicity, we assume that compatibility conditions [2] are fulfilled on the set S∗ =

S0
⋂

S
L
. Let G

δ
be the δ-neighbourhood of the set S∗, i.e., G

δ
= {(x, t) : r

(

(x, t), S∗

)

≤ δ},
where r

(

(x, t), S∗

)

is the distance from the point (x, t) to the set S∗. Suppose

u ∈ C l+α,(l+α)/2(G
δ
), l ≥ 2, α ∈ (0, 1). (2.3)

It follows from [2] that, under the condition (2.3), the solution of the problem (for sufficiently

smooth functions f(x, t) on G and ϕ(x, t) on S
−
0 , S

+
0 , S

L
) is smooth on the set G

∗
= G \ S (∗),

i.e., u ∈ C l+α,(l+α)/2(G
∗
). The derivative p(x, t) = (∂/∂x)u(x, t) is continuous on G

∗
, bounded

on G
∗

for fixed values of ε and has a discontinuity on the set S
(∗)
(2.2b). We are interested in

approximations to the solution u(x, t), (x, t) ∈ G, and its derivative p(x, t), (x, t) ∈ G
∗
. Let us

describe the behaviour of the solution and derivatives more precisely.

Let S L = S l
⋃

S r, S l and S r be the left and right parts of the boundary S L, and let

S γ = {(x, t) : x = γ(t), (x, t) ∈ G}, γ(t) = −b q−1 t, t ≥ 0

be the characteristic of the reduced equation passing through the point (0, 0). When the pa-
rameter ε tends to zero, boundary and interior layers with the typical width scales ε and ε1/2,
respectively, appear in a neighbourhood of the sets S l and Sγ ; as opposed to the boundary layer,
the interior layer is weak (the first order derivative in x of the interior-layer function is bounded

∗ The notation L(j.k) (m(j.k), M(j.k), Gh(j.k)) means that these symbols are introduced in formula (j.k).
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ε-uniformly). For simplicity, we assume that the characteristic S γ does not meet the boundary
S l. The derivative p(x, t) in a neighbourhood of the set S l grows without bound as ε → 0. It is
convenient to consider the quantity P (x, t) = ε (∂/∂x)u(x, t), i.e., the normalized first derivative
in x, in the m-neighbourhood of the set S l instead of the derivative p(x, t), because only this
quantity is bounded ε-uniformly. The quantity P (x, t) will be called the diffusion flux (or briefly,
the flux). Outside a neighbourhood of the set S l, the derivative p(x, t) is bounded ε-uniformly
on G

∗
. For small values of the parameter ε, the derivative p(x, t) is more “informative” (on the

set where it is bounded) than the flux P (x, t).
It is well known that even for singularly perturbed problems with sufficiently smooth data,

solutions of classical finite difference schemes do not converge ε-uniformly; for small values of
the parameter ε, errors in the discrete solutions are commensurable with the actual solutions of
the differential problem. The diffusion fluxes obtained on the basis of such schemes also do not
converge ε-uniformly. Due to this it would be interesting to construct a difference scheme that
allows us to approximate ε-uniformly both the solution on the whole domain G and diffusion
fluxes in this domain excluding the discontinuity point S(∗), also to determine conditions under
which the boundary layer does not appear, and for such a problem, to find the ε-uniform
approximation of the derivative in x on the set G

∗
.

Definition. Let †

G
∗
0 = G

∗
0 (m) = G

∗
∩ {x ≥ −d + m} (2.4)

be the set G
∗

excluding an m-neighbourhood of the set S
l
(the m-neighbourhood of the bound-

ary layer). If the interpolants constructed using the solution of some finite difference scheme
converge on G ε-uniformly, we say that the discrete solution

(

the difference scheme) converges
on G uniformly with respect to the parameter ε (or, briefly, ε-uniformly in C(G)

)

. If, moreover,
the interpolants of the diffusion fluxes (or, respectively, the first order derivatives in x) converge
ε-uniformly in G

∗ (

ε-uniformly in G
∗
0

)

, we say that the difference scheme converges ε-uniformly

in C 1(n)(G
∗
)

(

ε-uniformly in C 1(G
∗
0 )

)

.

