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1. Introduction

In this paper we consider the adaptive numerical solution of Hamilton-Jacobi (HJ) equations

φt + H(φx1
, . . . , φxd

) = 0, φ(x, 0) = φ0(x), (1)

where x = (x1, . . . , xd) ∈ IRd, t > 0. HJ equations arise in many practical areas such as
differential games, mathematical finance, image enhancement and front propagation. It is well
known that solutions of (1) are Lipschitz continuous but derivatives can become discontinuous
even if the initial data is smooth.

There is a close relation between HJ equations and hyperbolic conservation laws. With this
in mind, it not surprising to find that many of the numerical methods used to solve HJ equations
are motivated by conservative finite difference or finite volume methods for conservation laws.
An increasingly popular approach to solve hyperbolic conservation laws is the discontinuous
Galerkin (DG) finite element method. Recently, Hu and Shu [1] proposed a DG method to solve
HJ equations by first rewriting (1) as a system of conservation laws

(wi)t + (H(w))xi
= 0, i = 1, . . . , d, w(x, 0) = ∇φ0(x), (2)

where w = ∇φ. The usual DG formulation would be obtained if w belonged to a space of
piecewise polynomials. However, we note that wi, i = 1, . . . , d are not independent due to the
restriction that w = ∇φ. In [1] a least squares procedure was used to enforce this condition
whereas in [4] a suitable basis was used such that wh = ∇φh

The aim of this paper is to consider the use of the DG method of Hu and Shu [1] to solve
HJ equation using a moving mesh method based on the solution of moving mesh PDEs [2]. The
governing equation are transformed to include the effect of the movement of the mesh and this
is done in such a way that the conservation properties of the original equation are not lost. The
adaptive mesh is driven by a monitor function which is shown to be non-singular in the presence
of solution discontinuities.

2. DG discretisation of Hamilton-Jacobi equations

2..1. HJ equation in 1D

Let us consider the Hamilton-Jacobi equation in one dimension
{

φt + H(φx) = 0, (x, t) ∈ (a, b) × (0, T ]
φ(x, 0) = φ0(x),

(3)

with appropriate boundary conditions. If u = φx and we differentiate (3) with respect to x then
u satisfies the hyperbolic conservation law

{
ut + H(u)x = 0, (x, t) ∈ (a, b) × (0, T ]
u(x, 0) = u0(x).

(4)
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We assume that the physical domain Ωp = [a, b] is the image of a computational domain
Ωc = [0, 1] which is obtained via the time-dependent mapping x = x(ξ, t). We will consider
a discretisation of the conservative form in computational coordinates

{
˙(xξu) + (H(u) − ẋ u)ξ = 0, (ξ, t) ∈ (0, 1) × (0, T ],

u(ξ, 0) = u0(ξ).
(5)

The aim is to discretise (5) in space using a DG method.

2..2. The DG discretisation

For each partition
{
ξj+ 1

2

}N

j=0
of Ωc, we denote

Ij =
(
ξj− 1

2

, ξj+ 1

2

)
, ∆j = ξj+ 1

2

− ξj− 1

2

, j = 1, . . . ,N.

We use a uniform mesh to cover the computational domain such that

h = ξj+ 1

2

− ξj− 1

2

=
1

N
, ξj =

1

2

(
ξj+ 1

2

+ ξj− 1

2

)
, j = 1, . . . ,N. (6)

If we multiply (5) by an arbitrary smooth function v, then integrating by parts over the interval
Ij we obtain ∫

Ij

( ˙xξu) v dξ −

∫

Ij

H̃(u, ẋ) vξ dξ + H̃(u, ẋ) v
∣∣∣
Ij

= 0, (7)

where
H̃(u, ẋ) = H(u) − ẋ u, (8)

and
H̃(u, ẋ)v

∣∣∣
Ij

= H̃(u(ξj+ 1

2

, t), ẋ(ξj+ 1

2

)) v(ξj+ 1

2

) − H̃(u(ξj− 1

2

, t), ẋ(ξj− 1

2

)) v(ξj− 1

2

). (9)

We will approximate the exact solution u of (7) and the smooth function v locally by polynomials
of degree at most k. The numerical approximations uh and vh belong to the finite dimensional
space

