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1. Introduction

Transition from laminar to turbulent flow occurs via inherent instability of the former caused by
the omnipresent background disturbances. While the motivation behind the famous experiments
of [5] was to relate the instability with the disturbance level, most theoretical analyses, studies
transition as an eigenvalue problem- in either temporal or spatial framework. Significant progress
made by this approach is recorded in [2], while many issues still remain unresolved. For example,
plane Couette and Poisseuille flow are found stable by eigenvalue analysis for certain parameter
combinations, while lab experiments reveal them to be unstable. Classical approaches in this
field, involve identifying equilibrium states whose stability is studied by eigenvalue analysis,
by linearizing the governing mass and momentum conservation equation and then expressing
it in the spectral plane after making the parallel flow assumption, leading to the well-known
Orr-Sommerfeld equation. The least stable mode, often display wave-like nature and is said to
produce the Tollmien-Schlichting (TS) waves.

In general fluid dynamic systems, it is not known a priori whether distrubances grow in space
or in time or as spatio-temporal structures and this issue has not been resolved by instability
studies. The alternative is to use receptivity studies where the response of the system is obtained
with respect to impressed disturbances. For localized harmonic excitation, in [3] and [6] the
assumption, that the response is at the frequency of the imposed excitation was made for the ease
of the receptivity calculation and this is known as the signal problem. In [7] this assumption was
removed and the complete spatio-temporal analysis was made using Bromwich contour integral
method. For a zero pressure gradient boundary-layer, it was shown that this and the signal

problem produces identical response field, for those cases where the system is spatially unstable.
In a recent study [8], it has been shown that these two approaches do not produce identical
results for spatially stable systems and indicates the necessity of performing spatio-temporal
receptivity studies by the Bromwich control integral method.

In the present study, we show the composite nature of the response field obtained by the
Bromwich contour integral method. We identify the near- and far-field response of a stable
system for the zero pressure gradient boundary layer, and finally explain the structure of the
near-field analytically.

2. Problem Formulation

We have investigated the response of a zero pressure gradient boundary layer excited by a
harmonic source at the wall, at a circular frequency β0, as shown in Figure 1. We represent the
disturbance stream function by,
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ψ(x, y, t) =

∫ ∫
Br

φ(α, β, y)ei(αx−βt)dαdβ (1)

where Br indicate the Bromwich contours followed in evaluating the above integral in the com-
plex α and β plane - β0 appearing via the wall boundary condition [8]. The mathematical basis
of Bromwich contour integral is given in [4, 9] and its application for the present problem can
be seen from [7, 8].
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Figure 1: Harmonic excitation of a parallel boundary layer corresponding to the location of the
exciter.

The posed problem is solved by linearizing the Navier-Stokes equation in the spectral planes
and expressing it as the Orr-Sommerfeld equation given by,

(U − β/α)(φ′′ − α2φ) − U ′′φ =
1

iαRe
(φiv − 2α2φ′′ + α4φ) (2)

where U(y) is the mean flow and the Reynolds number is based on displacement thickness. The
choice of Bromwich contours in β- plane is restricted by causality principle and in the α- plane
is made in such a way that all the eigenvalues corresponding to the downstream propagating
modes remain above it. If cartesian disturbance velocity components are denoted by u and
v, respectively, then the boundary conditions for solving Equation (2) at y = 0 are: u = 0,
ψ(x, 0, t) = H(t)δ(x)e−iβ0t and for y → ∞: u, v → 0 where H(t) is the Heaviside function and
δ(x) represents the Dirac delta excitation at the origin of the frame. To discuss the spatio-
temporal growth of waves for Blasius boundary layer, two spatially stable cases are considered
marked as B and D in Figure 2, that represents the neutral curve in (Re− β0) plane.
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Figure 2: Neutral curve for the Blasius boundary layer.

