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1. Introduction

Consider the interaction of a flowing plasma with a planar Langmuir probe [2]. Assume that
the plasma flows in the plane of the probe surface and that the plasma consists solely of positive
ions with density n+ and electrons with density ne. Downstream of the probe, the ions are
moving with a velocity of u = (ui, uv + uF ) and (u0, uF ) is the constant flow velocity of the ions
upstream of the probe. We wish to consider the influence of the probe on the flow of the ions.
Let X be the horizontal distance to the right of the probe and Y the distance along the probe
(from the tip of the probe). Assuming a collision-less plasma and that the ions are cold, the
continuity equations for the ion density and momentum are [2]

∂n+

∂t
+ ∇ · (n+u) = 0,

m+n+

(∂u

∂t
+ (u · ∇)u

)

= en+E,

where E = (Ex, Ey) = −∇φ̃ is the electric field and m+ is the mass of the ions. Our interest is
in the steady state case and if uF >> uv, we disregard terms involving uv. Hence this system is
approximated with the system

∂

∂X
(n+ui) + uF

∂n+

∂Y
= 0,

ui
∂ui

∂X
+ uF

∂ui

∂Y
=

e

m+
EX ,

where the electric field is determined from solving Poisson’s equation (assuming EX >> EY )

−
∂EX

∂X
=

∂2φ̃

∂X2
=

e(n+ − ne)

ǫ0
.

Since me << m+ and we assume that the electrostatic potential φ̃ tends to zero as one moves
away from the probe, the electron density ne is approximately related to the electrostatic po-
tential φ̃ as

ne = n0exp(−
eφ̃

kTe
)

where Te is the electron temperature, k is Boltzmann’s constant, ǫ0 is the permittivity of free
space and e is the electron charge.

In a similar fashion to the scaling of the variables used in [3], we introduce the non-
dimensional independent variables x, y and the non-dimensional dependent variables n, u and φ,
which are defined as follows:

n =
n+

n0
, u =

ui

cs
, φ =

eφ̃

kTe
, x =

X

L
y =

Y cs

uF L
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where the ion sound speed cs and the electron Debyre length λD are defined by

c2
s =

kTe

m+
, λ2

D =
ǫ0kTe

n0e2
.

The length L is a distance sufficiently far from the probe so that the effect of the probe on the
plasma at this distance is negligible. After reformulating the problem with the above transfor-
mations and formulating suitable boundary and initial conditions we propose to examine the
related mathematical problem : Find (u(x, y), n(x, y), φ(x, y)) which satisfy the following system
of differential equations in the space domain (x, y) ∈ (0, 1) × (0, T ]

∂n

∂y
+

∂(nu)

∂x
= 0, (x, y) ∈ [0, 1) × (0, T ], (1a)

∂u

∂y
+ u

∂u

∂x
= −

∂φ

∂x
, (x, y) ∈ [0, 1) × (0, T ], (1b)

ε2 ∂2φ

∂x2
= eφ − n, (x, y) ∈ (0, 1) × (0, T ], ε = λDL−1, (1c)

subject to the following set of boundary and initial conditions

φ(0, y) = −A, φ(1, y) = 0, y ≥ 0; φ(x, 0) = φ0(x), 0 ≤ x ≤ 1, (1d)

n(x, 0) = 1, 0 ≤ x ≤ 1; ny(1, y) = −(nux)(1, y), y ≥ 0, (1e)

u(x, 0) = ũ0, 0 ≤ x ≤ 1; uy(1, y) = −φx(1, y), y ≥ 0. (1f)

The parameters ũ0 and A are assumed to be known and the initial condition φ0(x) is chosen
so that ε2φ′′

0(x) = eφ0(x) − 1, φ0(0) = −A, φ0(1) = 0. Due to the presence of the singular
perturbation parameter ε layers or sheaths can appear in the solutions.