V k
h =

{
v : v|Ij

∈ P k(Ij), j = 1, . . . ,N
}

, (10)

where P k(Ij) denotes the space of polynomials on Ij of degree at most k. In the discontinuous
Galerkin numerical method uh and vh are discontinuous at the points ξj+ 1

2

, j = 0, . . . ,N , and

the question is how to evaluate their values in (9). We set

v−h
j+ 1

2

= lim
ξ→ξ−

j+1
2

vh(ξ), and v+
h

j− 1
2

= lim
ξ→ξ+

j− 1
2

vh(ξ). (11)

Furthermore, we replace the nonlinear flux function H̃(uh, ẋ) defined in (8) by a numerical flux

function that depends on the values of uh from the left and right at the point
(
ξj+ 1

2

, t
)
, that is

H̃(uh, ẋ)ξ
j+ 1

2

(t) = Hj+ 1

2

(
uh

(
ξ−
j+ 1

2

, t

)
, uh

(
ξ+
j+ 1

2

, t

)
, ẋξ

j+ 1
2

(t)

)
. (12)

In this paper we have used the local Lax-Friedrichs flux

H(p, q, ẋ) =
1

2

(
H̃(p, ẋ) + H̃(q, ẋ) − c(q − p)

)
, (13)
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where

c = max
min(p,q)≤u≤max(p,q)

∣∣∣∣∣
∂H̃

∂u

∣∣∣∣∣ .

The discontinuous Galerkin space approximation is given as the solution of the weak formu-
lation ∫

Ij

( ˙xξuh)vh dξ −

∫

Ij

H̃(uh, ẋ)(vh)ξ dξ + Hj+ 1

2

v−hξ
j+ 1

2

− Hj− 1

2

v+
hξ

j− 1
2

= 0, (14)

and the initial condition is given by the projection

∫

Ij

uh(ξ, 0)vh(ξ) dξ =

∫

Ij

u0(ξ)vh(ξ) dξ, j = 1, . . . ,N, (15)

for all vh ∈ Vh.

2..2..1 Temporal integration

The discontinuous Galerkin discretisation gives rise to a system of ODEs which can be written
as {

d

dt
(xξuh) = Lh(uh), in (0, T ]

uh(0) = u0h,
(16)

where u0h is the initial approximation for the vector of the degrees of freedom uh, and xξ depends
on the meshes at time level tn and tn+1 as defined earlier. To integrate (16) numerically we use
the second-order TVD Runge-Kutta method





xn+1
ξ u

(1)
h = xn

ξ u
n
h + ∆t L(un

h),

xn+1
ξ un+1

h =
1

2
xn

ξ u
n
h +

1

2
xn+1

ξ u
(1)
h +

1

2
∆t L(u

(1)
h ).

(17)

2..2..2 Recovery of φh

If (φh)x = uh, then φh will be determined on each interval Ij up to a constant. Following [1],
the constant can be retrieved in two ways:

1. require that ∫

Ij

((φh)t + H(uh)) dx, j = 1, . . . ,N. (18)

2. use (18) to update only the leftmost element I1 and then since (φh)x = uh we have

φh(xj , t) = φh(x1, t) +

∫ xj

x1

uh(x, t) dx. (19)

2..3. HJ equations in 2D

In two-dimensions we have

φt + H(φx, φy) = 0, (x, y) ∈ Ωp, t > 0, (20)

where Ωp ⊆ lR2 is the physical domain. To generate an adaptive mesh we have seen earlier that
it is useful to regard the physical domain Ωp as the image of a computational domain Ωc under
the invertible maps

x = x(ξ, η, t), y = y(ξ, η, t), and ξ = ξ(x, y, t), η = η(x, y, t), (21)
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where x = (x, y) and ξ = (ξ, η) are the physical and computational coordinates, respectively. A
mesh covering Ωp is obtained by applying the mapping given by (21) to a partitioning of Ωc.

