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1 Introduction

Swirl in a flow is a feature commonly met with in a wide variety of flows
both in nature and in engineering. We use this term here to denote flows
characterised by helical streamlines. Two transition mechanisms with some
fundamental differences, which we call here the Taylor and the Tollmien-
Schlichting mechanisms, stand generally in competition with each other in
this flow. The salient difference between these two mechanisms is the pres-
ence or otherwise of a critical layer. The Tollmien-Schlichting mechanism
exhibits a critical layer, whereas no such layer exists in the Taylor mech-
anism. Physically, the critical layer is the region within the shear layer in
which effects of viscosity are crucial to the dynamics of disturbances in-
fluencing transition, and so cannot be ignored in the study of propagation
characteristics of disturbances in the context of transition. Mathematically,
the critical layer occurs at a location where the differential equations gov-
erning the disturbances exhibit a turning point, or, in other words, where
the coefficient of the second derivative of the velocity passes through a zero.
For a more complete discussion of the role of viscosity in the critical layer
during transition and for a treatment of singular perturbation problems in-
volving a turning point the reader is referred to literature on this subject,
for example, [1, 2, 3, 4, 5, 7, 8, 9, 12].

The flow geometry we propose to study in this paper is the swirling an-
nular flow in the gap between concentric circular cylinders. Swirl may be
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brought about in this flow by an axial pressure gradient acting simultane-
ously with rotation of one or both the cylinders about its own axis. Further
imposition of an axial motion on the cylinder walls results in a redistribution
of the axial velocity profile, but which retains the basic qualitative character
sought in the flow under study, viz. helical streamlines. The rotation of one
or both of the cylinders and the axial movement of the walls together with
an axial pressure gradient defines a class of flows subject to the two mecha-
nisms of transition mentioned earlier. A judicial choice of a relativey small
number of parameters permits the axial and azimuthal velocity profiles in
the class of flows thus generated to exhibit a wide variety of distributions in
which the two transition mechanisms can interact with each other to yield
flows with different topological characteristics, and hence its suitability for
our present study. However, we restrict our attention in this paper to flows
generated by rotation of the outer cylinder alone, and axial motion of the
inner cylinder alone. We note that both these conditions tend to stabilise
the flow. Our focus of interest in this paper is the location and structure of
the critical layer that appears in this flow when it is undergoing transition.

2 Formulation of the problem

The flow geometry is sketched in Fig.1 which also serves to explain some of
the notations. The parameters in the problem are: the radii of the outer and
inner cylinders, Ra and Ri respectively, the axial pressure gradient dPG

dx , or
the reference velocity Vrefxp derivable herefrom through Vrefxp = −H2

2µ
dPG
dx ,

the angular velocity of the outer cylinder Ωa, the axial velocity of inner
cylinder Vrefxwi

and the kinematic viscosity ν. The dimensionless parameters
in the problem are then: the transverse curvature parameter εR = Ra−Ri

Ra+Ri
,

the Reynolds number Re =
VrefxpH

ν referred to Vrefxp and the semi-gap
width H = (Ra−Ri)

2 , the swirl parameter Swa = ΩaRa
Vrefxp

and the translation

velocity parameter Twi = Vrefxwi

Vrefxp
.

The basic flow belonging to this geometry is the fully developed flow
which may be approximated for small values of the transverse curvature
parameter εR as follows:

VGx '
(
1− y2

)(
1 +

1
3
εRy

)
+ Twi

[
1
2
(1− y) + εR

1
4
(y2 − 1)

]
(1)

VGϕ ' Swa

[
1
2
(1 + y) +

εR

4
(1− y2)

]
, (2)

2



where y is the radial co-ordinate with the origin shifted to the middle of the
gap and normalised with H.

The equations governing small perturbations from this basic flow are
obtainable in a straightforward manner by writing in the equations of mo-
tion in cylindrical coordinates (see eg. [11]) the velocity components and
the pressure as a sum of the basic flow, (VGx, 0, VGϕ, PG), and perturba-
tions, (vsx, vsr, vsϕ, ps), and neglecting squares of the latter. From this set
of equations, the perturbation in pressure, ps, may be eliminated by estab-
lished procedures to derive the Orr-Sommerfeld and the Squire equations,
see eg. [1], to yield a set of equations containing the velocity perturbations,
(vsx, vsr, vsϕ) alone. The linearity of these resulting equations, together with
the prevalent geometrical constraints, suggests solutions for the small per-
turbations to be sought in the form of waves propagating in the x− and ϕ−
directions with wavenumbers λx and nϕ in the axial and azimuthal directions
respectively, viz.

