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1. Introduction

We consider the numerical solution of various equations occurring in kinetic theory. The numer-

ical algorithm is applied in conjuction with a modified asymptotic procedure. Various mathe-

matical derivations and numerical algorithms are provided for the following singularly perturbed

models of kinetic theory

∂tu +Au + Su +
1
ε
Cu = 0 (1)

where u is the particle distribution, ∂t is the time derivative and the operators A ,S , and C

describe attenuation, streaming and collisions of particles, respectively. We begin by outlining

the features of a modified asymptotic method [4, 1] which is quite useful when solving (1).

Let P be a bounded operator in the Banach space X having zero as its simple isolated

eigenvalue and the corresponding eigenspace V . Then X can be expressed as a direct sum

X = V ⊕W, where both V and W are invariant subspaces of the operator C and C is one-to-one

from W onto itself. Let P be the spectral projection associated with the eigenvalue λ = 0 so

that

V = PX, W = QX,

where Q = I −P is the complementary projection. We use a projection method [4] to write (1)

as a system of evolution equations in subspaces V and W . Applying the projections P and Q

on both sides of (1), successively, we obtain

∂tv = P(A+ S)Pv + P(A+ S)Qw

ε∂tw = εQ(A+ S)Qw + εQ(S +A)Pv +QCQw, (2)

with the initial conditions

v(0) =
o
v, w(0) =

o
w,
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where
o
v = P o

u,
o
w = Q o

u. Taking into account that the projected operators PSP, PAQ and

QAP vanish for most types of linear equations we obtain the following form of (2)

∂tv = PAPv + PSQw

ε∂tw = εQSPv + εQSQw + εQAQw +QCQw (3)

v(0) =
o
v, w(0) =

o
w,

Next we apply the modified asymptotic approach to (3). We represent the solution of (3) as a

sum of the bulk and the initial layer parts:

v(t) = v̄(t) + ṽ(τ), w(t) = w̄(t) + w̃(τ), (4)

where the variable τ in the initial layer part is given by τ = t/ε. The bulk solution will be

considered as a function of ρ of order zero and the function w̄(N) will be assumed to be of the

form

w̄(N)(t) =
N∑

n=0

εnWnρ(t), (5)

where the superscript N indicates the order of the approximation and W are time-independent

bounded linear operators from V to W . Substituting this expansion into the first equation in

(3) yields

∂tρ = PAPρ +
N∑

n=0

εnPSQ(Wnρ). (6)

Expressing the time derivative ∂tρ in (6) in powers of ε and comparing terms of the same power

in ε yields at first order

W0 = 0, W1 = −(QCQ)−1QSP. (7)

The operator W1 can be evaluated since QCQ is invertible on the subspace W. Using (7) in (6)

gives the equation

∂tρ = PAPρ− εPSQ(QCQ)−1QSPρ. (8)

A similar procedure yields the initial layer terms

ṽ0(τ) ≡ 0, ṽ1(τ) = PSQ(QCQ)−1eτQCQ o
w,

and the initial condition for (8)

v̄(0) =
o
v −εPSQ(QCQ)−1 o

w . (9)

In our presentation we apply the procedure to a wide range of problems of kinetic theory.

However due to limited space we only present the case of the linear Boltzmann equation of

semiconductor theory. Further details are also available in the following [1],[3].
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2. Linear Boltzmann Equation of Semiconductor Theory

Here we apply our numerical methods to the model [2]. Thus we consider the linear Boltzmann

equation which describes time evolution of the spatially dependent electron distribution function

u(x, µ, t) under the influence of spatially uniform constant electric field and use the scaling

corresponding to a weak external field. Then the equation is of the form

ε∂tu(x, µ, t) + εµ∂xu(x, µ, t) + εa∂µu(x, µ, t) = −u(x, µ, t) + m(µ)
∫ +∞

−∞
u(x, µ′, t)dµ′ (10)

with the initial condition

u(x, µ, 0) =
0
u,

where 0 ≤ x ≤ 2π, µ ∈ R, a is the acceleration due to the electric field, and

m(µ) =

√
β

π
exp (−βµ2) (11)

is the Maxwellian distribution normalized to satisfy
∫ +∞
−∞ m(µ) dµ = 1. The parameter β is

defined by β = m/(2Tk), where T is the temperature of the background, m the mass of the

particles and k the Boltzmann constant.

Equation (10) is considered in the space

X = L1(R×R)

We assume periodic boundary conditions with respect to x to avoid the boundary layer effects.

Dividing (10) by ε we get

∂tu(x, µ, t) = −µ∂xu(x, µ, t)− a∂µu(x, µ, t)− 1
ε
u(x, µ, t) +

1
ε
m(µ)

∫ +∞

−∞
u(x, µ′, t)dµ′. (12)

It is clear from this formulation that the field is weaker than the scattering mechanism. Here

Au(x, µ) = 0,

the streaming operator is of the form

Su(x, µ) = −µ∂xu(x, µ)− a∂µu(x, µ),

and the collision operator is given by

Cu(x, µ) = −u(x, µ) + m(µ)
∫ +∞

−∞
u(x, µ′)dµ′.