Given that the mesh can move then it is necessary to express the Eulerian (x-fixed) temporal
derivative in (20) in terms of the Lagrangian derivative along the trajectory of the moving mesh.
If a dot denotes differentiation with respect to time with (ξ, η) fixed then (20) becomes

φ̇ − ẋφx − ẏφy + H(φx, φy) = 0, (22)

where (ẋ, ẏ) represents the mesh velocity. If we let u = φξ and v = φη, then by differentiating
(22) with respect to ξ and η we arrive at the system

ut + H̄ξ(u, v, ẋ, ẏ) = 0, (23)

vt + H̄η(u, v, ẋ, ẏ) = 0, (24)

where
H̄(u, v, ẋ, ẏ) = H(ξxu + ηxv, ξyu + ηyv) − ẋ(ξxu + ηxv) − ẏ(ξyu + ηyv). (25)

Using the vectorial notation

u =

(
u
v

)
, F 1 =

(
H̄
0

)
, F 2 =

(
0
H̄

)
,

we can rewrite (23) and (24) as the system of conservation laws

ut + [F 1(u)]ξ + [F 2(u)]η = 0. (26)

We apply a discontinuous Galerkin method to solve this coupled system (26) for (u, v) = ∇ξφ,
where the discretisation takes place in the computational domain Ωc. A recovery procedure will
then be used to obtain an approximation of φ.

To obtain a weak formulation we take the inner product of (26) with a test function vh ∈ Vh,
integrate over K ∈ Th and replace u by its approximation uh ∈ Vh. That is

d

dt

∫

K

uh(ξ, t) · vh(ξ) dξ +

∫

K

[(F 1)ξ · vh + (F 2)η · vh] dξ = 0, (27)

and using integration by parts we obtain

d

dt

∫

K

uh(ξ, t) · vh(ξ) dξ

+
∑

e∈∂K

∫

e

{
(ne,K)1F 1 · vh(ξint(K)) + (ne,K)2F 2 · vh(ξint(K))

}
ds

−

∫

K

[F 1 · (vh)ξ + F 2 · (vh)η] dξ = 0,

(28)

where ne,K = [(ne,K)1, (ne,K)2] is the unit normal to the edge e of the element K, int(K) denotes
the value taken from the within the element K, and ext(K) denotes the value taken from the
exterior of the element K. Next we define the normal flux

F e,K(u, ẋ, ẏ) = (ne,K)1F 1 + (ne,K)2F 2 =

[
(ne,K)1H̄
(ne,K)2H̄

]
. (29)

Note that F e,K is not well defined on the element edge as uh is discontinuous there. Therefore,
we replace it by the numerical flux function

F̂ e,K

(
uh(ξint(K)),uh(ξext(K)), ẋ, ẏ

)
. (30)
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Again we will use the Lax-Friedrichs flux

F̂ e,K(a, b, ẋ, ẏ) =
1

2
[F e,K(a) + F e,K(b) + αe,K(a − b)] , (31)

where

αe,K = γρ

(
(ne,K)1

∂F 1

∂u
+ (ne,K)2

∂F 2

∂u

)
, (32)

and γ ≥ 1 and ρ is the spectral radius of the normal Jacobian matrix.
We now discuss the basis used when uh is a discontinuous bilinear function. Following Hu

and Shu [1] we assume that the approximate solution of the Hamilton-Jacobi equation φh is
piecewise discontinuous and quadratic. Therefore, in the cell Kij we assume

φh(t) = φ(t) + φξ(t)µi + φη(t)νj + φξη(t)µiνj

+φξξ(t)

(
µ2

i −
1

3

)
+ φηη(t)

(
ν2

j −
1

3

)
, (33)

where

µi(ξ) =
2(ξ − ξi)

∆ξ
, and νj(η) =

2(η − ηj)

∆η
.

The gradient in computational space ∇ξφh therefore takes the form

∇ξφh =

[
2

∆ξ
φξ(t) + 2

∆ξ
φξη(t)νj + 4

∆ξ
φξξ(t)µi

2
∆η

φη(t) + 2
∆η

φξη(t)µi + 4
∆η

φηη(t)νj

]
, (34)

and hence there are five unknowns that determine ∇ξφh. A suitable basis for

V 1
2 = {(v1, v2, v3, v4, v5) : v|K = ∇ξφ, φ ∈ P 2(K), ∀K ∈ Th}

is given by

b1 =

[
1
0

]
, b2 =

[
0
1

]
, b3 =

[
µi

0

]
, b4 =

[
0
νj

]
, b5 =

[
νj

∆ξ
µi

∆η

]
. (35)

The local basis functions (35) can easily be shown to be orthogonal and hence the mass matrix
is diagonal.