Our aim is to construct a difference scheme for problem (2.2), (2.1) that converges
ε-uniformly in C 1(n)(G

∗
) ∩ C 1(G

∗
0 ), and also to determine conditions under which the bound-

ary layer does not appear, and in this case to construct a difference scheme that converges
ε-uniformly in C 1(G

∗
). Some preliminary results related to this problem are given in [3].

3. A priori estimates of the solution and derivatives

For the solution of the boundary value problem (2.2), (2.1) and its derivatives, we give a priori

estimates used in the constructions
(

the more detailed derivation can be found in [8]
)

.
We represent the set G as the sum of overlapping sets

G =
⋃

jG
j
, j = 1, 2, 3, (3.1)

where
G 1 = G 1(m1) = {(x, t) : |x − γ(t)| < m1, t ∈ (0, T ]},

G 2 = G 2(m2) = {(x, t) : x ∈ (−d,−d + m2), t ∈ (0, T ]},

G 3 = G 3(m3) = G \
{

G1(m3)
⋃

G2(m3)
}

, m3 < m1, m2,

G 1 and G 2 are neighbourhoods of the interior and boundary layers, respectively.

The solution on the set G
3

is smooth; we have the estimate
∣

∣

∣

∣

∂k+k0

∂xk∂tk0
u(x, t)

∣

∣

∣

∣

≤ M, (x, t) ∈ G
3
, k + 2k0 ≤ K. (3.2)

† Throughout this paper, M, Mi (or m) denote sufficiently large (small) positive constants that do not depend
on ε and on the discretization parameters.
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The value K is defined by the problem data; and K ≥ 4.

We represent the solution on the set G
2

as the decomposition into two functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G
2
, (3.3)

where U(x, t) and V (x, t) are the regular and singular parts of the solution; V (x, t) is the boundary

layer function. For the functions U(x, t) and V (x, t), the following estimates are valid:
∣

∣

∣

∣

∂k+k0

∂xk∂tk0
U(x, t)

∣

∣

∣

∣

≤ M,

∣

∣

∣

∣

∂k+k0

∂xk∂tk0
V (x, t)

∣

∣

∣

∣

≤ M ε−k exp
(

− m ε−1 r
(

(x, t), S
l)

)

, (3.4)

(x, t) ∈ G
2
, k + 2 k0 ≤ K,

where r
(

(x, t), S
l)

is the distance from the point (x, t) to the set S
l
, m is an arbitrary constant

from the interval (0, m0), m0 = a−1 b.

On the set G
1
, we have the representation

u(x, t) = U1(x, t) + W 1(x, t), (x, t) ∈ G
1
, (3.5a)

where U1(x, t) and W 1(x, t) are the regular and singular parts; W 1(x, t) is the interior layer

function

W 1(x, t) = 2−1

[

∂

∂x
ϕ(0, 0)

] {

(

x − γ(t)
)

v
(

2−1 ε−1/2 a−1/2 q1/2
(

x − γ(t)
)

t−1/2
)

+ (3.5b)

+2π−1/2 ε1/2 a1/2 q−1/2 t1/2 exp
(

−4−1 ε−1 a−1 q
(

x−γ(t)
)2

t−1
)

}

exp(−α t), (x, t) ∈ IR×[0, T ].

