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Abstract
For a one-dimensional diffusion problem on an refined computational grid we present preconditioners
based on the standard approximate inverse technique. Next, we determine its spectral condition number
κ2 and perform numerical calculations which corroborate the result. Then we perform numerical calcula-
tions which show that the standard approximate inverse preconditioners and our modified versions behave
in a similar manner. To finish with we show that a combination of the standard approximate inverse
with an additional incomplete factorization leads to an almost optimal order preconditioner in 1, 2 and 3
dimensions, with or without dominant convection.

1 Introduction
Let A ∈ Rn×n and b ∈ Rn be a coefficient matrix and the right hand side vector and assume
that x ∈ Rn is the solution of Ax = b. The amount of iterations for the solution of the system
Ax = b depends on the spectral condition number κ2(A) (see [14] and [13] for a one step fixed
point, steepest descent, conjugate gradient, and GMRES method).

To reduce the amount of iterations one solves a preconditioned (transformed) system Âx̂ = b̂
for which κ2(Â) << κ2(A), and afterwards determines x from x̂. The optimal case is when
κ2(Â) = O(1) for n → ∞. For elliptic problems without convection such optimal transforma-
tions exist (see for instance [2], [3]), but not for problems with (more general) convection.

The problem of interest is a convection diffusion partial differential equation, discretized with
a Finite Difference Method on a non-uniform computational mesh. The mesh zooms in into a
point: The distance between subsequent points grows with a fixed factor ψ, in practice often
1/2, see [12], [11] and [9], independent on the dimension of the problem. We are interested in
the performance of the standard approximate inverse preconditioner: See [8], [16], [4] and [6].
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The motivation is that this preconditioner is black-box with respect to the presence or absence of
convection and that we can present optimal numerical results in the convection dominated case.

The to be presented spectral condition number derivation is (1) restricted to one spatial di-
mension, (2) sole diffusion and our (3) modified version of the standard approximate inverse. One
dimension because we need (1) [10] to calculate an explicit matrix inverse and (2) just diffusion
and (3) modification from the standard because we use a Toeplitz matrix approach from [5]. The
results are based on the PhD thesis [7] and have not been published elsewhere.

2 The convection diffusion problem
Let Ω ⊂ Rd be smooth and let v ∈ Rd. The problem of interest is the convection diffusion
equation:

−4u+ v∇u = f in Ω,
u = 0 at ∂Ω.

(1)

The partial differential equation is discretized with a Finite Difference Method on a tensor-grid
(examples are Figures 1 and 2).

To be able to apply the tensor-grids we choose as Ω ⊂ Rd the unit d-cube. The gridpoints are of
the form (x

(1)
i , x

(2)
j , x

(3)
k ). For k = 1, 2 and 3 and related integer nk > 0 let fk := 1/ψnk+1,

Fk : x 7→ f
(1−x)
k − fk
1− fk

(2)

and define

x
(k)
i = Fk(i/(nk + 1)) =

f
1−i/(nk+1)
k − fk

1− fk
, i = 0, . . . , nk + 1. (3)

Due to this construction x0 = 0, xn+1 = 1 and

xi+1 − xi
xi − xi−1

=
f 1−(i+1)/(n+1) − f 1−i/(n+1)

f 1−i/(n+1) − f 1−(i−1)/(n+1)
=
f 1−1/(n+1) − f

f − f 1+1/(n+1)

=
f−1/(n+1) − 1

1− f 1/(n+1)
=

ψ − 1

1− ψ−1

=
ψ

ψ

ψ − 1

1− ψ−1
= ψ

ψ − 1

ψ − 1
= ψ.

(4)

The amount of interior gridpoints in the xk-direction is nk and the amount of degrees of freedom
is n = Πd

k=1nk.

For the sake of presentation we focus for the case d = 1 and we assume that v = (v1, v2, v3)
where vi are all non-negative. The definition of the distances:

hi := xi+1 − xi, ∀i = 0, . . . , n, (5)
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in combination with (4) implies that

hi = ψiH, ∀i = 0, . . . , n

where

1− 0 =
n∑
i=0

(xi+1 − xi) =
n∑
i=0

hi =
n∑
i=0

ψiH = H · 1− ψn+1

1− ψ
=⇒ H =

1− ψ

1− ψn+1
.