2. Shishkin mesh

Consider the following linear singularly perturbed ordinary differential equation

Lεuε(x) ≡ −ε2u′′
ε + b(x)uε = f(x), x ∈ Ω = (0, 1) (2a)

b(x) ≥ β2 > 0, u(0) = A, u(1) = B. (2b)

The solution of problem (2) can be written as the sum uε(x) = v(x) + (uε(0) − v(0))wl(x) +
(uε(1)−v(1))wr(x) of a regular component v(x) and two singular components wl(x), wr(x). The
following parameter explicit bounds on these components and their derivatives can be established
[1]for 0 ≤ k ≤ 4

‖
dkv

dxk
‖Ω,∞ ≤ C(1 + ε2−k), |

dkwl

dxk
(x)| ≤ Cε−ke−βx/ε, |

dkwr

dxk
(x)| ≤ Cε−ke−β(1−x)/ε

where C is a constant that is independent of ε. Note that the singular component wl is negligible
away for x ≥ τ = 2ε ln 1/ε

β . However, within the region (0, Cε) the derivatives of the singular
component become unbounded as ε → 0. To obtain a reasonable numerical approximation to
the solution uε using N mesh intervals (where in general ε << N−1) it is necessary [1] to use
a non-uniform mesh so that a significant proportion of the mesh elements are within the layer
regions. One way to achieve this is to use a piecewise uniform Shishkin mesh [1]. For the
boundary value problem (2) with the additional assumption that

b(1)uε(1) = f(1) (2c)

2



an appropriate Shishkin mesh is defined as follows. The domain Ω = [0, 1] is subdivided into the
two subintervals [0, σ] and [σ, 1]. On each subinterval a uniform mesh with N

2 mesh-intervals is
placed. The interior points of the mesh are denoted by ΩN

ε = {xi : 1 ≤ i < N} and

σ = min{
1

2
, 2

ε

β
ln N}. (3)

The fine mesh and the coarse mesh step are given by h and H, respectively. The fitted mesh
method for problem (2) is: Find a mesh function UN

ε such that

−ε2δ2UN
ε (xi) + b(xi)U

N
ε (xi) = f(xi) for all xi ∈ ΩN

ε (4a)

UN
ε (0) = uε(0), UN

ε (1) = uε(1) (4b)

where δ2 is the standard centered finite difference operator defined for any mesh function Z by

δ2Z(xi) =
(Z(xi+1) − Z(xi)

xi+1 − xi
−

Z(xi) − Z(xi−1)

xi − xi−1

) 1

xi+1 − xi−1
.

Let ŪN
ε denote the piecewise linear interpolant of the numerical solution UN

ε from the mesh ΩN
ε

to the domain [0, 1]. The following parameter-uniform pointwise error bound follows from the
results in [1]

‖uε − ŪN
ε ‖[0,1],∞ ≤ C(N−1 lnN)2 (5)

where C is a constant independent of the singular perturbation parameter ε. Moreover, pa-
rameter uniform estimates on the discrete derivatives of the solution can be obtained on these
piecewise-uniform Shishkin meshes. Using the crude bound

|D+(UN
ε − uε)| ≤

1

(xi+1 − xi)
(|(UN

ε − uε)(xi+1)| + |(UN
ε − uε)(xi)|

and noting that H ≥ CN−1, ε ≤ CNh, we deduce that

|D+(UN
ε − uε)(xi)| ≤

{

CN−1(ln N)2, if xi ≥ σ,
CN−1(ln N)2/ε, if xi < σ.

(6)

On the piecewise-uniform mesh we have the following result.
Lemma 1 Let UN

ε and uε be the solutions of (4) and (2), then

|(D+UN
ε − u′

ε)(xi)| ≤

{

CN−1(ln N)2, if xi ≥ τ = 2ε ln 1/ε
β ,

CN−1(ln N)2/ε, if xi < τ.

Proof: Note that if the mesh is uniform (when σ = 0.5) then a classical argument suffices.

|D+u − u′| ≤ CN−1‖u′′‖ ≤ CN−1ε−2 ≤ CN−1(ln N)2.

Now we assume that σ < 0.5. Consider first the case of ε ≤ N−1, which implies that σ ≤ τ .
Then for xi ≥ τ

|D+u − u′| ≤ |D+v − v′| + |D+wl − w′
l| ≤ CN−1‖v′′‖ + CN−1‖w′′

l ‖[τ,1)

≤ CN−1, since |w′′
l (x)| ≤ Cε−2e−βτ/ε ≤ C, xi ≥ τ.

