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1. Introduction

Turbulence plays an important role in many chemical engineering processes (fluid flow, mass
and heat transfer, chemical reactions) which are dominated by convective transport. Since the
direct numerical simulation (DNS) of turbulent flows is still prohibitively expensive, eddy vis-
cosity models based on the Reynolds Averaged Navier-Stokes (RANS) equations are commonly
employed in CFD codes. One of the most popular ones is the standard k − ε model which has
been in use since the 1970s. However, its practical implementation and, especially, the near-wall
treatment has always been some somewhat of a mystery. Algorithmic details and employed
‘tricks’ are rarely reported in the literature, so that a novice to this area of CFD research often
needs to reinvent the wheel. The numerical implementation of turbulence models involves many
algorithmic components all of which may have a decisive influence on the quality of simula-
tion results. In particular, a positivity-preserving discretization of the troublesome convective
terms is an important prerequisite for the robustness of the numerical algorithm. This paper
presents a detailed numerical study of the k − ε model implemented in the open-source soft-
ware package FeatFlow (http://www.featflow.de) using algebraic flux correction to enforce
the positivity constraint [1, 2]. Emphasis is laid on a new implementation of wall functions,
whereby the boundary conditions for k and ε are prescribed in a weak sense. Furthermore,
the advantages of Chien’s low-Reynolds number modification are explored. Two representative
benchmark problems are used to evaluate the performance of the proposed algorithms in 3D.

2. Implementation of the k − ε turbulence model

2..1. Mathematical model

In the framework of eddy viscosity models, the hydrodynamic behavior of a turbulent incom-
pressible fluid is governed by the RANS equations for the velocity u and pressure p

∂u

∂t
+ u · ∇u = −∇p + ∇ ·

(

(ν + νT )[∇u + ∇uT ]
)

, ∇ · u = 0, (1)

where ν depends only on the physical properties of the fluid, while νT is the turbulent eddy
viscosity which is supposed to emulate the effect of unresolved velocity fluctuations u′.

If the standard k − ε model is employed, then νT = Cµ
k2

ε , where k is the turbulent kinetic
energy and ε is the dissipation rate. Hence, the above PDE system is to be complemented by
two additional convection-diffusion-reaction equations for computation of k and ε

∂k

∂t
+ ∇ ·

(

ku − νT

σk
∇k

)

= Pk − ε, (2)

∂ε

∂t
+ ∇ ·

(

εu− νT

σε
∇ε

)

=
ε

k
(C1Pk − C2ε), (3)
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where Pk = νT
2 |∇u + ∇uT |2 and ε are responsible for production and dissipation of turbulent

kinetic energy, respectively. The default values of the involved empirical constants are as follows:
Cµ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3. Last but not least, equations (1)–(3) are
to be endowed with appropriate initial/boundary conditions which will be discussed later.

2..2. Iterative solution strategy

The discretization in space is performed by an unstructured grid finite element method. The
incompressible Navier-Stokes equations are discretized using the nonconforming Q̃1/Q0 element
pair, whereas standard Q1 elements are employed for k and ε. After an implicit time discretiza-
tion by the Crank-Nicolson or backward Euler method, the nodal values of (v, p) and (k, ε) are
updated in a segregated fashion within an outer iteration loop (see below).

For our purposes, it is worthwhile to introduce an auxiliary parameter γ = ǫ/k, which makes
it possible to decouple the transport equations (2)–(3) as follows [3]

∂k

∂t
+ ∇ ·

(

ku − νT

σk
∇k

)

+ γk = Pk, (4)

∂ε

∂t
+ ∇ ·

(

εu− νT

σε
∇ε

)

+ C2γε = γC1Pk. (5)

This representation provides a positivity-preserving linearization of the sink terms, whereby the
parameters νT and γ are evaluated using the solution from the previous outer iteration [2, 4].