3. Disturbance flow-field

Here, a Blasius boundary layer is considered whose spatial normal modes are evaluated by grid-
search technique employing compound matrix method [7] for Re = 1000 and β0 = 0.05 and 0.15
and their wave properties are given in Table-1. For these parameters, existing spatial modes are
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Table 1: The wave properties for the points B & D identified in Fig. 2

β0 αr αi

1) 0.0621 413 0.0696 594
0.05 (D)

2) 0.1607 670 0.0015 206

3) 0.1894 256 0.3226 357
0.15 (B) 4) 0.2728 701 0.1675 585

5) 0.3940 036 0.0104 936

all damped- one set corresponding to β0 = 0.05 (identified as 1 and 2) are below the neutral
curve and the other set corresponding to β0 = 0.15 (identified as 3-5 in Table 1).

Equation (2) is solved along the Bromwich contours: (i) −20 ≤ αr ≤ 20;αi = −0.001 and
(ii) −1 ≤ βr ≤ 1;βi = 0.02- such that the causality principle is not violated and waves travel in
the correct direction. Obtained φ’s are used to reconstruct the disturbance field in Equation (1)
and the velocity field are as plotted in Figure 3 for the case of B at the indicated time instants.
While Table 1 shows all three spatial modes as stable, the contour integral results in Figure 3
show (i) the near-field given by the local solution and the far-field that consists of (ii) a decaying
wave and (iii) a temporally growing wave-packet.
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Figure 3: Streamwise disturbance velocity plotted as a function of x at different t for β0 =
0.15, Re = 1000 at y = 0.278

After long time, the decaying wave corresponds to Mode 5 and the growing wave-front
corresponds to Mode 4 of Table 1. Effect of Mode 3 is not visible due to its extremely large
decay rate. In Figure 4, Fourier-Laplace transform of the signal is shown for t = 801.1, that
idenitifes Modes 4 and 5. In this figure, the dashed lines indicate the location of the three modes
for this case.

In Figure 5, u is shown plotted against x at the indicated time instants for the case of point
D of Figure 2. This also shows a similar disturbance with near- and far-field structures. In
Figure 6, the corresponding Fourier-Laplace transform of the signal at t = 788 is shown. In
this case, the asymptotic deacying signal correspond to Mode 2, while the effect of Mode 1 is
not visible here. The growing wave-front corresponds to the packet to the right of Mode 2. In
Figures 3 and 5, one notices the near-field to represent a sharp change of the variable- although
there is upstream penetration of the disturbance field with respect to the exciter. This aspect
of the near-field is discussed next.
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Figure 4: FFT of streamwise disturbance velocity plotted as a function of α for point B.
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Figure 5: Streamwise disturbance velocity plotted as a function of x at different t for β0 =
0.05, Re = 1000 at y = 0.278
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Figure 6: FFT of streamwise disturbance velocity plotted as a function of α for point D.

4. Near-field Response by Localized Excitation

We have noted in [7, 8] that there are no differences in the response between the spatial and
spatio-temporal analysis for unstable wave cases. Thus, to understand the near-field structure
we consider the unstable case with Re = 1000 and β0 = 0.1 so that the resulting analysis is
easier and tractable. In Figure 7, the resultant response field for this case is shown only in the
near vicinity of the exciter in three frames with time interval marked in one complete cycle of
its excursion.

From the displayed frames, it is noted that this component is not a traveling disturbance- it
simply pulsates at the location of the exciter. A simple calculation reveals that this pulsation
is at the excitation frequency, β0 = 0.1. The top frame shows the variation of local solution as
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Figure 7: Local solution for u as a function of x for β0 = 0.1 and Re = 1000 at y = 0.278

it decreases in the time range shown. In the middle frame, the excursion is shown as the local
solution increases with time and the bottom frame shows variation from the highest value to
the starting location. In the following we attempt to explain the feature of the local solution.
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For the signal problem considered in this section, the disturbance stream function is given
by,

ψc(x, y, t) =

∫
Br

φ(α, β0, y)e
i(αx−β0t)dα (3)

and the Laplace transform is governed by Equation (2), with β replaced by β0. The Bromwich
contour is fixed in the α- plane only. In the context of exploring relationship between the original
(ψc) and the image (φ), two theorems due to Abel and Tauber are relevant (as given in [9]). If
one is interested in the behaviour of ψc, far away from the exciter (x → ∞), then it is located
by φ in the neighbourhood of the origin in the α- plane (Abel’s theorem). This implies that
the far-field solution is determined by the singularities of φ (the poles and branch points) near
the origin, in the α- plane. In contrast, ψc in the near vicinity of the exciter is decided by φ at
α→ ∞ (Tauber theorem).