With the use of the grid points xi and their distances hi we construct our FDM approximation.
The second derivatives are approximated with a second order finite difference at xi:

2

hi−1 + hi

(
ui+1 − ui

hi
− ui − ui−1

hi−1

)
=

1

h2
i

· 2ψ

1 + ψ
(−ψui−1 + (1 + ψ)ui − ui+1)

and the first derivatives are approximated with a first order backward finite difference at xi:
1

hi
(−ui−1 + ui) .

In stencil notation, the finite difference operator for (1) is

1

h2
i

· 2ψ

1 + ψ
[−ψ, (1 + ψ),−1] + v · 1

hi
[−1, 1, 0] , i = 1, . . . , n. (6)

After the elimination of the Dirichlet degrees of freedom u0 and un one obtains a linear system
Ax = b where A ∈ Rn×n and x,b ∈ Rn where A is positive definite by construction.

3 The preconditioned system and its Toeplitz approximation
Given a certain sparsity pattern, the application of the approximate inverse technique calculates
a matrix Gn from An such that AnGn approximates In. For our convection diffusion problem
on our tensor-grid, we use the standard sparsity pattern

S = {(i, j) : [An]ij 6= 0}.

and standard Frobenius norm minimization. Let g(n)
i be the i-th column Gn. Due to its definition

the column g
(n)
i approximates A−1

n ei. In the 1-dimensional case:

g
(n)
i = [0, . . . , 0,

c+ 2 aψ3

h2
i

+ b ψ
hi

−2 aψ3

(1+ψ)h2
i

0
−2 aψ2

(1+ψ)h2
i
− b

hi
c+ 2 aψ

h2
i

+ b
hi

−2 aψ
(1+ψ)h2

i

0 −2 a
(1+ψ)h2

i
− b

ψ hi
c+ 2 a

ψ h2
i

+ b
ψ hi


︸ ︷︷ ︸

A(i)

−1

e2, 0, . . . , 0],

g
(n)
1 = [

[
c+ 2 aψ

h2
1

+ b
h1

−2 aψ
(1+ψ)h2

1
−2 a

(1+ψ)h2
1
− b

ψ h1
c+ 2 a

ψ h2
1

+ b
ψ h1

]−1

e1, 0, . . . , 0],

g
(n)
n = [0, . . . , 0,

[
c+ 2 aψ3

h2
n

+ b ψ
hn

−2 aψ3

(1+ψ)h2
n

−2 aψ2

(1+ψ)h2
n
− b

hn
c+ 2 aψ

h2
n

+ b
hn

]−1

e2].
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for i = 2, . . . , n− 1. The three non-zero coefficients of g
(n)
i are:

2 aψ2 (2 a+ hi (b+ c ψ hi))

(1 + ψ)h4
i

,

(2 aψ3 + hi (b ψ + c hi)) (2 a+ hi (b+ c ψ hi))

ψ h4
i

,

(2 aψ + b (1 + ψ) hi) (2 aψ3 + hi (b ψ + c hi))

ψ (1 + ψ) h4
i

,

divided by det(A(i)). Below we omit the superscript n of g
(n)
i .

In the remainder of this paper we use the properties of a Toeplitz matrix because for such ma-
trices the spectral condition number can be computed with the use of the ‖ · ‖∞ norm. We first
summarize some to be used properties from [5].

Definition 1. Let b := (. . . , b−2, b−1, b0, b1, b2, . . .)
T ∈ R∞, a real vector in l1. The infinite

matrix Bn defined by

Bn =


b0 b1 b2 . . .
b−1 b0 b1 . . .
b−2 b1 b0 . . .

...
...

... . . .


is called a Toeplitz matrix. The numbers . . . , b−2, b−1, b0, b1, b2, . . . do not depend on n.

A finite section of a Toeplitz matrix, i.e. the matrix (see [5, (2.5)])

Bn =


b0 b1 . . . bn−1

b−1 b0
. . . ...

