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1-Introduction 
 
  We consider fully developed steady laminar flow through a toroidal pipe of small curvature ratios .The 
solution is expanded up to 40 terms by computer in powers of Dean Number. The major conclusion of this 
investigation is that the friction ratio in a loosely coiled pipe grows asymptotically as the 1/4 power of the 
similarity parameter and not as the 1/2 power as previously deduced from boundary-layer analysis. This 
work confirmed the results obtained by [1]. The goal of this analysis is to provide as complete a 
description as possible of the flow.  The analysis yields a solution for all values of Reynolds number from 
zero to infinity in a continuous fashion. 
The utility of the Stokes series has been transformed by the advent of the computer. Researchers believe 
that only the first few terms of the series could be determined numerically without excessive labors; but 
now-particularly in simpler geometry –we can compute dozens or hundreds of terms. From those we can 
estimate accurately the radius of convergence, and then attempt to extend the range of utility by analytic 
continuation. The ultimate achievement is to extract from the Stokes series for small value the boundary-
layer solution for the similarity parameter tending to infinity 
 
The paradox concerns the discrepancy between the solution obtained using the extended Stokes series 
method [1] and that obtained using boundary layer techniques [2],[3],[4],[5],[6]and experimental work of 
[7],[8],[9],[10]and numerical work of [11]for the ratio of the friction factors in coiled tubes to that in 
straight one in steady, fully developed laminar flow. In the ensuing debates several papers of 
[12],[13].[14],[15],[16].[17],[18].[19],[20],[21],[22],[23] various explanations and new evidence have 
been given; however, the paradox , the resolution of which is important still remain as a open problem. 
The author in [20] raise the possibility of cause of this paradox is the use of only 24 terms to estimate the 
asymptotic limit obtained by [1]. In this paper we extend the Stokes series from 24 terms used by [1] to 40 



terms. We confirm the major result of the friction ratio in a loosely coiled pipe grows asymptotically as 
the 1/4 power of the similarity parameter and not as the 1/2 power and that confirm the result of [1].   
  What is particularly important in problems of this type is the presence of analyticity. Not every stokes 
expansion, for examples that of the flow past sphere as described by the full Navier-Stokes equation are 
analytic in Reynolds number. In this case, method of matched asymptotic expansions is required and can 
be automated 
 
2-Statement of Problem 
 
 We adopt Dean's co-ordinate system(r,θ ) reference [24]and his normalization: Lengths are referred to the 
radius a of the pipe, and the velocity w down the pipe to the maximum speed W 0 =Ga 2 /4µ  in a straight 
pipe under the same axial pressure gradient  G= 1−L φ∂∂ /p but the stream function  ψ  for the secondary 
motion is referred to kinematics viscosityν (which mean that transverse velocities are referred toν  /a).then 
in the approximations of negligible helicity and loose coiling the Navier-Stokes equations for 
incompressible fluid reduce to(  [24], Dean’ equation  (15)-(18)) 
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3. Series Derivation and Computer Extension 
 
If the curvature ratio is small or 

L
a  is small, so that K is small, the nonlinear terms on the right hand side 

of Equation (1) and (2) are negligible and the first approximation is linear and gives 2
1 1 rW −= . One can 

systematically improve on this approximation by expanding in powers of K according to: 
 

∑
∞

=

−=+++=
1

1
3

2
21 )

576
()

576
()

576
(

n

n
n

KWWKWKWW L
           (4) 

∑
∞

=

=+++=
1

3
3

2
2

1 )
576

()
576

()
576

()
576

(
n

n
n

KKKK ψψψψψ L              (5) 

( ) )sin(694 753
1 θψ rrrr −+−=  

)2sin(
1120350

9
16

3
5

4
40

81
112

255
5600

4979 1412108642

2 θψ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−+−=

rrrrrrr  

)cos(
4044

3
40

19)1(
975

3 θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−=

rrrrrW  



)2cos(
882022400

47
5600
87

960
61

800
139

4480
1317

8400
2297

141120
14569

128070320
33

400
157

640
569

80
99

320
331

40
19

44800
4119 161412108642161412108642

2 θ⎟
⎟
⎠

⎞
−+⎜

⎜
⎝

⎛
−+−+−+−+−+−+−+−=

rrrrrrrrrrrrrrrrW  

 
We have found eight terms exactly by means of symbolic language.  However, for saving space only we 
report the result for the flux ratio as defined as the ratio of the flux cF through a curved pipe to the flux sF  
through a stationary pipe with the same pressure gradient. Its series has the form:   
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Following the recipes given by [15] and [21], we have also obtained 40 terms of the series by writing a 
FORTRAN program in quadruple precision. The results for the coefficients na  are listed as below: 

n na  n na  n na  N na  

1 1.0000000000 010×  6 -2.9771922933 310−×  11 9.1763240107 410−×  16 4.2658069115 410−×  
2 -3.0575396825 210−×  7 2.2124224081 310−×  12 7.7126893272 410−×  17 3.748929969 410−×  
3 1.1931182725 210−×  8 -1.7101745006 310−×  13 6.5605790575 410−×  18 3.313561134 410−×  
4 -6.5846066973 310−×  9 1.3610000850 310−×  14 5.6371324890 410−×  19 2.943633637 410−×  
5 4.2384990979 310−×  10 1.1076549324 310−×  15 4.8855590554 410−×  20 2.626867853 410−×  
        

This series seem to converge to a value 1)9668584.0( − for the reciprocal of the radius of convergence, 1
0
−K .  