(vsx, vsr, vsϕ) = (Asx, Asr, Asϕ)expi(λxx+nϕϕ−ωt) + c.c., (3)

where (Asx, Asr, Asϕ) are complex and are functions of only the coordinate
normal to the wall. The resulting set of ordinary differential equations for
these complex amplitude functions which we wish to refer to in this order as
the extended Orr-Sommerfeld, Squire and continuity equations respectively,
forms the starting point for our study. These are as follows:

Extended Orr-Sommerfeld equation

d4Asr

dy4

[
1

Re

]
+

d3Asr

dy3

[
2εR

Re

]
+

d2Asr

dy2

[
−2λ2

x

Re
+ iω − iλxVGx − iεrnϕVGϕ

]

+
dAsr

dy
εR

[
−2λ2

x

Re
+ iω − iλxVGx

]

−Asr

[
λ2

x

(
− λ2

x

Re
+ iω − iλxVGx − iεrnϕVGϕ

)

−iλx
d2VGx

dy2
+ iεRλx

dVGx

dy
− iεRnϕ

d2VGϕ

dy2

]
−Asϕ

[
2εRnϕλ2

xVGϕ

]
= 0 (4)
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Extended Squire equation

Asr

[
iεRnϕ

dVGx

dy
− iλx

dVGϕ

dy
− iεRλxVGϕ

]
+

d2Asϕ

dy2

[
iλx

Re

]
+

dAsϕ

dy

[
iεRλx

Re

]
+Asϕiλx

[
− λ2

x

Re
+ iω − iλxVGx − iεrnϕVGϕ

]

−d2Asx

dy2

[
iεRnϕ

Re

]
−AsxiεRnϕ

[
λ2

x

Re
+ iω − iλxVGx

]

+Asr

[
iεRnϕ

dVGx

dy
− iλx

dVGϕ

dy
− iεRλxVGϕ

]
= 0 (5)

Continuity equation extended to include transverse curvature

dAsr

dy
+ AsrεR + AsϕiεRnϕ + Asxiλx = 0 (6)

It should be noted that VGx and VGϕ in the equations (4, 5) are given
by the equations (1, 2) which show the dependence of these quantities on
the parameters for transverse curvature, swirl and axial velocity of the inner
cylinder, viz. εR, Swa and Twi respectively. It is straightforward to verify
that in the absence of transverse curvature and swirl, i.e. ε − R = 0 and
S = 0, the equations (4, 5, 6) reduce to the standard forms of these equations
known in the literature, eg. [11]. The set of equations (4, 5, 6), together
with homogeneous boundary conditions, define an eigenvalue problem, the
dispersion relationship of which may formally be written as follows:

F (Re, Swa, Twi, λx, nϕ, ω) = 0. (7)

In the temporal eigenvalue problem, which is both convenient and suffi-
cient for the purposes of this paper, λx and nϕ maybe considered real and ω
permitted to be complex. For a neutraly stable disturbance the imaginary
part of ω, denoted ωi is zero.

3 The critical layer in the problem

Analogous to the classical shear flow stability problem, the extended Orr-
Sommerfeld equation (4) exhibits a turning point for values of λx and nϕ

for which the disturbance is neutrally stable. While there are similarities
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between the turning points that appear in the classical problem and in the
present one, there are also some noteworthy differences, and we focus our
attention in this paper on the similarities and differences between the two.

3.1 Criterium for the location of the critical layer

In the classical problem (εR = 0, Swa = 0), the critical layer is located at the
turning point, at which the coefficient of the second derivative, d2Asr

dy2 , passes
through zero for Re =∞. This may be identified as the location where the
phase speed of the neutrally stable wave, which is ωr

λx
, is equal to the local

velocity of the basic flow. This criterion needs modification when, as it is in
the present problem, swirl is present in the basic flow.

The turning point of the extended Orr-Sommerfeld equation is located,
as in the classical problem, where the coefficient of the second derivative for
Re =∞ is zero, which, from equation (4) is seen to be

[iω − iλxVGx − iεrnϕVGϕ] = 0 (8)

An examination of the above equation (8) sheds light on the salient
differences between the classical problem and the present one. Two kinds of
source causing these differences may be identified, viz. transverse curvature
and swirl. The differences, which are not just quantitative but already
qualitative in nature, are as follows, whereby the observations are applicable,
as in the classical problem, to neutrally stable disturbances:

• The location of the critical layer is affected by the transverse curvature
in the geometry even in the absence of swirl since VGx depends upon
εR, cf. equation (1). In this case, since transverse curvature destroys
the symmetry of the axial velocity profile of the basic flow around
the middle of the gap, see equation (1), the critical layer may not
be expected to be located at the same distance from both the walls.
Results of numerical computations to be presented later in the course
of this paper will be seen to support this conjecture.