... . . . . . . b1
b−n+1 . . . b−1 b0

 , bi ∈ R,

is also called a Toeplitz matrix. For Toeplitz matrices the spectral condition number can be
computed using the ‖·‖∞ norm. This is due to a special relation between the largest and smallest
singular values σ1(Bn) and σn(Bn) of a matrix Bn and the values of ‖Bn‖∞ and ‖B−1

n ‖∞. For
the largest singular value we have (see [5, (2.5) and Theorem 4.13]):

Theorem 1. For b ∈ l1 the following holds

lim
n→∞

σn(Bn) = lim
n→∞

||Bn||∞ =
∞∑

i=−∞

|bi|. (7)

There is a similar result for the smallest singular value σ1 (see [5, Theorem 4.3 (4.8)]):
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Theorem 2. If σ1(Bn) is such that for all n ∈ N , σ1(Bn) ≥ δ > 0 then

lim
n→∞

σ1(Bn) = lim
n→∞

1

||B−1
n ||∞

. (8)

Therefore, if Bn is Toeplitz, we have

lim
n→∞

κ2(Bn) = lim
n→∞

σn(Bn)

σ1(Bn)
=

limn→∞ σn(Bn)

limn→∞ σ1(Bn)
=

∞∑
i=−∞

|bi|/ lim
n→∞

‖B−1
n ‖∞.

Formulas for eigenvalues and eigenvectors of a tridiagonal Toeplitz matrix:

Theorem 3. A tridiagonal Toeplitz matrix Bn a−1a1 6= 0 has eigenvalues:

σ(Bn) =

(
a0 + 2

√
a−1a1 cos(

pπ

n+ 1
)

)n

p=1

(9)

and related eigenvectors xp:

xp =

(√
(a1/a−1)

i
sin(

pπ

n+ 1
i)

)n

i=0

.

In order to calculate the spectral condition number of GnAn and AnGn we need to determine
the explicit form of these products. We first focus on AnGn, a five diagonal matrix of which
diagonals −1 and +1 contain zeros due to its the construction. The lower and upper codiagonals
of AnGn can be calculated in a straightforward manner:

. . . . . .

. . . ai−2,i−2 ai−2,i−1 0 0 0
ai−1,i−2 ai−1,i−1 ai−1,i 0 0

0 ai,i−1 ai,i ai,i+1 0
0 0 ai+1,i ai+1,i+1 ai+1,i+2

0 0 0 ai+2,i+1 ai+2,i+2
. . .

. . . . . .


·



...
0

g(i),i−1

g(i),i

g(i),i+1

0
...


=



...
ai−2,i−1 · g(i),i−1

0
1
0

ai+2,i+1 · g(i),i+1
...


.

implies that

ai−2,i−1 · g(i),i−1 =
−2ψ5

(1 + ψ) h2
i

g(i),i−1 =
−2ψ5

(1 + ψ) h2
i

2ψ2 (2 + hiv)

(1 + ψ)h4
i

/det(A(i))

and likewise for the lower co-diagonal ai+2,i+1 · g(i),i+1. Without convection (v = 0):

det(A(i)) =
8a3ψ3(1 + ψ2)

h6
i (1 + ψ)2

, i = 2, . . . , n− 1,
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and

g(i) = h2
i ·

1 + ψ

2a(1 + ψ2)
· [0, . . . , 0, 1/ψ, (1 + ψ)/ψ, 1, 0, . . . , 0], i = 2, . . . , n− 1. (10)

This leads to upper co-diagonal

ai−2,i−1 · g(i),i−1 =
−2ψ5

(1 + ψ) h2
i

g(i),i−1 =
−2ψ5

(1 + ψ) h2
i

· h2
i ·

1 + ψ

2(1 + ψ2)
· 1/ψ = −ψ4/(1 + ψ2),

and lower co-diagonal

ai+2,i+1 · g(i),i+1 =
−2

(1 + ψ)ψ2 h2
i

· h2
i ·

1 + ψ

2(1 + ψ2)
= − 1

ψ2(1 + ψ2)
.