The iterative solution process is based on the following hierarchy of nested loops

For n=1,2,... main time-stepping loop tn −→ tn+1

For k=1,2,... outermost coupling loop

• Solve the incompressible Navier-Stokes equations

For l=1,2,... coupling of v and p

For m=1,2,... flux/defect correction

• Solve the transport equations of the k − ε model

For l=1,2,... coupling of k and ε

For m=1,2,... flux/defect correction

At each time step (one n−loop iteration), the governing equations are solved repeatedly
within the outer k-loop which contains the two subordinate l-loops responsible for the coupling of
variables within the corresponding subproblem. The embedded m-loops correspond to iterative
flux/defect correction for the involved convection-diffusion operators. Flux limiters of TVD type
are activated in the vicinity of steep gradients, where nonlinear artificial diffusion is required to
suppress nonphysical undershoots and overshoots. In the case of an implicit time discretization,
subproblem (4)–(5) leads to a sequence of algebraic systems of the form [1, 2, 4]

A(u(k), γ(l), ν
(k)
T )∆u(m+1) = r(m), u(m+1) = u(m) + ω∆u(m+1), (6)

where r(m) is the defect vector and the superscripts refer to the loop in which the corresponding
variable is updated. The predicted values k(l+1) and ε(l+1) are used to recompute the lineariza-
tion parameter γ(l+1) for the next outer iteration (if any). The associated eddy viscosity νT is
bounded from below by a certain fraction of the laminar viscosity 0 < νmin ≤ ν and from above
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by νmax = lmax

√
k, where lmax is the maximum admissible mixing length (the size of the largest

eddies, e.g., the width of the domain). Specifically, we define the limited mixing length l∗ as

l∗ =

{

Cµ
k3/2

ε if Cµk3/2 < εlmax

lmax otherwise
(7)

and calculate the turbulent eddy viscosity νT from the formula

νT = max{νmin, l∗
√

k}. (8)

The resulting value of νT is used to update the linearization parameter

γ = Cµ
k

νT
. (9)

The above representation of νT and γ makes it possible to preclude division by zero and obtain
bounded nonnegative coefficients without manipulating the actual values of k and ε.

2..2..1 Initial conditions

As a rule, it is rather difficult to devise a reasonable initial guess for a steady-state simulation or
proper initial conditions for a dynamic one. If the velocity field is initialized by zero, it takes the
flow some time to become fully turbulent. Therefore, we activate the k − ε model at a certain
time t∗ > 0 after the startup. During the ‘laminar’ initial phase (t ≤ t∗), a constant effective
viscosity ν0 = O(ν) is prescribed. The values to be assigned to k and ε at t = t∗ are uniquely
defined by the choice of ν0 and of the default mixing length l0 ∈ [lmin, lmax] where the threshold
parameter lmin corresponds to the size of the smallest admissible eddies. We have

k0 =

(

ν0

l0

)2

, ε0 = Cµ
k

3/2
0

l0
at t ≤ t∗. (10)

Alternatively, the initial values of k and ε can be estimated by means of a zero-equation (mix-
ing length) turbulence model or computed using an extension of the inflow or wall boundary
conditions (see below) into the interior of the computational domain.

2..2..2 Boundary conditions

At the inflow boundary Γin we prescribe all velocity components and the values of k and ε:

u = g, k = cbc|u|2, ε = Cµ
k3/2

l0
on Γin, (11)

where cbc ∈ [0.003, 0.01] is an empirical constant and |u| =
√

u · u is the Euclidean norm of the
velocity. At the outlet Γout, the normal gradients of all variables are set equal to zero, which
corresponds to the Neumann (‘do-nothing’) boundary condition:

n · [∇u + ∇uT ] = 0, n · ∇k = 0, n · ∇ε = 0 on Γout. (12)

In the finite element framework, these homogeneous boundary conditions imply that the surface
integrals resulting from integration by parts in the variational formulation vanish.

