4440, ULLILLLLLL VAL LbUudlidal )y a4l aubvlivl haytvlo

BAIL 2006
G. Lube, G. Rapin (Eds)
© University of Gottingen, Germany, 2006

Rarefied Gas Boundary Layer
Predicted with Continuum and Kinetic Approaches

Koji Morinishi

Department of Mechanical and System Engineering
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

morinisi@kit.ac.jp

1. Introduction

Numerical simulation of low speed gas flows about micro devices is one of the recent new frontiers
of computational fluid dynamics (CFD). It may provides essential understanding about the
fluid behavior around micro-electro-mechanical systems (MEMS). Since the flows about the
micro devices just range from slip to transitional flow regimes, numerical methods based on the
Boltzmann equation or the Navier-Stokes equations subject to velocity slip and temperature
jump boundary conditions must be used.

One of the well-known numerical methods for the Boltzmann equation is the direct simulation
Monte Carlo (DSMC) method [1]. The DSMC method has been widely used for simulating high
speed rarefied flows [2]. The method, however, becomes a poor simulation tool for the low
speed flows about micro devices, because huge sample size is required to reduce its inherent
statistical scatter to a level of the small changes of flow quantities in the low speed flows [3].
A deterministic CFD method [4, 5] based on a kinetic model Boltzmann equation is free from
the statistical scatter and is definitely superior to the DSMC method for the low speed flows.
While these kinetic methods can be applied theoretically to any flow regimes from continuum
to free molecule, application to the continuum or slip flow regimes is prohibitively expensive in
the computational cost, and application to the transitional flow regime is most preferable.

The Navier-Stokes methods may be able to predict flows in the slip regime, if the velocity slip
and temperature jump boundary conditions are introduced. Although theoretical applicability
of the Navier-Stokes methods to the transitional flow regime is negative, the application is
preferable in the computational cost because the Navier-Stokes methods are computationally
several orders of magnitude more inexpensive than the Boltzmann methods. Thus it is fairly
meaningful to compare the prediction of the Navier-Stokes methods with that of the Boltzmann
methods in order to verify the applicability and limitation of the Navier-Stokes methods.

2. Kinetic approach

The motion of gas molecules at any Knudsen number is governed by the well known Boltzmann
equation. Because of its complex collision integral term, however, the solution of the Boltzmann
equation requires an exceedingly formidable task except for few simple problems. In this paper,
instead of the full Boltzmann equation, a kinetic model equation [6] is used, which correctly
resembles the lower 13 moments (the density, three components of the velocity, six components
of the stress tensor, and three components of the heat flux) of the Boltzmann equations. The
kinetic model Boltzmann equation in nondimensional form without any external force may be
written as follows:
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where f is the velocity distribution function which depends on the time #, the physical space x,
and the molecular velocity c. The distribution function fy of the BGK model [7], which is the
most fundamental model, is the local equilibrium distribution function f.:
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where n is the number density, u the macroscopic flow velocity, and T the temperature. For a
higher order model equation which correctly resembles the lower 13 moments of the Boltzmann
equation [6], the distribution function fj is given as
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where p is the pressure, q the heat flux vector, and Pr the Prandtl number (=2/3 for a
monatomic gas).
The macroscopic flow quantities are obtained from the distribution function as
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For numerical quadrature, simple equally spaced trapezoidal rule is used in this study. The
pressure p is obtained from the equation of state:

p=nT (5)

All these quantities are normalized with a reference length L, a reference number density n,, a
reference temperature Ty, and a reference velocity Co,. The reference velocity C'y is the most
probable molecular thermal speed which is defined as:

Co = V2RTw (6)
The collision frequency v is usually defined as:
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where Kn is the reference Knudsen number based on the reference length L and the molecular
mean free path A, at reference state which is defined as

Moo = ——OH0 (8)
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where p is the viscosity coefficient, m the mass of a molecule, and R the gas constant. The
viscosity coefficient is assumed to depend on the temperature as:
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where the Maxwell molecules correspond to the power s of 1 and the hard sphere molecules to
0.5. In this study, the hard sphere molecules is adopted.

