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1. Introduction

We consider a laminar, steady, two-dimensional flow of an incompressible Newtonian fluid in
a channel at high Reynolds number. When the walls are slightly deformed, adverse pressure
gradients are generated and separation can occur. The analysis of the flow structure has been
done essentially by Smith [7]. Later, a systematic asymptotic analysis has been performed by
Saintlos and Mauss [6]. More recently, the modelling of channel flow has been examined by
Lagrée et al. [5]. These analyses show that there is no external flow region and the asymptotic
models for the flow perturbations are mainly based on an inviscid rotational core flow region
together with boundary layers near the walls; a comprehensive discussion of this structure can
be found in Sobey [8].

Here, we use the Successive Complementary Expansion Method, SCEM, in which we assume
a uniformly valid approximation (UVA) based on generalized expansions. This method, devel-
oped by Cousteix and Mauss [1, 2], has been used by Dechaume et al. [4]. The first step consists
of an inviscid approximation which applies far from the walls. This approximation must be
improved near the walls by adding a correction which takes into account the effects of viscosity.
Thanks to generalized expansions, a strong coupling occurs between the viscous and inviscid re-
gions. This notion is called “interactive boundary layer” (IBL). This means that the effect of the
boundary layer on the inviscid flow and the reciprocal effect are considered simultaneously. The
construction of the UVA does not require any matching principle, only the boundary conditions
of the problem are applied.

2. Formulation of the problem

Navier-Stokes dimensionless equations can be written

div
−→
V = 0 , (grad

−→
V ) ·−→V = −gradΠ +

1
R �−→

V . (1)

where R is the Reynolds number. The basic plane Poiseuille flow is

v(x) = u0 =
1
4
− y2 , v(y) = 0 , Π = Π0 = −2x

R + p0 . (2)

The flow is perturbed, for instance, by indentations of the lower and upper walls such as

yl = −1
2

+ εF (x, ε) , yu =
1
2
− εG(x, ε) , (3)

where ε is a small parameter (Fig. 1). If we seek a solution in the form

v(x) = u0(y) + εu(x, y, ε) , v(y) = εv(x, y, ε) , Π − p0 = −2x

R + εp(x, y, ε) , (4)
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Figure 1: Flow in a two-dimensional channel with deformed walls. In this figure, all quantities
are dimensionless

the Navier-Stokes equations become

∂u

∂x
+

∂v

∂y
= 0 , (5a)

ε

(
u

∂u

∂x
+ v

∂u

∂y

)
+ u0

∂u

∂x
+ v

du0

dy
= −∂p

∂x
+

1
R

(
∂2u

∂x2
+

∂2u

∂y2

)
, (5b)

ε

(
u

∂v

∂x
+ v

∂v

∂y

)
+ u0

∂v

∂x
= −∂p

∂y
+

1
R

(
∂2v

∂x2
+

∂2v

∂y2

)
. (5c)

It is clear that, for high Reynolds numbers, the reduced equations are of first order leading
to a singular perturbation. In the core flow, we are looking for approximations coming from
asymptotic generalized expansions such as

u = u1(x, y, ε) + · · · , v = v1(x, y, ε) + · · · , p = p1(x, y, ε) + · · · . (6)

Formally, neglecting terms of order O(ε, 1/R) , for the core flow, we obtain

∂u1

∂x
+

∂v1

∂y
= 0 , (7a)

u0
∂u1

∂x
+ v1

du0

dy
= −∂p1

∂x
, (7b)

u0
∂v1

∂x
= −∂p1

∂y
. (7c)

It is useful to note the behaviour of the solution of (7a–7c) in the vicinity of the walls. For
instance, as y → −1/2, we have

u1 = −2p10 ln
(

1
2

+ y

)
+ c10 + · · · ,

v1 = −p10x + 2p10x

(
1
2

+ y

)
ln

(
1
2

+ y

)
−

(
1
2

+ y

)
(2p10x + c10x) + · · · ,

p1 = p10 +
1
2

(
1
2

+ y

)2

p10xx + · · · .

In the above equations, p10 and c10 are functions of x and ε. The letter x in index denotes a
derivative with respect to the streamwise variable x.
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3. Uniformly Valid Approximation

In order to satisfy the no-slip condition at the walls, two boundary layers are introduced in
which the appropriate variables are

Y =
1
2 + y

ε
, (8a)

Ŷ =
1
2 − y

ε
. (8b)

In terms of boundary layer variables, the boundary layer thicknesses are of order 1. Then,
in the two boundary layers, we have u0 = O(ε). In this way, u0 and εu1 are of the same order
near the walls and the velocity u0 + εu in (4) can be negative. According to SCEM, a UVA is
obtained by complementing the core approximation

u = U1(x, Y, ε) + Û1(x, Ŷ , ε) + u1(x, y, ε) , (9a)
v = εV1(x, Y, ε) − εV̂1(x, Ŷ , ε) + v1(x, y, ε) , (9b)
p = Δ(ε)P1(x, Y, ε) + Δ(ε)P̂1(x, Ŷ , ε) + p1(x, y, ε) , (9c)

where the gauge function Δ(ε) is yet undetermined. Here, the quantities (u, v, p) do not represent
the exact solution but only an approximate solution.