The leading singularity for the reciprocal series 1−
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4.  Extension of the range of validity 
 
  In this problem the nearest singularity is on the negative real axis of 2K has no physical significance, and 
therefore unnecessarily limits the range of applicability of the series. The Euler transformation is one way 
to analytically continue a series or extend the range of convergence for physical K . We use the new 
variableδ , which is defined as: 
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Which maps the nearest singularity to infinity? The transformed series has fixed signs, indicating that the 
nearest singularity is on the positive real x-axis. The Domb-Sykes plots described in [16] to determine its 
exponent and corresponding radius of convergence clearly indicate that the radius of Convergence is equal 
to one. This nearest singularity at δ =1 Corresponds to ∞=2K  in the original variables.  Thus we have 
been successful in extending the series up to an infinite value of Reynolds number. A singularity at δ =1 
is confirmed by the Associated Neville tables and other available devices. 
5. The exponent at infinity 
 
Estimation of the exponent α  of the singularity at ∞=K  is the most important part of the analysis. In 
previous problems, this step has proven to be the hardest, and care must be taken. The Domb-Sykes plot 



clearly indicates that is nearly linear, and suggests that the series converges for 10 ≤≤ δ  with a limiting 
singularity of the form: 
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In the original variable, this is: 
α2~ −CK
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Or Here, α  and C are the important parameters that we seek. We try to determine the value of α  as 
accurately as possible. By using usual devices such as Domb-Sykes plot and its associated Neville tables 
described in [16] all shows the value close to -.05 
 
6. Páde approximation 
 
  The final method for determining the exponent α  is an independent analysis of the original flux ratio 
series (9), Known as the Pade approximant. This method does not necessarily require any information 
about the radius of convergence. The Pade approximants provide an approximation that is invariant under 
an Euler transformation of the independent variables. The theory of Pade approximants may be found in 
[17]). Briefly stated, the ]/[ nm Pade approximant is the ratio P (Z)/Q (Z) of polynomials P and Q of 
degree m and n, respectively, that, when expanded, agrees with the given series through terms of degree 
m+n, and normalized by P(Q)=1. Such rational fractions are known to have remarkable properties of 
analytic continuation ([19]). The coefficients of the power series must be known to degree (m+n).and .by 
equating like power of g(Z) and P(Z)/Q(Z), the linear system of m+n+1 equation must be solved to obtain 
the coefficients in the functional form P(Z)/Q(Z). A pade approximant can only indicate a singularity by 
the poles that are the zeros of its denominator.  One way to use the Pade approximant is to apply it by 
taking the logarithmic derivative of the original series (9). We do this by forming the n/(n+1) 
approximants, whose denominators are of one degree higher than the numerators. The value of α   can be 
determined by taking the ratio of the two highest degree coefficients in the numerator and the 
denominator, respectively. When we form the ratios 1/2,2/3,3/4,5/6 ,… of the Pade approximants, the 
value α  goes as: -0.0565685, -0.0572354, -0.0572357, -0.0582652, -0.0525516, -0.0544958, -0.0547399, -0.0548389,  
-0.0549789, -0.0559719, -0.0533766, -0.0537541, -0.0537595, -0.0543275, -0.0542895, -0.0543502,-0.0543381, -0.0544779. 

 
This sequence is likely approaching 0.055 and thus is consistent with the value that has already been 
discussed. It is typical of Pade approximants that this sequence is irregular. However, it is very unlikely 
that it approaches the value 1/10 of existing boundary-layer analysis, and very plausible that it approaches 
1/18. To summarize, almost all the techniques of analysis indicate that the singularity at infinity is located 
at one in the Euler-transformed plane to at least four-digit accuracy. However, the exponent related to that 
singularity cannot be absolutely determined by available methods. Taken together, all these techniques 
strongly suggest that the exponent α  is surely within the range of .05 and .055.  Pade approximants 
strongly suggest that the exponent is clearly close to 1/18 which is the value corresponding to -1/9 in the 
original form.  
 
7. The secondary singularity at ∞=k and conclusion 
 
In this problem the nearest singularity is on the negative real axis of 2K has no physical significance, and  



Therefore unnecessarily limits the range of applicability of the series. The Euler transformation is one way  
to analytically continue a series or extend the range of convergence for physical K . All the analysis for 
finding boundary layer singularity by having more term is consistent with what appeared in [1]. We omit 
details for lack of space. Following [1] we finally get the asymptotic relationship between our parameter K 
and White’s k [7] it is based on the actual mean velocity Wm down the pipe. Their k is defined in our 
terms as: 
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 The flux ratio decays as:    
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And the friction ratio grows asymptotically as:  
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Fig 1 is a comparison of previous experimental and boundary-layer results with the semi-numerical 
result obtained in this research. 
 