For σ ≤ xi < τ

ε|D+u − u′| ≤ ε|D+v − v′| + ε|D+wl − w′
l| ≤ CN−1ε‖v′′‖ + Cε‖w′

l‖[σ,1)

≤ CN−2, since ε|w′
l(x)| ≤ Ce−βσ/ε ≤ CN−2, xi ≥ σ.
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For xi < σ

ε|D+u − u′| ≤ ε|D+v − v′| + ε|D+wl − w′
l| ≤ Cεh‖v′′‖ + Cεh‖w′′

l ‖

≤ CN−1 ln N, since h ≤ CεN−1 ln N.

In the other case of ε > N−1 then σ > τ . For xi ≥ τ

|D+u − u′| ≤ CN−1‖v′′‖ + CN−1‖w′′
l ‖[τ,1) ≤ CN−1

and for xi < τ < σ

ε|D+u − u′| ≤ CN−1‖v′′‖ + Cεh‖w′′
l ‖ ≤ CN−1 ln N.

Combine these bounds with (6) to complete the proof.
Consider the higher order discrete approximation to the derivative defined by

D0Z(xi) =
hiD

+Z(xi) + hi+1D
−Z(xi)

hi+1 + hi
, hi = xi − xi−1.

The solution of problem (2) can also be written as the sum of a modified regular component ṽ(x)
and the two singular components wl(x), wr(x) so that the following bounds can be established

‖
dk ṽ

dxk
‖Ω,∞ ≤ C(1 + ε4−k), 0 ≤ k ≤ 4.

From these bounds it follows that at all internal mesh points

|D0ṽ(xi) − ṽ′(xi)| ≤ CN−2.

Consider a two-transition point mesh ω2 where the transition points are taken to be

σ2 = 2min{
1

8
,

ε

β
ln N,

ε

β
ln

1

ε
}, τ2 = 4min{

1

8
,max{

ε

β
ln N,

ε

β
ln

1

ε
}. (7)

and a uniform mesh with N
4 , N

4 , N
2 mesh-intervals is used in each of the subdomains [0, σ2] ∪

[σ2, τ2] ∪ [τ2, 1].
Lemma 2 For the mesh points xi ∈ ω2 we have that

|(D0wl − w′
l)(xi)| ≤

{

CN−2(ln N)2, if xi > τ2,
CN−2(ln N)2/ε, if xi ≤ τ2.

Proof The case of τ2 = 0.5 is dealt with in a classical way. Assume that τ2 < 0.5. Consider
first the case of ε ≤ N−1, which implies that

σ2 = 2
ε

β
ln N, τ2 = 4

ε

β
ln(1/ε).

Then for xi > τ2, where the mesh is uniform,

|D0wl − w′
l| ≤ CN−2‖w′′′

l ‖[τ2,1) ≤ CN−2ε,

since |w′′′
l (x)| ≤ Cε−3e−βτ2/ε ≤ Cε, xi ≥ τ2. For σ2 ≤ xi ≤ τ2

ε|D0wl − w′
l| ≤ Cε‖w′

l‖[σ−h1,1) ≤ CN−2, h1 = x1 − x0,

since ε|w′
l(x)| ≤ Ce−βσ/ε ≤ CN−2, xi ≥ σ and eβh1/ε ≤ C. For xi < σ2, where the mesh is fine

and uniform,
ε|D0wl − w′

l| ≤ Cεh2
1‖w

′′′
l ‖[0,σ2] ≤ C(N−1 ln N)2,
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since h1 ≤ CεN−1 ln N . In the second case of ε > N−1 then

σ2 = 2
ε

β
ln

1

ε
, τ2 = 4

ε

β
ln N.

In the uniform mesh regions we have the following: For xi < σ2

ε|D0wl − w′
l| ≤ Cεh2

1‖w
′′′
l ‖ ≤ CN−2(ln

1

ε
)2 ≤ C(N−1 ln N)2,

for xi > τ2

|D0wl − w′
l| ≤ CN−2‖w′′′

l ‖[τ2,1) ≤ CN−2ε−3N−4 ≤ CN−3

and for σ2 < xi < τ2, with Nh2 = 4(τ2 − σ2) we have

ε|D0wl − w′
l| ≤ Ch2

2ε‖w
′′′
l ‖[σ2,1) ≤ C(N−1 ln N)2.