Note that these representations are independent of hi and even a possible diffusion factor a 6= 1
would drop out.

Even in the absence of convection, the matrix AnGn is not Toeplitz because just a few of
its entries spoil this property. For the numerical analysis in the remainder we therefore focus on
the case of no convection and on the obvious Toeplitz approximations Br

n of AnGn and Bl
n of

GnAn:

Br
n = [− 1

ψ2(1 + ψ2)
, 0, 1, 0,− ψ4

1 + ψ2
], Bl

n = [− ψ2

1 + ψ2
, 0, 1, 0,− 1

1 + ψ2
]. (11)

Note that both approximations Br
n and Bl

n are reducible: Due to its special diagonal structure,
the degrees of freedom can be permuted with a permutation P (first all odd numbers, then all
even numbers) such that

B̄l
n = PBl

nP
T =

[
Bl
n/2

Bl
n/2

]
(12)

Because eigenvalues and the spectral condition number are permutation invariant the spectrum
of B̄l

n and Bl
n and Bl

n/2 are identical.

Example 1. Let c = 0 and ψ = 1/2. Then i-th finite difference equation (6) is:

1

h2
i

· 2ψ

1 + ψ
[−ψ, (1 + ψ),−1] =

1

H2

1

(ψ2)i
· 2ψ

1 + ψ
[−ψ, (1 + ψ),−1]

=
1

H2
4i · 2

3

[
−1

2
,
3

2
,−1

]
=

1

H2
4i ·

[
−1

3
, 1,−2

3

]
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for all i = 1, . . . , n. This leads to

An =
4

H2
·



1 −2
3

−4
3

4 −8
3

−16
3

16 −32
3

−64
3

64
. . .

. . . . . . −2
3
· 4n−2

−1
3
· 4n−1 4n−1 · 1


∈ Rn×n

and (with the use of (10)):

Gn =
H2

4
·



9
7

6
20

3
7

9
20

6
80

3
20

9
80

. . .

3
80

. . . 6
20·4n−3

. . . 9
20·4n−3

6
56·2n

3
20·4n−3

9
56·2n


∈ Rn×n.

At its turn this leads to:

AnGn =



1 0 − 1
20

0 1 0
. . .

−48
21

0
. . . − 1

20

−32
10

. . . 0 − 1
28

. . . 1 0

−32
10

0 1


, (13)

and

GnAn =



31
35

12
35

−4
5

− 6
35

39
35

0
. . .

−1
5

0 1 −4
5

−1
5

1 0 −4
5

. . . 0 39
35

−12
35

−1
5

6
35

31
35


. (14)

7



These two products are almost Toeplitz and are approximated with the Toeplitz matrices:

Br
n =



1 0 − 1
20

0 1 0
. . .

−32
10

0
. . . − 1

20

−32
10

. . . . . . − 1
20

. . . 1 0

−32
10

0 1


and

Bl
n =



1 0 −4
5

0 1 0
. . .

−1
5

0
. . . −4

5

−1
5

1
. . . −4

5

. . . 1 0

−1
5

0 1


. (15)

In this case

Bl
n/2 =


1 −4

5

−1
5

1
. . .

. . . . . . −4
5

−1
5

1

 .
which via 9 implies that

σ(Bl
n) = σ(Bl

n/2) =

(
1 +

4

5
cos(

iπ

n+ 1
)

)n/2

i=1

⊂ (
1

5
,
9

5
), n→∞.

4 The condition number of the preconditioned systems
The calculation of κ2(B

r
n) and κ2(B

l
n) is not trivial because these matrices are not symmetric.

For the latter matrix we resort to the calculation of an inverse presented in [10, Corr. 5.5]:

Theorem 4. Let Ω = (0, 1) be partitioned as 0 = x̃0 < x̃1 < . . . < x̃n+1 = 1. Let h̃i = x̃i+1−x̃i.
Let Ãn ∈ Rn×n be the matrix

Ãn = [− 2h̃i

h̃i + h̃i−1

, 2,− 2h̃i−1

h̃i + h̃i−1

]. (16)
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Then (see [10, Corr. 5.5]):

[Ã−1
n ]i,j =

h̃j + h̃j−1

2h̃jh̃j−1

(1− x̃j)x̃i, i ≤ j

h̃j + h̃j−1

2h̃jh̃j−1

x̃j(1− x̃i), i ≥ j.