Fig1. Experimental friction ratios for various curvature ratios
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3. Discussion 
 

This work is concerned with the problem of flow through a loosely coiled pipe. Then by using symbolic 
language MACSYMA we have given some exact terms of their corresponding Stokes expansion. Then we 
did computer extension. Up to 40 terms and our analysis persist the same conclusion as previously 
reported in [1] which had only 24 terms, a major difference between our results and those of other 
analyses is in the asymptotic behavior of the friction factor as the similarity parameter )(2

L
aRK =  and 

hence k increases. The prevailing opinion has been that the relationship goes as 2/1~/ kff sr , whereas we 
find that 4/1~/ kff sr . 

As can be seen in figure 1, this difference is not significant until k is greater than 8000. Below that is 
little discrepancy between the present work and others. It can be explained by the fact that experiments 
require a finite amount of curvature, whereas this investigation considers the limit as the coiling ratio goes 
to zero. It would be helpful to obtain experimental data for this curved pipe problem when a/L is very 
small in order to see if our analysis is valid for considerably lower values of k. 

As regards the difference between the asymptotic behaviors for large values of k, 4/1~/ kff sr  
versus 2/1~/ kff sr , the following remarks can be made. Our expansion is based on the double limit: 
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From an expansion for small K the limiting case as K goes to infinity has been exerted; however, the 
experiments are based upon ∞→R and 

L
a  fixed (and small). In other words the asymptotic behavior may 

depend on the manner in which the similarity parameter tends to infinity. The effect of diameter ratios on 
the relation between the friction factor and the Dean number has been investigated numerically by [16] 
and is found to be negligibly small. They concluded the friction factor ratio is relatively insensitive to the 
diameter ratios at a given Dean number. However in 1988 [18] for corresponding curved pipe problem 
tried to make experiment to match the series extension, would have to satisfy that is the flow be fully 
developed at high Dean number namely bigger than 500 and laminar as well as a/L less than .03. But his 
result adds another mystery to this paradox and they obtained data, which lay closer to the present method.    

An alternative explanation of the departure of the experiments from our curve might be that for more 
tightly coiled pipes the steady laminar flow is succeeded not by turbulent flow, but by an intermediate 
regime of unsteady laminar motion, with higher friction. Taylor [25] expressed the possibility that there 
may exist an intermediate flow regime between the laminar and turbulent ranges. He observed a transition 
from a steady laminar flow to a laminar vibrating flow as the speed increased. The onset of turbulence 
accrued only at a significantly higher speed. 

As far as uniqueness is concerned, for this problem a second solution has been observed. [13] And some 
other researchers have been able to obtain dual solutions in a coiled pipe using a series truncation or finite-
difference methods. This phenomenon has also been observed in the flow through a curved semicircular 
and rectangular duct see [14],[17] respectively. By existence of such a duality, the fact (which has long 
been established numerically) that the laminar flow in a curved duct is composed of a main flow in the 
axial direction with a superimposed secondary flow having two counter-rotating vortices, should be 
reconsidered. Certainly the second solution having four counter-rotating vortices will raise the question 
about other branches of bifurcation. Moreover they have shown that this phenomenon has little effect on 
friction ratio. 



Thus we have seen possible explanations for the discrepancy between our semi numerical results and the 
experiments regarding the exponent of the similarity parameter. For large values of Dean Number 
however, conventional boundary-layer theories, which are based on the same equations as ours, and the 
same assumption of tightly coiled pipes flow, are in agreement. So if the experimental graphs are not 
completely describing the flow field, then we also must find fault with the boundary-layer results. The 
authors in [2] believes that the boundary-layers on the two halves of the tours collide at the innermost 
circle, separate there, and form a re-entrant jet that moves outward through the core; but he makes no 
attempt to incorporate that phenomenon into his analysis.  The model of [5] for the structure of the flow 
leads to the infinite thickness; or in other words, his model breaks down locally. On the other hand [4], 
believing that collision of the boundary-layer is unreasonable deliberately suppress it.[6],[22] assuming 
that a solution with attached boundary-layer exists, show that the velocity would vanish in non analytic 
fashion at the innermost  triangle and circle respectively. Finally [3] claims that the boundary-layer 
separate from the wall at about 27 degree from inside. But does not consider how that would alter his 
assumed core flow.  In this paper we have shown that what proposed by [20] as the cause of the 
discrepancy lies in the use of the only first 12 terms for corresponding curved problem is not correct. In 
this work we increase number of terms from 12 in [1] to 20 and still the major conclusion of the 
discrepancy between the solution obtained using the extended stoke series method and that obtained using 
other method persist as it was the case for the rotating pipe[26]. 
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