The form of approximation for v in (9b) is imposed by the continuity equation which must
be non trivial

∂U1

∂x
+

∂V1

∂Y
= 0 , (10a)

∂Û1

∂x
+

∂V̂1

∂Ŷ
= 0 . (10b)

With this formulation, it is clear that, if (u1, v1) represent an approximation in the core of
the flow, we have

Y → ∞ : U1 → 0 , V1 → 0 , (11a)

Ŷ → ∞ : Û1 → 0 , V̂1 → 0 . (11b)

Boundary conditions are required along the lower and upper walls of the channel, i.e. along
the lines Y = F (x, ε) and Ŷ = G(x, ε). Along these two walls, we have

Y = F (x, ε) : u0 + εu = 0 , v = 0 , (12a)

Ŷ = G(x, ε) : u0 + εu = 0 , v = 0 . (12b)

With the approximation given by (9a, 9b), we have

Y = F (x, ε) : u0 + εU1 + εu1 = 0 , εV1 + v1 = 0 , (13a)

Ŷ = G(x, ε) : u0 + εÛ1 + εu1 = 0 , −εV̂1 + v1 = 0 . (13b)

It is useful to note that, in contrast with external boundary layers, the terms u1 and v1 or
their y-derivatives are singular in the vicinity of the walls. This shows the great advantage of
SCEM since the UVAs for u and v are perfectly regular.
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4. IBL Model for the Lower Wall

In order to obtain a UVA in the lower boundary layer and in the core flow, we set

u = U1(x, Y, ε) + u1(x, y, ε) , (14a)
v = εV1(x, Y, ε) + v1(x, y, ε) , (14b)
p = Δ(ε)P1(x, Y, ε) + p1(x, y, ε) , (14c)

where, for the sake of simplicity of notation, the same notation (u, v, p) as for the preceding
UVA given by (9a–9c) is used. In order to have the same order for the inertia terms and the
viscous terms in the boundary layer, we take

R =
1
ε3

. (15)

In Navier-Stokes equations, it is necessary to keep terms which are apparently negligible in
order to ensure that the behaviour at the wall is bounded. Now, it is essential to examine the
pressure terms. From the condition on the transverse velocity given by (13a) and from (7c), in

the boundary layer, we have v1 = O(ε) and
∂p1

∂y
= O(ε2). Then, we must take Δ = ε3, otherwise

the transverse momentum equation cannot be satisfied. Coming back to approximations (u, v, p)
expressed by (14a–14c), we obtain

∂u

∂x
+

∂v

∂y
= 0 , (16a)

ε

(
u

∂u

∂x
+ v

∂u

∂y

)
+ u0

∂u

∂x
+ v

du0

dy
= −∂p1

∂x
+

1
R

∂2u

∂y2
. (16b)

Similar equations can be obtained for the upper boundary layer. These equations must be solved
in association with the core flow equations. Therefore, it is clear that (16a, 16b) associated with
the core flow equations give an approximation valid in the whole channel.

If necessary, the transverse momentum equation can be used to give the transverse pressure

gradient
∂p

∂y
. We have

ε

(
u

∂v

∂x
+ v

∂v

∂y

)
+ u0

∂v

∂x
= −∂p

∂y
+

1
R

∂2v

∂y2
. (17)

5. Global IBL Model

The generalized asymptotic expansions for the velocity components are given by

v(x) = u0(y) + εu(x, y, ε) + · · · , (18a)
v(y) = εv(x, y, ε) + · · · . (18b)

Let us remember that it is necessary to solve (16a, 16b) in association with the core flow
equations (7a–7c).

Equations (16a, 16b) can be recast in the same form as Prandtl’s equations if we set

ũ = u0 + εu , (19a)
ṽ = εv , (19b)

p̃1 = −2x

R + εp1 + pc , (19c)
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where pc is an arbitrary constant. Equations (16a, 16b) become

∂ũ

∂x
+

∂ṽ

∂y
= 0 , (20a)

ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y
= −∂p̃1

∂x
+

1
R

∂2ũ

∂y2
. (20b)

The above equations have the same form as Prandtl’s equations, but the pressure is not constant
in the y-direction.

These equations are associated with boundary conditions. At the walls, the no-slip conditions
are ũ = 0 and ṽ = 0. It is clear that the pressure gradient must be adjusted to ensure mass
flow conservation in the channel. In addition, the solution for the core flow equations requires
additional conditions.