(17)

The trick is to establish that Bl
n is of the form Ãn, i.e., is related to the discretization of the

Laplace operator on a different grid (just the odd or the even points, with grow-factor ψ2). This
is done as follows.

Lemma 1. Let ψ ≤ 1 and Ψ := ψ2. Recall that due to (12) there exist b−1 and b1 such that

Bl
n/2 = [

b−1

2
, 1,

b1
2

].

Then Bl
n/2 is of the form (16), and

[(Bl
n/2)

−1]i,j =
Ψ−j(1 + Ψ)(1 + Ψ + . . .+ Ψn/2) (1− x̃j)x̃i, i ≤ j

Ψ−j(1 + Ψ)(1 + Ψ + . . .+ Ψn/2) x̃j(1− x̃i), i ≥ j.

Proof. First we show that Bl
n/2 is of a similar form as Ãn. In particular we should have

b−1 = − 2h̃i+1

h̃i+1 + h̃i
and b1 = − 2h̃i

h̃i+1 + h̃i
, (18)

cf. (16). The required form in (18) holds if

b−1

b1
=
h̃i+1

h̃i
.

In our case

b−1 = − 2ψ2

1 + ψ2
, b1 = − 2

1 + ψ2
⇒ h̃i+1

h̃i
=
− 2ψ2

1+ψ2

− 2
1+ψ2

= ψ2.

Let Ψ := ψ2 and m := n/2. Then

1 =
m+1∑
i=1

h̃i = h̃1

m∑
i=0

Ψi = h̃1
1−Ψm+1

1−Ψ
=⇒ h̃i =

1−Ψ

1−Ψm+1
Ψi−1

and related

x̃i =
1−Ψ

1−Ψm+1

i∑
j=1

Ψj−1 =
1−Ψ

1−Ψm+1

1−Ψi

1−Ψ
=

1−Ψi

1−Ψm+1
.

for all i = 0, . . . , n.
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Having acquired expressions for hi and x̃i, we use (17) to compute (Bl
n/2)

−1:

Lemma 2.
‖(Bl

n)
−1‖∞ ≤

1 + Ψ

1−Ψ
(
n

2
+ 1), κ2(B

l
n) = O(n), n→∞. (19)

Proof. Let m := n/2. The i-th row sum of ‖(Bl
n/2)

−1‖∞ is:

ri =
1 + Ψ

1−Ψ−Ψm+1 + Ψm+2
((m+ 1)(1−Ψi) + i(Ψm+1 − 1)).

One finds, for the first factor (which is independent of i):

lim
n→∞

1 + Ψ

1−Ψ−Ψm+1 + Ψm+2
=

1 + Ψ

1−Ψ

and for the second factor:

(m+ 1)(1−Ψi) + i(Ψm+1 − 1) ≤ (m+ 1)(1−Ψi)

≤ m+ 1.

This leads to
‖(Bl

n)
−1‖∞ = ‖(Bl

n/2)
−1‖∞ ≤

1 + Ψ

1−Ψ
(
n

2
+ 1).

The second claim follows from ‖Bl
n‖∞ = 2 in combination with the first claim.

The matrix Br
n does not satisfy the conditions from [10, Corr. 5.5] because its rows sums i =

2, . . . , n − 1 are not zero. However, an extra scaling with a diagonal matrix will solve this
problem. Nevertheless, our bound is not optimal, as numerical results in Table 1 show.

Lemma 3.
κ2(B

r
n/2)

.
= O(

n

2

(
1

ψ2

)n

), n→∞. (20)

Proof. Observe that Br
n can be permuted to yield

B̄r
n =

[
Br
n/2

Br
n/2

]
where

Br
n/2 = [− 1

ψ2(1 + ψ2)
, 1,− ψ4

1 + ψ2
].