For the components in representation (3.5), we have the estimates (similar to those in [8])
∣

∣

∣

∣

∂k+k0

∂xk∂tk0
U1(x, t)

∣

∣

∣

∣

≤ M
[

1 + ε(2−k−k0)/2 ρ 2−k−k0 + ε (2−k)/2 ρ 2−k−2k0
]

, (x, t) ∈ G
1
,

∣

∣

∣

∣

∂k+k0

∂xk∂tk0
W 1(x, t)

∣

∣

∣

∣

≤ M
[

1 + ε (1−k−k0)/2 ρ 1−k−k0 + ε (1−k)/2 ρ 1−k−2k0
]

× (3.6)

× exp(−m ε−1/2 |x − γ(t)| ), (x, t) ∈ G; k + 2k0 ≤ K,

where ρ = ρ(x, t; ε) = ε−1/2
∣

∣x − γ(t)
∣

∣ + t1/2, and m is an arbitrary constant.

Theorem 1 Let the data of the boundary value problem (2.2), (2.1) satisfy the condition

f ∈ C l, l/2(G), ϕ ∈ C l(S
−
0 )

⋂

C l(S
+
0 )

⋂

C l/2(S
L
)
⋂

C(S), and let the condition (2.3) hold for

the solution of this problem, moreover, l = K. Then the solution of the boundary value problem

and its components in representations (3.3), (3.5) satisfy the estimates (3.2), (3.4), and (3.6).

Remark 1 Let us give the condition under which the boundary layer does not arise.
Let us define the sets

G4 = G4(m) =
{

(x, t); x > γ(t) − γ (T ) − d + m
}

, G
4

= G 4
⋃

S 4, (3.7a)

G
5

= G 5
⋃

S 5, G 5 = G 5(m) = G \ G
4
(m); m < d + γ (T ). (3.7b)

Let the functions f(x, t) and ϕ(x, t) satisfy the conditions

f(x, t) = 0, (x, t) ∈ G
4
, ϕ(x, t) = 0, (x, t) ∈ S

⋂

G
4
. (3.8)

Then the boundary layer is absent, i.e., the singular component is absent in representation (3.3),

and u(x, t) = U(x, t) on the set G
2
. For the solution u(x, t), the estimate (3.4) holds, moreover,

∣

∣

∣

∣

∂k+k0

∂xk∂tk0
u(x, t)

∣

∣

∣

∣

≤ M εK1, (x, t) ∈ G
2
, k + 2k0 ≤ K, where G

2
= G

2
(3.1)(m

2), m2 < m(3.1), and

the constant K1 can be chosen sufficiently large.
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4. Classical grid approximations on uniform and piecewise uniform meshes

4.1. Let us consider a difference scheme based on classical approximations of problem (2.2),
(2.1). On the set G(2.1), we introduce the rectangular mesh

Gh = Dh × ω0 = ω × ω0, (4.1)

where ω and ω0 are meshes on the intervals [−d, d] and [0, T ], respectively; the mesh ω has an
arbitrary distribution of nodes satisfying only the condition h ≤ MN−1, where h = maxi hi,
hi = xi+1 − xi, xi, xi+1 ∈ ω; the mesh ω0 is uniform with the step-size h0 = TN−1

0 . Here N + 1
and N0 + 1 are the numbers of nodes in the meshes ω and ω0, respectively.

We approximate the boundary value problem (2.2) by the difference scheme [4]

Λ(4.2) z(x, t) = f(x, t), (x, t) ∈ Gh, z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (4.2)

Here Λ(4.2) ≡ ε a δx bx + b δx − c − q δt, δx bx z(x, t) is the second difference derivative on a
nonuniform mesh. On the uniform mesh

Gh = ω × ω0, (4.3)

the scheme (4.2), (4.3) converges under the condition N−1 ≪ ε:

|u(x, t) − z(x, t)| ≤ M
[

(ε + N−1)−1 N−1 + N−1/2 + N
−1/2
0

]

, (x, t) ∈ Gh. (4.4)

Under the condition (3.8), when in (3.3)

V (x, t) = 0, (x, t) ∈ G
2
, (4.5)

the scheme (4.2), (4.3) converges ε-uniformly:

|u(x, t) − z(x, t)| ≤ M
[

N−1/2 + N
−1/2
0

]