An upwind gridless method [8] is adopted for estimation of the convective terms of the
equation. Gradients of any function f at a computational point ¢ may be evaluated with the
following linear combination form in the cloud of neighboring points C'(i).
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where the subscript k£ denotes the index of the point which belongs to the cloud C(7). The sum
is obtained over all member points of C'(i) except the point i itself. The function values f; are
evaluated at the midpoint between the points ¢ and k.

The coefficients a;; are once obtained at the beginning of computation and stored if the
points remain stationary. Several methods can be used for obtaining the coefficients [8]. If the
approximation (10) is applied in a finite volume cell, the coefficients may be obtained from the
unit normal and area of the cell surface, and the cell volume.

The convective terms of the kinetic model equations (1) for two dimensional flows can be
evaluated with the gridless method, for an example, as:

0 0

b kCC(i

where ;. is defined as:

§ik = QpikCy + Qyik Cy (12)
The numerical flux &, f;; are estimated as
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The third order accurate weighted essentially non-oscillatory (WENO) method [9] is used for
reconstructing the midpoint distribution function fi [10].

After evaluating the convective and collision terms, following implicit Euler method is used
for the temporal discretization of the kinetic model equation.
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where RH S are the evaluation of the convective and collision terms and £* are defined as follows
1
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The solution of this linear system of equation (14) can be obtained with a lower-upper symmetric
Gauss-Seidel (LU-SGS) procedure [11] as:
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where C(¢) = L(i) | JU (i) and D; are defined with
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The distribution function at the next time step ¢! is obtained as:
=1+ AS (19)

where the superscript n denotes the time index.

Perfect diffuse reflection is assumed for the interaction between molecules and solid walls.
That is, molecules which strike the solid surface are subsequently emitted with fully accommo-
dating to the wall temperature 7T, and velocity u,,.

At inlet and outlet boundaries, the local equilibrium distribution functions are specified for
incoming molecules. For outgoing molecules, simple extrapolation of the distribution function
is used, which may not affect numerical results because the distribution functions on inner
computational points are updated with the upwind gridless solver.

3. Continuum approach

The basic equations of continuum approach is the compressible Navier-Stokes equations which
may be written in the following nondimensional form.
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where Q is the conservative vector, F the convective flux, R the viscous flux, and Re the
reference Reynolds number. The conservative vector and the flux terms are given with:
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where e is the total energy per unit volume, which is given for a perfect gas as:
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Here v is the ratio of specific heats. The viscous stress tensor 7 and the heat flux vector q are

defined with: 5 5 .
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All these quantities in the continuum approach are normalized with a reference length L, a
reference density po, (= mny), a reference temperature T, and a reference velocity Us,. The

reference velocity Uy, is defined as:
Uso = VRI (25)

where nondimensional velocities in the continuum approach are greater than those in the kinetic
approach by the ratio of v/2.

The Navier-Stokes equations are also solved using the upwind gridless and LU-SGS methods
[8]. The convective terms are evaluated with:
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The flux term G at the midpoint between the point ¢ and point j is expressed for two dimensional
flows as:
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where U is defined by
U = azu + ayv (28)
The numerical flux G are estimated as:
1 A+ )= A OT — O
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where Q are the primitive variables and A are the flux Jacobian matrices. The primitive variables
Qi at the midpoint are reconstructed with the third order accurate WENO method [10].
The viscous terms of the Navier-Stokes equations are also evaluated with the gridless method,

for an example, as:
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While a simple arithmetical average is used for obtaining i, the first derivatives at the midpoint
is evaluated with the following method.
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Here Ax =z, — 2, Ay =y — y;, and As? = Ax? + Ay?.