At an impervious solid wall Γw, the normal component of the velocity is set equal to zero

n · u = 0 on Γw (13)

whereas tangential slip is permitted in turbulent flow simulations. The practical implementation
of the above no-penetration (‘free slip’) boundary condition is nontrivial if the boundary of the
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computational domain is not aligned with the axes of the Cartesian coordinate system. In this
case, condition (13) is imposed on a linear combination of several velocity components whereas
their boundary values are unknown. Therefore, standard implementation techniques based on
a modification of the corresponding matrix rows cannot be used.

In order to set the normal velocity component equal to zero, we nullify the off-diagonal

entries of the preconditioner A(u(m)) = {a(m)
ij } in the defect correction loop for the momentum

equation [2, 4]. This enables us to compute the boundary values of the vector u explicitly before
solving a sequence of linear systems for the velocity components:

a
(m)
ij := 0, ∀j 6= i, u∗

i := u
(m)
i + r

(m)
i /a

(m)
ii for xi ∈ Γw. (14)

In the next step, we project the predicted values u∗
i onto the tangent vector/plane and

constrain the corresponding entry of the defect vector r
(m)
i to be zero

u
(m)
i := u∗

i − (ni · u∗
i )ni, r

(m)
i := 0 for xi ∈ Γw. (15)

After this manipulation, the corrected values u
(m)
i act as Dirichlet boundary conditions for the

solution u
(m+1)
i at the end of the defect correction step. As an alternative to the implementation

technique of predictor-corrector type, the projection can be applied to the residual vector rather
than to the nodal values of the velocity:

a
(m)
ij := 0, ∀j 6= i, r

(m)
i := r

(m)
i − (ni · r(m)

i )ni for xi ∈ Γw. (16)

For Cartesian geometries, the modifications to be performed affect just one velocity component
(in the normal direction) as in the case of standard Dirichlet boundary conditions.

2..2..3 Wall functions

To complete the problem statement, we still need to prescribe the tangential stress as well as
the boundary conditions for k and ε on Γw. Note that the equations of the k − ε model are
invalid in the vicinity of the wall where the Reynolds number is rather low and viscous effects are
dominant. In order to avoid the need for resolution of strong velocity gradients, wall functions
are typically applied at an internal boundary Γy located at a distance y from the solid wall Γw

n · [∇u + ∇uT ] = −u2
τ

νT

u

|u| , k =
u2

τ
√

Cµ

, ε =
u3

τ

κy
on Γy, (17)

where κ = 0.41 is the von Kármán constant. The above mentioned free-slip condition (13) is
also to be imposed on Γy rather than on Γw. Therefore, u is the tangential velocity which can
be used to compute the friction velocity uτ from the nonlinear equation

|u|
uτ

=
1

κ
log y+ + β (18)

valid in the logarithmic layer, where the local Reynolds number y+ = uτy
ν is in the range

11.06 ≤ y+ ≤ 300. The empirical constant β equals 5.2 for smooth walls.
Strictly speaking, a boundary layer of width y should be removed from the computational

domain Ω. However, it is supposed to be very thin, so that the equations can be solved in the
whole domain Ω with wall functions prescribed on the boundary part Γw rather than on Γy.
Since the choice of y is rather arbitrary, it is worthwhile to define the boundary layer width by
fixing y+, as proposed in [3, 5]. The implicitly defined y = νy+

uτ
is assumed to be the point where

the logarithmic layer meets the viscous sublayer so that y+ satisfies (18) as well as the linear

relation y+ = |u|
uτ

. The corresponding parameter value y∗+ is given by

y∗+ =
1

κ
log y∗+ + β ≈ 11.06 on Γy. (19)
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The use of y∗+ in the wall laws (17)-(19) yields an explicit relation for the friction velocity uτ

which is required to evaluate the tangential stress for the momentum equations [5]

n · [∇u + ∇uT ] = −u∗
τ

νT

u

y∗+
, where u∗

τ = max

{

C0.25
µ

√
k,

|u|
y∗+

}

. (20)

This expression provides a natural boundary condition for the tangential velocity
∫