, (x, t) ∈ Gh. (4.6)

If, except (3.8) in (3.5), the following condition holds:

W 1(x, t) = 0, (x, t) ∈ G
1
, (4.7)

i.e., when

[

∂

∂x
ϕ(x, t)

]

= 0, (x, t) ∈ S (∗), we have the ε-uniform estimate for the solution of the

difference scheme (4.2), (4.3):

|u(x, t) − z(x, t)| ≤ M
[

N−1 + N−1+ν0
0

]

, (x, t) ∈ Gh, (4.8)

where ν0 is an arbitrary constant in the interval (0, 1).

Theorem 2 Let the solution of problem (2.2) and its components in (3.3), (3.5) satisfy the

estimates (3.2), (3.4), (3.6) for K = 4. Then the difference scheme (4.2), (4.3) converges under

the condition N−1 ≪ ε. In the case of the condition (4.5), the scheme (4.2), (4.3) converges

ε-uniformly. The discrete solutions satisfy the estimate (4.4); and, in the case of the condition

(4.5), the estimate (4.6) holds, and under conditions (4.5) and (4.7), the estimate (4.8) is valid.

4.2. We now consider the problem when the solution has a boundary layer. On the set G,
we construct the mesh condensing in a neighbourhood of the boundary layer (similar to that
constructed in [6]–[8]):

Gh = Dh × ω0 = ω ∗ × ω0, (4.9a)
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where ω0 = ω0(4.1), ω ∗ = ω ∗(σ) is a piecewise uniform mesh on [−d, d], and σ is a parameter
depending on ε and N . We choose the quantity σ satisfying the condition

σ = σ(ε, N) = min [β, 2m−1 ε ln N ], (4.9b)

where β is an arbitrary number in the half-open interval (0, d], and m = m(3.4). The interval
[−d, d] is divided into two parts: [−d, −d + σ] and [−d + σ, d]; on each part, the step-size is
constant and is equal to h(1) = 2 dσ β−1 N−1 on the subinterval [−d,−d + σ] and to h(2) =
2 d (2 d − σ) (2 d − β)−1 N−1 on the subinterval [−d + σ, d], σ ≤ d.

On the mesh (4.9), the scheme (4.2), (4.9) converges ε-uniformly:

| u(x, t) − z(x, t) |≤ M [N−1/2 + N
−1/2
0 ], (x, t) ∈ Gh. (4.10)

Theorem 3 Let the assumptions of Theorem 2 be fulfilled. Then the difference scheme (4.2),
(4.9) converges ε-uniformly with the error estimate (4.10).

4.3. We consider the approximation of the functions u(x, t), p(x, t), P (x, t), (x, t) ∈ G, using
the interpolants constructed on the basis of the functions z(x, t), ph(x, t), P h(x, t).

Let z(x, t), (x, t) ∈ Gh, be a solution of some scheme. For the function z(x, t), we construct
its extension z(x, t) to G; z(x, t) is a bilinear interpolant on the elementary rectangles generated
by the lines that pass through the nodes of the mesh Gh in parallel to the coordinate axes.
Further, we construct the interpolant ph(x, t), (x, t) ∈ G, for the discrete derivative ph(x, t),
(x, t) ∈ Gh, x 6= d. At the interior points of the elementary rectangles, we assume ph(x, t) =
ph

z (x, t) = (∂/∂x) z(x, t); the function ph(x, t) is continuous on the upper and on the lower sides
of the rectangles, and it is defined according to continuity on the left sides of the elementary
rectangles. But if the rectangles are adjacent, by their right sides, to the set S

r
, then we also

define the function ph(x, t) on these sides according to continuity. Hence, we have constructed
the function ph(x, t), (x, t) ∈ G. The interpolant ph(x, t), in general, has discontinuities on the
lines that are parallel to the t-axis and pass through the nodes of the mesh Gh. We define the

interpolant of the diffusion flux by the relation P
h
(x, t) = P

h
z (x, t) = ε ph(x, t), (x, t) ∈ G.