Thus, for the near-field solution, one needs to find the contribution of φ in Equation (3)
by the Bromwich contour segment when α → ∞. In Figure 8, we have shown a rudimentary
integration contour that can be used to perform the integral of (3) in the α- plane. The semi-
circular arc C ≡ C1 ∪ C2 ∪ C3, in the limit ρ → ∞ represents half of the contour that actually
represents the point at infinity, in the α- plane.

α r

C1

C2

C3

ρ

α i

Figure 8: Integration contour in α-plane for the essential singular point.

One notes here that in many indefinite integrals of the type given by Equation (3), one
actually uses Jordan’s lemma and ignores the contribution coming from this semi-circular arc.
In (3), ψc contribution from the semi-circular arc would vanish if and only if the denominator of
the integrand is at least two units higher than the degree of the numerator (see [1]) i.e. if and
only if

|φ(y, α, β0)| <
k

|α2|
(4)

for α → ∞. Thus, it remains to be shown if the Jordan’s lemma is valid for the present
case. To investigate this, we analytically obtain φ(y, α) as a function of ǫ1 (= 1

α
) by a singular
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perturbation analysis for α → ∞. With this small parameter ǫ1, on the semi-circular arc of
Figure 8 one can define α = ρθ, where ρ is the radius of the arc and θ = θr + iθi is the complex
phase of α. To determine φ for α→ ∞, one can perform the singular perturbation analysis and
obtain the inner solution φi, by reducing Equation (2) to

φiv
i − 2θ2φ”

i + θ4φi = 0 (5)

where the derivatives are with respect to the independent variable Y = y
ǫ1

. It is noted that

the governing equation along C, reduces to ∇4ψ = 0, that is independent of β0 and Re. The
solution of Equation (5) is obtained in the original co-ordinates as,

φ(y, α) = (1 + αy)e−αy for αr > 0(on C1) (6)

φ(y, α) = (1 − αy)eαy for αr < 0(on C3) (7)

One can similarly obtain the expression for φ along C2 of the semi-circular contour. These
analytical solutions clearly reveal that for this problem one cannot use the Jordan’s lemma, as
the conditions of Equation (4) is not satisfied. It would therefore be interesting to use Tauber’s
theorem to find out the contribution to ψc in Equation (4), by the analytical solutions in (6)-(7).
Use of these in (4), yield the following solution,

ψc(x, y, ρ, t) = [cos(ρy)e−ρx +
ieiρz

z
(1 + ρy +

iy

z
) −

ie−iρz̄

z̄
(1 + ρy −

iy

z̄
)

−
ie−ρz+iz

z
(1 +

iy

z
+ y + iρy) +

ie−ρz̄−iz̄

z̄
(1 −

iy

z̄
− iρy + y)]

e−iβ0t

2π

where z = x + iy and z̄ = x − iy. For the limit ρ → ∞, this solution when plotted would not
reveal physical solution, as the plots indicate very high frequency oscillations. However, a very
interesting result emerges when we inspect this solution at y = 0 that simplifies to,

ψc(x, 0, ρ, t) = [e−ρx{1 +
2sinρx

x
} +

2sinρx

x
]
e−iβ0t

2π

In the limit ρ→ ∞, the first term does not contribute, while the second term is the Dirichlet
function [9]- an approximation for the Dirac Delta function. Thus, the quantity which is tra-
ditionally considered negligible by Jordan’s lemma turns out to support the applied boundary
condition.

This analysis explains the nature of the near-field of the solution obtained by the receptivity
analysis. An inspection of Figures 3 and 5 reveal that the near-field of the solution are iden-
tical, even when β0 value changes three-fold. It can also easily be shown that the near-field is
independent of Re- as shown in the above analysis.
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