Γw

νT (n · [∇u + ∇uT ] ·w) ds = −
∫

Γw

u∗
τ

y∗+
(u · w) ds. (21)

Due to (17), the boundary value of the turbulent eddy viscosity is proportional to ν

νT = cµ
k2

ε
= κuτy = κy+

∗ ν. (22)

Of course, the above relation is satisfied automatically if the boundary conditions for k and
ε are implemented in the strong sense as proposed in [2, 4]. However, the use of Dirichlet
boundary conditions means that the boundary values of k and ε depend solely on the friction
velocity uτ = |u|

y∗
+

which is proportional to the flow velocity at the wall. This results in a one-way

coupling of the boundary conditions which is rather unrealistic. In order to let k and ε ‘float’
and influence the momentum equations via (20)-(21), the wall boundary conditions should be
implemented in a weak sense. To this end, let us compute the boundary values of νT from
equation (22) and invoke (17) to retrieve the normal derivatives of k and ε as follows [5]

n · ∇k = −∂k

∂y
= 0, n · ∇ε = −∂ε

∂y
=

u3
τ

κy2
=

1

νT

u5
τ

y+ν
. (23)

These natural boundary conditions are to be plugged into the surface integrals resulting from
integration by parts in the variational formulation for equations (4) and (5)

∫

Γw

νT

σk
(n · ∇k)w ds = 0,

∫

Γw

νT

σε
(n · ∇ε)w ds =

∫

Γw

1

σε

u5
τ

y+ν
w ds. (24)

Furthermore, it is commonly assumed that Pk = ε in the wall region, so that the correct
boundary value of the production term must be computed from

Pk =
u3

τ

κy
=

u3
τ

νT

|u|
y∗+

, where uτ = C0.25
µ

√
k. (25)

The above implementation of wall functions is largely based on the publication of Grotjans and
Menter [5] which should be consulted for further algorithmic details.

2..2..4 Chien’s Low-Reynolds k − ε modification

In the previous section, the implementation of the standard k−ε model was considered, whereby
wall functions were prescribed on Γw in order to eliminate the need for a costly integration
to the wall. However, the validity of wall functions is limited to flat-plate boundary layers
and developed flow conditions, whereas for accurate simulations of complex flows the model
should be extended with appropriate Low-Reynolds modifications. Another reason for their
implementation is that for turbulent flows characterized by rather low Reynolds numbers the
removed region could occupy a significant part of the domain and, therefore, play an important
role. One of the most commonly used Low-Reynolds modifications is that proposed by Chien [6].
It features nice numerical properties and comes with remarkably simple boundary conditions

u = 0, k = 0, ε̃ = 0 on Γw, (26)
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where the dissipation rate is redefined as ε = ε̃ + 2νk/y2. Furthermore, the following damping
functions are introduced to provide a smooth transition from the laminar to the turbulent regime

fµ = 1 − exp(−0.0115y+), f2 = 1 − 0.22 exp

(

k2

6νε̃

)2

. (27)

The resulting generalization of equations (4)–(5) to the case of low Reynolds numbers reads

∂k

∂t
+ ∇ ·

(

ku− νT

σk
∇k

)

+

(

γ +
2ν

y2

)

k = Pk, νT = Cµfµk2/ε̃, (28)

∂ε̃

∂t
+ ∇ ·

(

ε̃u− νT

σε
∇ε̃

)

+

(

C2f2γ +
2ν

y2
exp(−0.5y+)

)

ε̃ = γC1Pk. (29)

The new definition of the turbulent eddy viscosity is in accordance with the DNS results which
reveal that the ratio fµ = νT ε̃

Cµk2 is not a constant but a function approaching zero at the wall.