The zero-order approximation of the equation (10), obtained by putting ε = 0, is

−u(x, µ) + m(µ)
∫ +∞

−∞
u(x, µ′)dµ′ = Cu(x, µ) = 0. (13)
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A unique (up to a multiplicative constant) solution to this equation is the Maxwellian (11).

Thus the hydrodynamic space is the eigenspace spanned by m(µ) and the projection operators

are

Pu(x, µ) = m(µ)
∫ +∞

−∞
u(x, µ′)dµ′ = v(x, µ) = m(µ)c(x)

where c(x) =
∫ +∞
−∞ u(x, µ′)dµ′ is the particle number density, and

Qu(x, µ) = u(x, µ)−m(µ)
∫ +∞

−∞
u(x, µ′)dµ′ = w(x, µ).

Thus C can be written as

Cu = −u + Pu = −Qu.

By applying the compressed method we are able to obtain the equation for diffusion approxi-

mation ρ.

First we derive the explicit forms of the operators involved. We have

QSPv(x, µ) = QSv(x, µ) = QSm(µ)c(x)

= Q (−µ∂xm(µ)c(x)− a∂µm(µ)c(x))

= Q (−µm(µ)∂xc(x)− ac(x)∂µm(µ))

= −µm(µ)∂xc(x)− ac(x)∂µm(µ)

+ m(µ)∂xc(x)
∫ +∞

−∞
µm(µ) dµ + ac(x)

∫ +∞

−∞
∂µm(µ) dµ

= −µm(µ)∂xc(x)− ac(x)∂µm(µ)

where the integrals vanish since µm(µ) and ∂µm(µ) are odd functions.

Operator QCQ is derived as follows. First

CQu = −QQu = −Qu,

as Q is a projection, and thus

QCQu = Q(−Qu) = −Qu = Cu.

To obtain (QCQ)−1 we solve the Fredholm equation

u(x, µ) = m(µ)
∫ +∞

−∞
u(x, µ′) dµ′ − f(x, µ) (14)

in QX, which is the same as

u = Pu− f. (15)

If u is such that (15) is satisfied, then

Qf = Q(−u + Pu) = −u + Pu = f.
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This is the solvability condition for (14). Hence

f −Qf = Pf = 0.

We are looking for the solution satisfying u in the range of Q. Thus

u = Qu

and

Pu = PQu = 0

or, explicitly

m(µ)
∫ +∞

−∞
u(x, µ) dµ = 0.

Thus

u = (QCQ)−1f = f

and

(QCQ)−1QSP v(x, µ) = −µm(µ)∂xc(x)− ac(x)∂µm(µ).

Then

PSQ(QCQ)−1QSP v(x, µ)

= PSQ (−µm(µ)∂xc(x)− ac(x)∂µm(µ))

= PS [−µm(µ)∂xc(x)− ac(x)∂µm(µ) + m(µ)∂xc(x)
∫ +∞

−∞
µ′m(µ′)dµ′

+ ac(x)m(µ)
∫ +∞

−∞
∂µ′m(µ′)dµ′]

= PS (−µm(µ)∂xc(x)− ac(x)∂µm(µ))

= P [µ2∂2
xxc(x)m(µ) + aµ∂xc(x)∂µm(µ) + a2∂xc(x)∂µ(µm(µ)) + a2c(x)∂2

µµm(µ)]

= m(µ)
[
∂2

xxc(x)
∫ +∞

−∞
µ2m(µ) dµ + a∂xc(x)

∫ +∞

−∞
µ∂µm(µ) dµ

+ a2c(x)
∫ +∞

−∞
∂µ(µm(µ)) dµ

]
= m(µ)

[
1
2β

∂2
xxc(x)− a∂xc(x)

∫ +∞

−∞
m(µ) dµ

]
= m(µ)

[
1
2β

∂2
xxc(x)− a∂xc(x)

]
.

where we used
∫ +∞
−∞ ∂µ(µm(µ)) dµ = 0 since µm(µ) → 0 as µ → ±∞.

Thus we obtain the diffusion approximating equation

∂tρ = −εPSQ(QCQ)−1QSPρ = εm(µ)
(

1
2β

∂2
xxρ− a∂xρ

)
. (16)
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or dropping the Maxwellian m(µ), to obtain the scalar density.