After evaluating the convective and viscous terms, a linearized implicit Euler method is

constructed for the temporal discretization of the Navier-Stokes. The solution of this linear

system of equations is obtained with the LU-SGS procedure [8].
At the wall surface, the first order slip conditions are implemented as:
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where n and s denote the normal and tangential directions to the surface, respectively. The
momentum accommodation coefficient o, and the energy accommodation coefficient o, are set

to unity in all the computation presented here.
For inlet and outlet boundaries, characteristic boundary conditions are implemented.
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4. Numerical results

In order to verify the applicability and limitation of the Navier-Stokes solver with velocity slip
and temperature jump boundary conditions, numerical results obtained with the Navier-Stokes
solver are compared with those of the Boltzmann methods. Plane Couette flows and supersonic
flows over a circular cylinder are selected as the test problems.

Couette flow is a well defined benchmark problem to validate a numerical method. In this
study, upper and lower parallel plates move in the opposite direction each other with the velocity
Uy and —Uy, respectively. The reference length is the distance between the two plates. Figures
1 and 2 show the comparison of the velocity profile near the lower plate and temperature profile
obtained at a Knudsen number of 0.01 and a Mach number, based on the plate speed, of 0.4.
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Figure 1: Comparison of velocity profiles for
a Couette flow at My, = 0.4 and Kn = 0.01.
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Figure 3: Comparison of velocity profiles for
a Couette flow at My, = 0.4 and Kn = 0.1.
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Figure 2: Comparison of temperature pro-
files for a Coutte flow at M, = 0.4 and
Kn =0.01.
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Figure 4: Comparison of temperature pro-
files for a Coutte flow at My, = 0.4 and
Kn =0.1.

For this low Knudsen number case, the Navier-Stoke solver with the slip boundary conditions
predicts good results compared to those predicted with the kinetic model Boltzmann solver and
the DSMC method.

Similar comparison is made at a Knudsen number of 0.1 in Figs. 3 and 4. The Mach
number based on the plate speed is unchanged at 0.4. The Navier-Stokes solver well predicts
the velocity profile in bulk flow region, while the prediction deviates from the kinetic prediction
in the Knudsen layer. The Navier-Stokes solver also fails to predict the temperature profile for
this case.

Next a supersonic flow about a circular cylinder at a free stream Mach number of 2.0 and a
Knudsen number of 0.1 is simulated. The Knudsen number is estimated based on the diameter
of the circular cylinder and the reference mean free path at the free stream. Figures 5 and 6
show the comparison of the density contours and temperature contours, respectively. While the
computations are carried out for the whole two dimensional domain with 128 x 64 cells, the
results of the kinetic model Boltzmann solver are plotted for the upper half domain and the slip
Navier-Stokes results for the lower half domain. Very good agreement between the kinetic model
results and the slip Navier-Stokes results is generally observed in the front region including the
position of bow shock. In the wake region, some discrepancy is observed, where the density is
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Figure 5: Density contours obtained with ki-
netic model Boltzmann solver and slip NS
solver at My, = 2.0 and Kn = 0.1.

1.00 :

q = 45°
ol sl §
% 0.50 1
0.25f :
0.00 , ; . .

0.0 0.2 0.4 0.6 0.8
u/Um

Figure 7: Comparison of tangential velocity
profiles at 0 = 7 /4.
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Figure 6: Temperature contours obtained
with kinetic model Boltzmann solver and slip
NS solver at My, = 2.0 and Kn = 0.1.
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Figure 8: Comparison of temperature pro-
files at 0 = 7 /4.

lower than the free stream density and the rarefactive effect may be pronounced.

Figures 4. to 4. show the comparison of tangential velocity profiles and temperature profiles
along the normal lines from the cylinder surface at # = 7/4 and = w/2. The Navier-Stokes
prediction is in good agreement with the kinetic predictions at # = /4, while some discrepancy
is observed at 6 = /2.

5. Conclusions

Velocity and temperature profiles predicted with a Navier-Stokes solver at slip and transitional
flow regimes were compared with those of a kinetic model Boltzmann solver and the DSMC
method. For slip flow regime, the Navier-Stokes solver produces the flow field fairly well com-
pared to the Boltzmann solver, while some discrepancy is observed for transitional flow regime.

This study was partly supported by a Grant-in-Aid for Scientific Research (17360079) from
the Japan Society for the Promotion of Science.
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