3. Moving mesh equations

Let us consider x = (x1, x2)
T to be a point in the physical domain Ωp and ξ = (ξ1, ξ2)

T to be
a point in the computational domain Ωc. The mapping from the computational domain to the
physical domain is assumed to satisfy the moving mesh PDE [2]

τ
∂x

∂t
=

(
2∑

i=1

a2
i,i + b2

i

)− 1

2




2∑

i,j=1

(ai · G−1aj)
∂2x

∂ξi∂ξj
−

2∑

i,j=1

(
ai ·

∂G−1

∂ξj
aj

)
∂x

∂ξi


 , (36)

where ai = ∇ξi and

ai,j = ai · G−1aj, bi = −

2∑

i,j=1

(
ai ·

∂G−1

∂ξj
aj

)
. (37)
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Dirichlet boundary conditions for the above system are obtained by solving a one-dimensional
MMPDE. If ∂p ∈ ∂Ωp and ∂c ∈ ∂Ωc denote the physical and computational boundary segments
with arc-lengths l and lc respectively, then the mesh on ∂p is the solution of

τ
∂s

∂t
=

1√
(M2 + (Mζ)2

∂

∂ζ

(
M

∂s

∂ζ

)
, ζ ∈ (0, lc), (38)

with s(0) = 0 and s(lc) = l. Here M is the one-dimensional projection of the two-dimensional
monitor function along the boundary. That is, if t is a unit tangent vector along the boundary
then M(s, t) = tT Gt.

3..1. Choice of monitor function

The choice of a suitable adaptivity criterion for problems which develop shocks is highly non-
trivial. It is important that the mesh points move smoothly towards regions where discontinuities
exist so that the O(1) error at the shock is localised within one or two mesh elements. For
robustness, it is also important that the rate of convergence of the method is not severely
impaired by the non-uniformity of the moving mesh.

To obtain a bounded monitor function we consider the choice [3]

M(x, t) =

(
1 +

|ux|
2

α

) 1

2

, α =
1

β2
max

x
|ux|

2, (39)

and β is a user-chosen parameter. It is clear that this monitor function satisfies the bounds

1 ≤ M(x, t) ≤
√

1 + β2.

If the mesh is found by equidistribution of the monitor function then if M ≃ 1 except in the cell
containing x∗ then

√
1 + β2∆xmin ≃

1

N

(
(b − a) +

√
1 + β2 ∆xmin

)
. (40)

Therefore, the minimum mesh spacing is

∆xmin ≃
(b − a)

(N − 1)
√

1 + β2
(41)

which is approximately a factor of
√

1 + β2 smaller than that using a uniform mesh.
For two dimensional problems the monitor function used is of Winslow type where

G =

[
w 0
0 w

]

and

w =

√
1 +

|∇u|2

α
, where α =

1

β2
max
Ωp

|∇u|2.

This monitor function behaves in a similar fashion to the one-dimensional monitor in the presence
of solution discontinuities.

4. Numerical experiments

4..1. Example 1

The first example considered is Burgers’ equation




φt +
(φx + 1)2

2
= 0, −1 < x < 1, t > 0

φ(x, 0) = − cos(π(x − 0.85)),
(42)

with periodic boundary conditions.
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Figure 1: DG1 numerical solution (◦) and exact solution (+) obtained on a uniform stationary
mesh (left), and on a moving mesh (right) at time t = 3/π2.

4..2. Example 2

We consider the two-dimensional Burgers’ equation

φt +
1

2
(1 + φx + φy)

2 = 0, (x, y) ∈ (−2, 2)2 (43)

φ(x, y, 0) = − cos(π(x + y)/2), (44)

with periodic boundary conditions.

5. Conclusions

We have presented a DG method for the solution of nonlinear Hamilton-Jacobi equations using
an adaptive moving mesh refinement strategy. A suitable mesh refinement criterion was used
which does not become singular when the solution become non-smooth. Numerical experiments
in one and two dimensions show that method works well and efficiently delivers high resolution
solutions using relatively coarse meshes.
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and using moving mesh (right), with N = 40.
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