At the second transition point xi = τ2

ε|D0wl − w′
l| ≤ Cε‖w′

l‖[τ2−h2,1) ≤ CN−2

and, finally, for xi = σ2 we have that

ε|D0wl − w′
l| ≤ Cε3(N−1 lnN)2‖w′′′

l ‖[σ2−h1,1) ≤ C(N−1 ln N)2.

3. Nonlinear ordinary differential equation

Let us now consider the nonlinear ordinary differential equation

−ε2y′′ + ey = n(x), x ∈ Ω = (0, 1), (8a)

y(0) = −A, y(1) = 0, 0 < n(x) ≤ 1, n(1) = 1. (8b)

Note that the Bernoulli function

b(y) =
ey − 1

y
, y 6= 0; b(0) = 1

satisfies

∂b

∂y
> 0, ∀y and 0 < β2

1 =
1 − e−A

A
≤ b(y) ≤ b(0) = 1, y ∈ [−A, 0].

Reformulate problem (8) into the form

−ε2y′′ + b(y)y = n(x) − 1 = f(x), x ∈ Ω = (0, 1), (9a)

f(1) = 0; b(y) ≥ β2
1 > 0, ∀y ∈ [y(0), y(1)]; y(0) = −A, y(1) = 0. (9b)

Motivated by the linear problem (2), we propose the following nonlinear numerical method for
problem (9). The domain [0, 1] is split into [0, σ2]∪ [σ2, 1] and a uniform mesh is constructed on
each of these subintervals. The numerical method is then: Find Y N

ε such that

−ε2δ2Y N
ε (xi) + b(Y N

ε )Y N
ε (xi) = f(xi) for all xi ∈ ΩN

2 (10a)

Y N
ε (0) = yε(0), Y N

ε (1) = yε(1) (10b)

where the transition point in the piecewise uniform mesh ΩN
2 is taken to be

σ2 = min{
1

2
, 2

ε

β1
ln N}, β1 =

√

1 − e−A

A
. (11)
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Consider the following reduced systems of two equations for a given function n(x)

∂u

∂y
+ u

∂u

∂x
= −

∂φ

∂x
, ε2 ∂2φ

∂x2
= eφ − n(x).

Note that the forcing term in the first order equation is unbounded with respect to ε. Introduce
the stretched variables η = x

ε , ζ = y
ε and the transformed equation for û(η, ζ) = u(x, y) is

∂û

∂ζ
+ û

∂û

∂η
= −

∂φ̂

∂η
, 0 < η < C, 0 < ζ < C

where the forcing term is now of order one in the corner area (η, ζ) ∈ [0, 1] × [0, 1]. The above
observation motivates the use of a piecewise-uniform mesh in the vertical direction.

4. Numerical Method in the case of u0 < 0.

The algorithm given below involves some key elements. Firstly, due to the presence of the
singular perturbation parameter in (1c), we employ a piecewise-uniform Shishkin mesh in the
horizontal direction. Secondly, due to the unbounded (with respect to ε) source term in (1b)
we will use a piecewise-uniform mesh in the vertical direction. Thirdly, we discretize the source
term in (1b) using a discrete difference operator with second order truncation error. Finally,
the step-size in time is reduced adaptively at each time level in the algorithm, if the nonlinear
solver is not converging for a particular time step.

The domain Ω = Ωx × Ωy is discretized by the tensor product mesh Ω
N,M

where Ω
N,M

=

Ω
N
x × Ω

M
y . The domains Ωx,Ωy are composed of the subdomains

Ωx = [0, σx] ∪ [σx, τx] ∪ [τx, 1], Ωy = [0, σy] ∪ [σy, τy] ∪ [τy, 1]

On each subdomain in the horizontal direction, a uniform mesh with N
4 , N

4 , N
2 mesh-intervals is

used in the respective subdomains. The transition points in the horizontal and vertical direction
are taken to be

σx = σy = min{
1

4
, 4

ε

β1
lnN, 4

ε

β1
ln(1/ε)}, τx = τy = min{

1

2
, 2max{ 4

ε

β1
ln N, 4

ε

β1
ln(1/ε)}}.

(12a)
Initially the vertical mesh step kj = yj − yj−1 is set at

kj = 4σyN
−1, j ≤ N/4, kj = 4(τy − σy)N

−1, N/4 < j ≤ N/2, kj = 2(1 − τy)N
−1, j > N/2.