Let Dn/2 be a diagonal matrix defined by

[Dn/2]i,i :=

(
1

ψ2

)i−1

, i = 1, . . . , n/2. (21)
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Then
D−1
n/2B

r
n/2Dn/2 = (Bl

n/2)
T ,

which implies
Br
n/2 = Dn/2(B

l
n/2)

TD−1
n/2. (22)

Since κ2(B
l
n/2) = O(n/2) and κ2(Dn/2) = ψ−n one obtains the desired result.

5 Numerical results
The numerical results are provided for a range of different tensor refined grids on the unit d-cube
domain Ω ⊂ Rd for the convection diffusion equation with Dirichlet boundary conditions (1).
For all tests we use tensor-grids defined with the use of (3), n1 = n2 = n3 and ψ = 1/2. For
d = 2 dimensions this leads to the grids T-1, T-2 and T-n in Figures 1 and 2. In three dimensions
the grid T-3 is refined into the corner (1, 1, 1).

For all numerical tests, we chose a convection vector v = c · b ∈ Rd which follows the refined
grid: If there is grid refinement towards to the +1 corner in the xi direction then bi = 1 and
bi = 0 elsewise. If there is refinement in all spatial directions we use bi = 1 for all directions –
for comparison purposes. The scale factor c = 0 (no convection) or c = 100 (convection).

For our tests the iteration count did not depend on the smoothness of the right hand side of the
linear system. To determine this we used solutions such as x→ π

2
+arctan(100(x−1)) through

x, y, z 7→ 16 · x(1 − x)y(1 − y)z(1 − z) + x2 + y2 + z2. Though GMRES [14] is applicable
CGS [15] takes less iterations and is our iterative method of choice.

All tables contain results for a range of different preconditioners constructed with the approxi-
mate inverse and ILU(0) factorization. CGS-k stands for CGS applied to:

CGS-1: The original system of equations:

Anxn = bn;

CGS-2: The right preconditioned system:

AnGnyn = bn; xn = Gnyn,

CGS-3: The left preconditioned system:

GnAnxn = Gnbn;

CGS-4: The original system of equations with K1 ILU(0) factorization of An:

K−1
1 Anxn = K−1

1 bn;
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CGS-5: The right preconditioned system with K2 ILU(0) factorization of AnGn:

K−1
2 AnGnyn = K−1

2 bn, xn = Gnyn;

CGS-6: The left preconditioned system with K3 ILU(0) factorization of GnAn:

K−1
3 GnAnxn = K−1

3 Gnbn.

In all cases, CGS is stopped when the absolute residual is smaller than 10−12 – initial residuals
are between 1/2 and 2. A bar (”-“) denotes that no convergence is obtained, probably due to the
unscaled standard ILU(0) preconditioner (see [13] for scaled ILUs). The standard incomplete
LU(0) factorization (see for instance [1]) depends on the numbering of the degrees of freedom
which is in all cases left to right and bottom to top.

For the case d = 1, c = 0 and ψ = 1/2 one finds Toeplitz approximations Br
n, Bl

n and Dn with
the use of (11), (12) and (21):

Br
n = [−32

10
, 1, − 1

20
], Bl

n = [−1

5
, 1, −4

5
], [Dn]i,i = 4i−1.

The numerical results for κ2(B
l
n) in Table 1 corroborate our theoretical result (19). They also

indicate that the theoretical result (20) is not sharp and suggest instead the better bound

κ2(B
r
n/2) ∼ O

(
1

ψ

)n

), n→∞. (23)

For dimensions d = 2 and d = 3 the results in Tables 2, 3, 4 and 5 indicate that the real
approximate inverse systems AnGn and GnAn behave just as the approximations Br

n and Bl
n

– even in the convection dominant case. They also show that an additional ILU(0) factorization
applied to AnGn and GnAn can lead to an (almost) optimally conditioned system.

The numerical results for other combinations of refinement such as in Figure 2 are all similar,
see [7].
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(a) Tensor grid T-1 with refinement to x = 1, ψ =
1/2.

(b) Tensor grid T-2 with refinement to x = 1 and
y = 1, ψ = 1/2.