∂tc(x, t) = ε

(
1
2β

∂2
xxc(x, t)− a∂xc(x, t)

)
. (17)

To find the corrected initial condition

ρ̄(0) =
0
v −εPSQ(QCQ)−1 0

w,

we begin with finding

PSQ(QCQ)−1 0
w

= PSQ 0
w = PSQ (Q 0

u) = PS
(

0
u −m(µ)

∫ +∞

−∞

0
u (x, µ′) dµ′

)
= P

(
−µ∂x

0
u (x, µ) + µ∂xm(µ)

∫ +∞

−∞

0
u (x, µ′) dµ′ − a∂µ

0
u (x, µ)

+ a∂µm(µ)
∫ +∞

−∞

0
u (x, µ′) dµ′

)
= P

[
−µ∂x

0
u (x, µ) + µm(µ)∂x

∫ +∞

−∞

0
u (x, µ′) dµ′ − a∂µ

0
u (x, µ)

+
(

a

∫ +∞

−∞

0
u (x, µ′) dµ′

)
∂µm(µ)

]
= m(µ)

∫ +∞

−∞

[
−

∫ +∞

−∞
µ∂x

0
u (x, µ) dµ + ∂x

∫ +∞

−∞

0
u (x, µ′) dµ′

∫ +∞

−∞
µm(µ) dµ

− a

∫ +∞

−∞
∂µ

0
u (x, µ) dµ + a

∫ +∞

−∞

0
u (x, µ′) dµ′

∫ +∞

−∞
∂µm(µ) dµ

]
dµ

= −m(µ)
∫ +∞

−∞
µ∂x

0
u (x, µ) dµ,

since as before
∫ +∞
−∞ µm(µ) = 0, and also

∫ +∞
−∞ ∂µm(µ) dµ = 0

∫ +∞
−∞ ∂µ

0
u (x, µ) dµ = 0 (under

assumption that
0
u (x, µ) goes to zero as µ → ±∞).

Thus

ρ̄(0) =
0
v (x)− εm(µ)

∫ +∞

−∞
µ∂x

0
u (x, µ) dµ

or

c(x, 0) = c0(x)− ε

∫ +∞

−∞
µ∂x

0
u (x, µ) dµ,

where c0(x) =
∫ +∞
−∞

0
u (x, µ′)dµ′ so that

0
v = m(µ)c0(x) and

0
w =

0
u (x, µ)−m(µ)c0(x).

Using the operators derived above we can find the formula for the initial layer corrector

ṽ(x, τ) = PSQ(QCQ)−1eτQCQ 0
w (x, µ) = e−τm(µ)

∫ +∞

−∞
µ∂x

0
u (x, µ) dµ.

For calculations the initial condition for the distribution function was

0
u (x, µ) = f0(µ)(1 + A sinx), (18)
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where A ≤ 1 and the function f0 satisfied∫ +∞

−∞
f0(µ)dµ = 1 and

∫ +∞

−∞
µf0(µ)dµ = s0 6= 0. (19)

The last condition above ensures that this is a non-equilibrium initial value.

In particular, for the results presented below we have taken

f0(µ) =

 1 for 0 ≤ µ ≤ 1

0 for other µ

thus s0 = 0.5 and we took a = 0.6, A = 1/2.

This gives the initial number density

c0(x) = 1 + A sinx, (20)

and thus the corrected initial condition of the diffusion equation is

c(x, 0) = 1 + A sinx−Aεs0 cos x (21)

and the initial layer corrector is given by

ṽ(x, τ) = As0m(µ)e−τ cos x, (22)

where τ = t/ε.

The sequence of calculations for the numerical results are as follows. First, we applied

uncorrected initial condition to the diffusion approximation

ĉ(x, 0) = 1 + A sinx; (23)

then the error is given by

E =
∫ 1

0
|c(x, t)− ĉ(x, t)| dx. (24)

Next, we applied the corrected initial value c(x, 0) from (21), in which case the diffusion approx-

imation yields the following error:

EIC =
∫ 1

0
|c(x, t)− c̄(x, t)| dx. (25)

Next, we used the initial layer corrector (22) instead of the initial value corrector (21), and the

resulting error, evaluated according to the formula

EIL =
∫ 1

0
|c(x, t)− (ĉ(x, t) + ṽ(x, t/ε)| dx (26)
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Table 1: Boltzmann equation of semiconductor theory: errors in diffusion approximation, ε =

0.01.

t E EIC EIL EICIL

0 2.2029e-016 5.0057e-002 5.0057e-002 2.2029e-016

1.0000e-003 7.2219e-004 4.9341e-002 4.9781e-002 2.9635e-004

5.0000e-003 3.4750e-003 4.6615e-002 4.8729e-002 1.4326e-003

5.0000e-002 2.3503e-002 2.7629e-002 4.1576e-002 1.0304e-002

5.0000e-001 5.9060e-002 4.8396e-002 5.9061e-002 4.8396e-002

is given in the table.

Finally, the error for the approximation with both correctors applied is evaluated according to

the formula

EICIL =
∫ 1

0
|c(x, t)− [c̄(x, t) + ṽ(x, t/ε)] | dx. (27)

The table gives the results for the calculations with ε = 0.01. It is observed that the best

approximation is when we combine both correctors and the worst when we use only the initial

layer corrector.
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