The system of differential equations (1a,b,c) is discretized using a standard upwind finite differ-
ence operator on this piecewise uniform mesh. When solving the nonlinear difference scheme,
the vertical mesh step will sometimes be reduced in size. The resulting nonlinear finite difference
method is linearized using the iterative algorithm given below.

Set the initial approximation for the density to be constant throughout the domain

N 0(x, y) = 1, (x, y) ∈ [0, 1] × [0, T ]. (13a)

and determine an approximation Φ(xi, 0) to the initial potential φ(xi, 0) using

ε2δ2
xΦj(xi) −

(eΦj−1(xi) − 1

Φj−1(xi)

)

Φj(xi) = 0, 0 < xi < 1,

Φ0(xi) = −A + Axi, 0 ≤ xi ≤ 1; Φj(0) = −A, Φj(1) = 0.
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Hence our initial conditions are Φ(xi, 0) = ΦN (xi), U(xi, 0) = u0 < 0, N (xi, 0) = 1, 0 ≤ xi ≤ 1.
At each subsequent vertical mesh level y = yj > 0, an approximation (Φ, U,N ) is generated
from a sequence of approximations (Φk, Uk,N k), for k = 1, 2, 3, ..K which are generated from

ε2δ2
xΦk(xi, yj) −

(eΦk(xi,yj−1) − 1

Φ(xi, yj−1)

)

Φk(xi, yj) = 1 −N k−1(xi, yj), (13b)

D−
y Uk(xi, yj) + U(xi, yj−1)D

+
x Uk(xi, yj) = −D0

xΦk(xi, yj) (13c)

D−
y N

k(xi, yj) + D+
x (N kUk)(xi, yj) = 0 (13d)

and the following set of boundary conditions at (0, yj), (1, yj) and initial conditions at (xi, yj−1)

Φk(0, yj) = −A, Φk(1, yj) = 0, Φk(xi, yj−1) = Φ(xi, yj−1), 0 ≤ xi ≤ 1,

Uk(xi, yj−1) = U(xi, yj−1), 0 ≤ xi ≤ 1, D−
y Uk(1, yj) = −D−

x Φk(1, yj),

N k(xi, yj−1) = N (xi, yj−1), 0 ≤ xi ≤ 1, D−
y N

k(1, yj) + (N kD−
x Uk)(1, yj) = 0.

If at any level yj

min
{

‖Φk − Φk−1‖
Ω

N
, ∞

‖Φk−1‖
Ω

N
, ∞

,
‖Uk − Uk−1‖

Ω
N

, ∞

‖Uk−1‖
Ω

N
, ∞

,
‖N k −N k−1‖

Ω
N

, ∞

‖N k−1‖
Ω

N
, ∞

}

> 1

then the current time step kj is halved and and a new value for (Φ(xi, yj), U(xi, yj),N (xi, yj))
is computed from (Φ(xi, yj−1), U(xi, yj−1),N (xi, yj−1)). The algorithm continues to iterate at
the vertical level yj until

max{‖ΦK − ΦK−1‖
Ω

N
, ∞

, ‖UK − UK−1‖
Ω

N
, ∞

, ‖NK −NK−1‖
Ω

N
, ∞

} ≤ 10−8.

When this condition is met, we define

Φ(xi, yj) = ΦK(xi, yj), U(xi, yj) = UK(xi, yj), N (xi, yj) = NK(xi, yj), 0 ≤ xi ≤ 1. (13e)

This iterative process is continued until yj = 1 is reached. Our primary interest is in approxi-
mations to the ion current density j+ = −en+ui. Thus in the following tables we examine the
convergence behaviour of the numerical approximations

JN (xi, yj) = (NU)(xi, yj).