Note that the extra sink terms in (28) and (29) have positive coefficients and pose no hazard
to positivity of the numerical solution. As before, the linearization parameter γ is recomputed
in every outer iteration of the l−loop. The local Reynolds number y+ depending on the friction

velocity uτ (u
(k)) is updated at the beginning of the k−loop as follows: uτ =

√

ν ∂vt
∂n , where

n is the unit normal to the wall and vt is the tangential velocity at the nearest wall point.
Moreover, the update of y+ requires knowing the distance to the wall. In the current imple-
mentation, it is computed in a brute-force way as the distance to the nearest midpoint of a
boundary edge/face projected onto the uniquely defined normal associated with this edge/face.
Alternatively, the computation of the distance can be performed using one of the numerous
redistancing/reinitialization algorithms developed in the framework of level set methods.

3. Numerical examples

3..1. Channel flow

The validation of the implemented Chien’s Low-Reynolds k − ε model was performed on the
basis of the channel flow benchmark problem. The reference data were provided by Kim’s DNS
simulation [7] for Reτ = 395 which is based on the friction velocity uτ , half of the channel
width d and kinematic viscosilty ν. In order to obtain the developed flow conditions required
for validation, the inlet/outlet boundary conditions on the reduced domain were interchanged
several times during the computation. The almost mesh-independent solution was obtained on
the 4th multigrid level using 50, 000 elements and local mesh refinement in the near-wall region.

Figure 1: Nondimensional velocity profiles of the streamline velocity component u+, turbulent
kinetic energy k+ (left) and the ratio of production/dissipation rates Pk/ε (right) for channel
flow, Reτ = 395. Reference DNS solutions by Kim et al. [7].
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The distance from the wall boundary to the nearest interior point corresponds to y+ ≈ 2. The
resulting profiles of the monitored nondimensional quantities (horizontal velocity component
vx, turbulent kinetic energy k as well as the ratio of its production and dissipation rates Pk/ε)
displayed in Fig. 1 are in a good agreement with the reference data from [7].

3..2. Backward facing step

The second example deals with a 3D simulation of turbulent incompressible flow past a backward
facing step using the k − ε model with three different wall boundary treatments (wall functions
implemented using Dirichlet and Neumann boundary conditions vs. the Low-Reynolds number
modification based on (26)-(29)). The problem is solved for the Reynolds number Re = 47, 625
[8] as defined by the step height H, mean inflow velocity umean and kinematic viscoity ν. All sim-
ulations were performed on the same computational mesh consisting of approximately 260, 000
elements, see Fig. 2 (top). Local mesh refinement was employed in the vicinity of the walls and
behind the step. The numerical solutions presented in Fig. 2 are in a good agreement with those
published in the literature [8]. However, the influence of wall boundary conditions implemented
in the strong or weak sense or by means of the Low-Reynolds modification is rather signifi-
cant. The recirculation length LR = xr/H predicted by the Low-Reynolds number version and
wall functions with Neumann boundary conditions (24) is underestimated (LR ≈ 5.4), which
is also the case for the computational results published in the literature (5.0 < LR < 6.5, see
[5, 8, 9]). On the other hand, the implementation of wall functions in the strong sense yields
LR ≈ 7.1 which matches the experimentally measured recirculation length LR ≈ 7.1, see [10].
Unfortunately, this perfect agreement turns out to be a pure coincidence. The numerical solu-
tions obtained using different kinds of boundary treatment are compared to one another and to
experimental data [10] in Fig. 3, where 6 different crossplane velocity distributions ux/(ux)max

are plotted at different distances from the step. These profiles indicate that the use of natu-
ral boundary conditions (24) yields essentially the same results as the Low-Reynolds number
version. In either case, the numerical solutions agree well with those presented in [5, 8, 9].

Figure 2: Computational mesh for the backward facing step problem (top) and steady-state
profiles of the turbulent kinetic energy - ln k (left) and turbulent eddy viscosity - νT (right).
From top to bottom: reference solution [7] vs. boundary treatment based on wall functions with
Dirichlet BC, wall functions with Neumann BC, and Chien’s Low-Reynolds number model.
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Figure 3: Velocity profiles ux for 6 different distances x/H from the step computed using three
different kinds of near-wall treatment for the k − ε model.
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