• When swirl is present, the axisymmetric mode of the disturbance, for
which nϕ = 0, has no influence on the location of the critical layer.
However, for all disturbance modes with nϕ 6= 0, the location of the
critical layer is influenced by the azimuthal velocity profile of the basic
flow, VGϕ.

• Furthermore, for the modes nϕ 6= 0, the critical layer is located not
at the point where the phase speed of the wave is equal to the local
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basic flow velocity, but where the frequency of the (neutrally stable)
wave, ωr, is equal to a quantity related to the inner product of the
wave-number vector, (λx, nϕ) and the basic flow vector (VGx, VGϕ)
and into which the transverse curvature in the geometry also enters,
cf. equation (8). In view of the inherently vectorial nature of the basic
flow velocity and the wave-number associated with swirl, it appears
more meaningful to think in terms of the slowness vector introduced
by Whitham [13] with components (λx

ωr
,

nϕ

ωr
) instead of the phase speed

of the wave, ωr
λx

, that is customary in the classical problem.

3.2 Scaling property of the critical layer

The role of the critical layer in the context of flow transition, which is
a subject with a long-standing tradition in fluid-mechanics research, see
eg. [6, 10], has been discussed extensively and may be found in standard
literature on this subject. For the present problem, the methods developed
for studies in hydrodynamic stability are applicable, so we restrict ourselves
to outlining the procedure and merely give a selection of some results.

The basic underlying idea is as follows:
Since the singularity at the turning point occurs only in the inviscid

problem when the Reynolds number is set to infinity, viscosity may be ex-
pected to be effective only in the narrow regions surrounding the turning
point, smearing out the large gradients. The mathematical procedure for
treating such problems essentially consists of expanding the coefficients in
the equations in a series around the turning point and rescaling such that
the highest order derivatives which are traceable to effects of viscosity, are
retained locally in the problem, see eg. [3, 4, 9].

Accordingly, we approximate the velocity components VGx, VGϕ and its
derivatives through series expansions around the turning point y = yc and
write:

VGx = VGx(yc) + V ′
Gx(yc)(y − yc), VGϕ = VGϕ(yc) + V ′

Gϕ(yc)(y − yc), (9)

and similarly for the derivatives of VGx and VGϕ. We scale the independent
variable in the region y = yc as follows:

y − yc

εc
= ηc, (10)

where εc depends upon the Reynolds number Re in a manner to be deter-
mined. We may write εc = Re−ncd where ncd belongs to the set of positive
rational numbers. εc therefore tends to zero as the Reynolds number tends
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to infinity, making ηc a suitable variable to describe large changes in nar-
row regions which is what the critical layer is. Writing the extended Orr-
Sommerfeld equation (4) in terms of the rescaled variable ηc according to
the equation (10), using therein the approximations (9), and examining the
value of ncd that retains the highest order derivatives (viscous terms) in the
limit Re→∞ leads to ncd = 1

3 which means

εc = Re−
1
3 . (11)

The equation (11) then gives the scaling of the critical layer. This is seen to
be the same as in the classical problem. It can be used to derive approxima-
tions of the set of equations (4, 5, 6) valid in the critical layer and matching
into the surroundings.

4 Numerical results

The eigenvalue problem defined through the differential equations (4, 5, 6)
together with homogeneous boundary conditions was cast into an algebraic
form through the spectral collocation method and solved numerically by the
QZ-algorithm. The program was written in MATLAB for this purpose. We
present a sample selection of results in this papaer.

Fig. 2 shows the axial and azimuthal velocity profiles in the basic flow for
ε = 0.5, Twi = 0.5 and Swa = 0.5. Figs.3 and 4 show plots of the amplitude
functions of the disturbance at the critical Reynolds number for swirl-free
and swirling annular flow.

Fig.5 is a sketch of the location of the critical layers in the class of flows
under study. Figs. 6 and 7 are plots of the location of the critical layers close
to the outer and the inner cylinder wall respectively ascertained from the
numerical results according to (8). Figs. 8 and are plots of the amplitude
and phase of the disturbance within these critical layers. We wish to draw
the reader‘s attention to the different ways in which the location of the
critical layers close to the outer and the inner cylinder walls are affected by
the parameters Twi and Swa, figs.6 and 7.
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Figure 1: Sketch of flow geometry
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Figure 2: Axial and azimuthal velocity profiles in basic flow. εR = 0.5,
Twi = 0.5, Swa = 0.5
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Figure 3: Amplitude functions for neutrally stable swirl-free annular flow.
Re = Recrit = 7903, εR = 0.1, Twi = 0, Swa = 0, λx = 0.2313, nϕ = 0,
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Figure 8: Distribution of amplitude and phase of the disturbance in the
critical layer close to the wall of the outer cylinder
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