In the case of the difference scheme (4.2), (4.3) under conditions (4.5) and (4.7), we have the
following estimates for the interpolants:

| p(x, t) − p h(x, t) |≤ M [N−1/2 + N
−1/2
0 ], (x, t) ∈ G, x ≥ −d + β0; (4.11a)

| P (x, t) − P
h
(x, t) |≤ M [N−1/2 + N

−1/2
0 ], (x, t) ∈ G, (4.11b)

where β0 = β0(4.9b), M(4.11a) = M(β0), and also the estimate similar to (4.8):

| u(x, t) − z(x, t) |≤ M [N−1 + N−1+ν0
0 ], (x, t) ∈ G, ν0 = ν0(4.8). (4.11c)

Theorem 4 Let the assumptions of Theorem 2 be fulfilled for K = 6. Then, under the condi-

tions (4.5), (4.7), the difference scheme (4.2), (4.3) approximates the solution of problem (2.2),
(2.1), its derivative and the diffusion flux ε-uniformly with the error estimates (4.11).

5. Solution decomposition scheme approximating the derivative p(x, t)

5.1. We represent the solution of problem (2.2), (2.1) as the sum of functions

u(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ G. (5.1a)

Here u1(x, t) and u2(x, t) are components of the solution of the boundary value problem (2.2),
(2.1), including singularities of the boundary and interior layers types, respectively. We call
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the functions u1(x, t) and u2(x, t) the components containing the boundary and interior layers,
respectively, or, briefly, the boundary and interior layer components.

We represent the interior layer component u2(x, t) as the sum of functions

u2(x, t) = u1
2(x, t) + u2

2(x, t), (x, t) ∈ G, (5.1b)

where u1
2(x, t) and u2

2(x, t) are the regular and singular parts of the function u2(x, t);

u2
2(x, t) = W 1

(3.5b)(x, t), (x, t) ∈ G.

The functions u1(x, t) and u1
2(x, t) are solutions of the following problems

Lu1
2(x, t) = f2(x, t), (x, t) ∈ G, u1

2(x, t) = ϕ2(x, t), (x, t) ∈ S; (5.1c)

Lu1(x, t) = f1(x, t), (x, t) ∈ G, u1(x, t) = ϕ1(x, t), (x, t) ∈ S. (5.1d)

The functions fi(x, t), ϕi(x, t), i = 1, 2, are defined by the relations

f2(x, t) = f(x, t) η (x, t), f1(x, t) = f(x, t) − f2(x, t), (x, t) ∈ G; (5.1e)

ϕ2(x, t) = (ϕ(x, t) − u2
2(x, t)) η (x, t), ϕ1(x, t) = ϕ(x, t) − ϕ2(x, t) − u2

2(x, t), (x, t) ∈ S.

Here η (x, t), (x, t) ∈ G, is a sufficiently smooth function that vanishes in a neighbourhood of
the boundary layer

η (x, t) = 0, (x, t) ∈ G
5
(3.7b)(2

−1 m1)

η (x, t) = 1, (x, t) ∈ G
4
(3.7a)(m1)







, 0 ≤ η(x, t) ≤ 1, (x, t) ∈ G,

where m1 is an arbitrary number in the interval
(

0, 2−1 (d + γ(T ))
)

.
To solve problem (5.1d), we use the difference scheme on the piecewise uniform mesh (4.9):

Λ(4.2)z1(x, t) = f1(x, t), (x, t) ∈ Gh(4.9), z1(x, t) = ϕ1(x, t), (x, t) ∈ Sh. (5.2a)

To solve problem (5.1c), we use the difference scheme on the uniform mesh (4.3):