Figure 1: Tensor grids with different refinements.

(a) Tensor grid T-n with refinement into all corners,
ψ = 1/2.

Figure 2: Tensor grid T-n with refinement into all corners, ψ = 1/2.
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n 5 6 7 8 9 10 11
κ2(Br

n) 1086.09 4390.73 1.77·104 7.10·104 2.85·105 1.14·106 4.58·106

κ2(Bl
n) 9.20 11.38 13.55 15.71 17.87 20.03 22.18

κ2(Dn) 44 45 46 47 48 49 410

κ2(Br
n)/κ2(Dn) 4.24 4.29 4.32 4.34 4.35 4.36 4.37

Table 1: Results for the grid T-1 (1-d) without convection c = 0.

n (nk) 16 (4) 25 (5) 36 (6) 49 (7) 64 (8) 81 (9) 100 (10) 121 (11)
κ2(An) 121.61 506.14 2066.41 8352.85 3.36·104 1.35·105 5.40·105 2.16·106

κ2(AnGn) 8.03 20.89 40.12 92.64 172.70 391.37 718.89 1612.62
κ2(GnAn) 2.78 3.83 4.80 5.90 6.92 8.03 9.08 10.19
CGS-1 11 21 37 - - - - -
CGS-2 9 13 14 16 17 19 20 23
CGS-3 8 11 11 13 15 16 17 18
CGS-4 - - - - - - - -
CGS-5 5 7 - - - - - -
CGS-6 4 5 5 5 5 6 6 6

Table 2: Results for the grid T-2 without convection c = 0.

n (nk) 16 (4) 25 (5) 36 (6) 49 (7) 64 (8) 81 (9) 100 (10) 121 (11)
κ2(An) 41.81 129.53 432.80 1553.95 5866.31 2.28·104 8.99·104 3.57·105

κ2(AnGn) 23.23 54.07 118.92 255.26 523.16 1072.20 2152.34 4370.88
κ2(GnAn) 3.78 4.67 5.42 6.05 6.56 6.97 7.33 7.70
CGS-1 11 17 30 - - - - -
CGS-2 6 8 10 12 14 17 19 20
CGS-3 6 8 9 10 12 13 16 16
CGS-4 - - - - - - - -
CGS-5 - - - - - - - -
CGS-6 3 3 4 5 5 5 5 6

Table 3: Results for the grid T-2 with convection c = 100.

n (nk) 27 (3) 125 (5) 343 (7) 729 (9) 1331 (11) 2197 (13) 3375 (15) 4913 (17)
κ2(An) 28.36 512.47 8474.53 1.37·105 2.19·106 3.51·107 5.62·198 8.99·109

κ2(AnGn) 3.11 15.16 68.23 289.31 1197.38 4881.77 1.98·104 7.95·104

κ2(GnAn) 1.85 3.63 5.75 7.92 10.09 12.25 14.41 16.57
CGS-1 10 - - - - - - -
CGS-2 8 13 17 22 22 25 30 34
CGS-3 7 10 13 16 18 18 19 20
CGS-4 7 - - - - - - -
CGS-5 4 8 - - - - - -
CGS-6 4 5 6 6 6 6 6 6

Table 4: Results for the grid T-3 without convection c = 0.
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n (nk) 27 (3) 125 (5) 343 (7) 729 (9) 1331 (11) 2197 (13) 3375 (15) 4913 (17)
κ2(An) 16.07 166.60 2143.91 3.23·104 5.11·105 8.16·106 1.31·108 2.09·109

κ2(AnGn) 8.16 51.83 271.05 1143.05 4627.43 1.87·104 7.53·104 3.02·105

κ2(GnAn) 3.26 6.35 8.77 10.18 10.93 11.59 12.49 13.57
CGS-1 10 36 - - - - - -
CGS-2 5 9 13 20 23 26 31 35
CGS-3 5 8 13 16 18 21 22 23
CGS-4 4 - - - - - - -
CGS-5 3 6 - - - - - -
CGS-6 3 4 5 6 6 7 7 7

Table 5: Results for the grid T-3 with convection c = 100.
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