6. Numerical Solution

In this section, we present a brief description of the numerical solution of the global IBL model.
To calculate the pressure and to produce the results discussed in Sect. 7., we use a simple

approach suggested by Smith’s theory and obtained in the case of longer wall deformations. The
core flow equations are

∂(ũ1 − u0)
∂x

+
∂ṽ1

∂y
= 0 , (21a)

u0
∂(ũ1 − u0)

∂x
+ ṽ1

du0

dy
= 0 , (21b)

u0
∂ṽ1

∂x
= − ∂

∂y

(
p̃1 +

2x

R

)
. (21c)

The solution is given by

ũ1 − u0 = Ã(x)
du0

dy
, (22a)

ṽ1 = −dÃ

dx
u0 , (22b)

p̃1 +
2x

R = B̃(x) +
d2Ã

dx2

∫ y

0
u2

0(η) dη , (22c)

where η is an integration variable and the arbitrary constant in the pressure is absorbed in the
function B̃(x) and

ũ1 = u0 + εu1 , (23a)
ṽ1 = εv1 . (23b)

Thus, the pressure is given by

p̃1 +
2x

R = B̃(x) +
d2Ã

dx2

(
y

16
− y3

6
+

y5

5

)
. (24)

In this formulation, the question is to determine the function B̃(x) and the so-called displacement
function Ã(x). To this end, two conditions are used. The first one is to ensure mass flow
conservation in the channel and the second one is given by

ṽ(yc) = ṽ1(yc) , (25)

where y = yc is a core line. This assumption is justified by the fact that the wall boundary
layers are thin and that the flow perturbation in the core is inviscid; therefore the solution for
ũ and ṽ, which is assumed to be a uniformly valid approximation, must agree with the solution
for ũ1 and ṽ1.
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7. Comparison with Navier-Stokes Solutions

In order to assess the validity of the proposed global IBL model, comparisons with Navier-
Stokes solutions are presented in this subsection. The IBL model is based on the system of
generalized boundary layer equations (20a) and (20b) associated with (22c). The Navier-Stokes
solutions were obtained by Dechaume who developed a highly accurate solver [3]. A spectral
method based on Legendre polynomials has been implemented and the solution involves a domain
decomposition of Dirichlet-Neuman type. A technique of velocity-pressure decoupling is used.
For the time integration, the time derivatives are expressed by an implicit Euler scheme, the
nonlinear terms and the pressure boundary conditions are extrapolated. The resulting linear
systems are solved by successive diagonalisations.

For these comparisons, the flow is calculated in a channel whose upper wall is flat and the
lower wall is deformed in the domain −L/2 ≤ x ≤ L/2 according to

yl = −1
2

+
h

2

[
1 + cos

(
2πx

L

)]
. (26)

Outside the domain −L/2 ≤ x ≤ L/2, the lower wall is flat.
One case is presented here. The lower wall is deformed by a bump such as

h = 0.36 , L = 4 , R = 1000 .

The characteristics of the wall indentation were chosen to produce a flow close to separation on
the lower wall.
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Figure 2: Comparisons between global IBL results and Navier-Stokes solutions (R = 1000,
h = 0.36, L = 4)

The skin-friction coefficient is defined by

Cf =
2
R

∣∣∣∣∂ũ

∂y

∣∣∣∣
y=y(wall)

.

The evolution of
Cf

2
R is plotted as function of x in Fig. 2. The overall agreement between

the global IBL results and the Navier-Stokes solutions is very satisfactory. Considering that
the Navier-Stokes results are reference solutions, the shape of the curves and the level of the
skin-friction are well predicted by the global IBL model. Let us note that the asymptotic theory
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is established for large Reynolds numbers and for wall indentations whose height is small and
length is large compared to the channel width. Even if these conditions are not satisfied a
priori in this test case, the agreement of IBL results with Navier-Stokes solutions is strikingly
good. When the flow perturbations induced by the wall deformation are weak, the cross-section

pressure variations are very small and it is sufficient to assume that
∂p

∂y
= 0. Then, the evolutions

of the skin-friction on the upper and lower walls are identical. For more severe wall deformations,
the hypothesis of a constant pressure in a cross-section does not hold and (22c) can be used
to calculate the pressure variations. In this case, for a non symmetric wall deformation, the
skin-friction evolutions along the upper and lower walls are not the same.

8. Conclusion

Different approximations of Navier-Stokes equations for the study of high Reynolds number flows
in a two-dimensional channel with deformed walls are obtained by applying SCEM.

The flow perturbations are described by an inviscid flow model in the core which is strongly
coupled to generalized boundary layer equations valid in the whole channel. Finally, we obtain
a global interactive boundary layer model. As in the study of external flows, SCEM proved to
be a very fruitful tool for analyzing the flow structure.

A simplified model for the pressure variations has been implemented numerically. Essentially,
this model for the pressure is based on Smith’s theory which is the equivalent of the triple
deck theory for external flows. IBL results obtained with this simplified pressure equation are
in very good agreement with Smith’s theory, at least as far as boundary layer characteristics
are concerned, and also with the Navier-Stokes solutions. Even with relatively severe wall
indentations and not very large Reynolds numbers, the global IBL model produces satisfactory
results. It is expected that even better results can be obtained with a more refined model for
the core flow.

It should be noted that SCEM offers interesting perspectives with the construction of a UVA.
In fact, (ũ1, ṽ1) is not necessarily an approximation in the flow core whereas (ũ, ṽ) gives a UVA.
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