Λ(4.2)z
1
2(x, t) = f2(x, t), (x, t) ∈ Gh(4.3), z1

2(x, t) = ϕ2(x, t), (x, t) ∈ Sh. (5.2b)

Further, we construct the special interpolants into which the singular part u2
2(x, t), i.e., the

function of the interior layer type, enters in the explicit form as follows:

uh
0(x, t) = z1(x, t) + uh

2(x, t), uh
2(x, t) = z1

2(x, t) + u2
2(x, t), (x, t) ∈ G; (5.2c)

ph
0(x, t) = ph

z1
(x, t) + ph

2(x, t), ph
2(x, t) = p h

z1
2
(x, t) +

∂

∂x
u2

2(x, t), (x, t) ∈ G
∗
; (5.2d)

P h
0 (x, t) = ε ph

0(x, t), (x, t) ∈ G
∗
, (5.2e)

where z1(x, t), ph
z 1

(x, t) and z1
2(x, t), p h

z1
2
(x, t) are bilinear interpolants that are constructed using

the functions z1(x, t), (x, t) ∈ Gh(4.9) and z1
2(x, t), (x, t) ∈ Gh(4.3)

(

similarly to the construction
of interpolants in Subsection 4.3

)

. The use of the interpolants allows us to find the solution on

the set G, its first derivative in x and the diffusion flux on the set G
∗
.

The function uh
0 (x, t), (x, t) ∈ G, is called the solution of the difference scheme (5.2), (4.3),

(4.9), and the functions p h
0 (x, t) and P h

0 (x, t), (x, t) ∈ G
∗
, are called the derivative and the

diffusion flux, respectively, corresponding to this scheme. The scheme (5.2), (4.3), (4.9) is the
solution decomposition scheme with the additive splitting of a singularity of the interior-layer
type

(

briefly, we call this scheme the singularity splitting scheme
)

.
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5.2. Let us give estimates on the solutions and derivatives for the schemes constructed above.
In the case of scheme (5.2), (4.3), (4.9), we have the estimates

∣

∣

∣
u(x, t) − uh

0 (x, t)
∣

∣

∣
≤ M

[

N−1 ln N + N−1+ν0
0

]

, (x, t) ∈ G; (5.3a)

∣

∣

∣
P (x, t) − P h

0 (x, t)
∣

∣

∣
≤ M

[

N−1/2 + N
−1/2
0

]

, (x, t) ∈ G
∗
; (5.3b)

∣

∣

∣
p(x, t) − p h

0 (x, t)
∣

∣

∣
≤ M

[

N−1/2 + N
−1/2
0

]

, (x, t) ∈ G
∗
0 , (5.3c)

where G
∗
0 = G

∗
0(2.4)(m), m is an arbitrary sufficiently small constant, and M(5.3c) = M(m). The

interior layer component u2(5.1a)(x, t) and its derivative in x satisfy the estimates

∣

∣u2(x, t) − uh
2 (x, t)

∣

∣ ≤ M
[

N−1 + N−1+ν0
0

]

, (x, t) ∈ G, (5.4)

∣

∣p2(x, t) − p h
2 (x, t)

∣

∣ ≤ M
[

N−1/2 + N
−1/2
0

]

, (x, t) ∈ G
∗
,

where p2(x, t) =
∂

∂x
u2(x, t), p h

2 (x, t) = p h
2(5.2d)(x, t). In (5.3) and (5.4), ν0 = ν0(4.8).

Thus, the interior layer component converges ε-uniformly in C1(G
∗
).

Theorem 5 Let the assumptions of Theorem 2 be fulfilled for K = 6. Then the difference

scheme (5.2), (4.3), (4.9) approximates the solution of the problem (2.2), (2.1), the derivative

p(x, t), the diffusion flux P (x, t) and also the interior layer component u2(5.1a)(x, t) and its

derivative p2(x, t) ε-uniformly with the error estimates (5.3) and (5.4), respectively.
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