Approximations to the parameter–uniform order of convergence are computed using

p∗ = min
N

log2
DN

D2N
, where DN = max

ε
||JN − J

2N
||ΩN ,∞

and J
N

is the piecewise linear interpolant on ΩN . For sufficiently large N , the first two tables
suggest that the method is parameter-uniform for the variable JN . From the final table, it
appears that, in the case of supersonic flow the required number of time-steps is independent of
ε; but, in the case of subsonic flow, the number of time-steps increase as ε → 0.
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Number of Intervals N

ε 8 16 32 64 128 256

2−4 0.68(1.74) 0.71(0.94) 0.50(0.49) 0.67(0.81) 0.83(0.92) 0.92(0.96)
2−5 0.69(1.02) 0.72(0.56) 0.84(0.33) 0.80(0.782) 0.82(0.90) 0.88(0.95)
2−6 0.74(0.91) 0.79(0.89) 0.83(0.69) 0.88(0.76) 0.86(0.78) 0.89(0.80)
2−7 -0.35(1.06) 0.69(0.96) 0.82(0.89) 0.92(0.83) 0.94(0.80) 0.89(0.79)
2−8 -0.10(-0.18) 0.16(1.00) 0.60(1.00) 0.43(1.01) 0.86(0.88) 0.98(0.81)
2−9 -0.12(-0.27) 0.18(0.09) 0.60(0.86) 0.58(128) 0.77(1.06) 0.64(0.90)
2−10 -0.02(-0.17) 0.19(0.12) 0.60(1.04) 0.58(0.55) 0.77(0.86) 0.82(0.86)
2−11 0.07(-0.10) 0.19(0.14) 0.60(1.04) 0.58(0.55) 0.77(0.86) 0.82(0.86)
2−12 0.14(-0.04) 0.18(0.14) 0.60(1.04) 0.58(0.55) 0.77(0.86) 0.82(0.86)

p∗ -0.06(-0.07) 0.54(0.40) 0.60(0.86) 0.43(0.71) 0.86(0.89) 0.70(0.86)

Table 1: Computed orders of convergence for JN when A =10 (A = 50), u0 =-2, n0 = 1.

Number of Intervals N

ε 8 16 32 64 128 256

2−4 1.01(1.00) 1.01(1.35) 0.58(0.65) 0.63(0.95) 0.83(0.99) 0.93(1.00)
2−5 0.96(1.00) 1.03(1.40) 1.00(0.39) 0.94(0.62) 0.77(0.85) 0.87(0.94)
2−6 0.97(1.07) 1.03(1.11) 1.09(0.82) 1.12(0.78) 0.96(0.78) 0.95(0.91)
2−7 -0.25(1.30) 0.87(1.11) 1.07(1.17) 1.19(1.05) 1.18(0.95) 0.99(0.89)
2−8 0.01(-0.18) 0.19(1.21) 0.82(1.20) 0.57(1.30) 1.13(1.09) 1.24(0.93)
2−9 -0.08(-0.26) 0.25(0.11) 0.82(1.09) 0.72(0.86) 0.98(1.37) 0.92(1.11)
2−10 -0.01(-0.15) 0.29(0.15) 0.82(1.28) 0.72(0.63) 0.98(1.10) 1.08(1.12)
2−11 0.09(-0.08) 0.31(0.18) 0.82(1.28) 0.72(0.63) 0.98(1.10) 1.08(1.12)
2−12 0.17(-0.02) 0.32(0.20) 0.82(1.28) 0.72(0.63) 0.98(1.10) 1.08(1.12)

p∗ -0.01(-0.07) 0.60(0.42) 0.82(1.09) 0.57(0.82) 1.12(1.10) 0.92(1.12)

Table 2: Computed orders of convergence for JN when A =10 (A = 50), u0 =-0.5, n0 = 1.

Number of Intervals N

ε 16 32 64 128 256 512

2−4 16(16) 32(32) 64(64) 128(128) 256(256) 512(512)
2−5 16(16) 32(32) 64(64) 128(128) 256(256) 512(512)
2−6 16(24) 32(32) 64(64) 128(128) 256(256) 512(512)
2−7 16(24) 32(48) 64(64) 128(128) 256(256) 512(512)
2−8 16(24) 32(48) 64(96) 128(128) 256(256) 512(512)
2−9 16(24) 32(48) 64(96) 128(192) 256(256) 512(512)
2−10 16(24) 32(80) 64(160) 128(320) 256(384) 512(768)
2−11 16(24) 32(144) 64(288) 128(576) 256(640) 512(1280)
2−12 16(40) 32(272) 64(544) 128(1088) 256(1152) 512(2304)

Table 3: Iteration counts for A = 50 , u0 =-2 (u0 =-0.5), n0 = 1.
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