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1. Introduction

A Dirichlet problem for a singularly perturbed parabolic equation with a vector perturbation
parameter ε, ε = (ε1, ε2), is considered on the semi-axis. The highest and first order deriva-
tives with respect to x in the equation contain respectively the parameters ε1 and ε2 that take
arbitrary values in the half-open interval (0, 1] and in the interval [−1, 1]. Depending on the re-
lationship between the parameters ε1 and ε2, the type of the equation may be reaction-diffusion
or convection-diffusion. The first order derivative of the initial function has a jump disconti-
nuity at some point x0. For small values of the parameter ε1, a boundary layer appears in
a neighbourhood of the lateral boundary of the domain. The type of this layer depends on
the relation between ε1 and ε2 and may be regular, parabolic, or hyperbolic (with their own
characteristic length scales). In a neighbourhood of the set Sγ , that is, the characteristic of the
reduced equation outgoing from the point (x0, 0), a parabolic interior (transient) layer arises.

Using the method of piecewise uniform meshes condensing in a neighbourhood of the boundary
layer, we construct a special finite difference scheme that converges ε-uniformly at the rate of
the order 0.5. The method of additive splitting of a singularity (in the neighbourhood of the
interior layer) applied on the basis of a domain decomposition method allows us to construct
the improved scheme that converges ε-uniformly with an order of convergence close to one.

2. Problem formulation. The aim for research

On the set G, where
G = G ∪ S, G = D × (0, T ], D = (0,∞), (2.1)

we consider the boundary value problem for the singularly perturbed parabolic equation

Lu(x, t) ≡

{
ε1a(x, t)

∂2

∂x2
+ ε2b(x, t)

∂

∂x
− c(x, t) − p(x, t)

∂

∂t

}
u(x, t) = f(x, t), (x, t) ∈ G,

(2.2)
u(x, t) = ϕ(x, t), (x, t) ∈ S.

Here the parameters ε1 and ε2 are components of the vector parameter ε (or, in short, the
parameter ε) take arbitrary values in the half-open interval (0, 1] and in the interval [−1, 1],
respectively. The coefficients a(x, t), b(x, t), c(x, t), p(x, t), and the right-hand side f(x, t) are
sufficiently smooth on G, and also

a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, c0 ≤ c(x, t) ≤ c0, p0 ≤ p(x, t) ≤ p0, (2.3a)

| f(x, t) | ≤ M, (x, t) ∈ G, a0, b0, p0, c0 > 0;

∗This research was supported in part by the Russian Foundation for Basic Research (grants No. 04-01-00578,
04–01–89007–NWO a), by the Dutch Research Organization NWO under grant No. 047.016.008 and by the Boole
Centre for Research in Informatics, National University of Ireland, Cork.
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the boundary function ϕ(x, t) is continuous and bounded on S: ∗

|ϕ(x, t) | ≤ M, (x, t) ∈ S, (2.3b)

and it is sufficiently smooth on S
L

and piecewise smooth on S0. The derivative (∂/∂x)ϕ(x, t)
has a jump discontinuity (discontinuity of the first kind) on the set S(∗) = {(x, t) : x = d, t = 0}.
Here S = SL ∪ S0, S0 and SL are the lower (for t = 0) and lateral parts of the boundary S,
S0 = S0; SL = Γ × (0, T ], Γ = D \ D; assume S∗

0 = Sl
0 ∪ Sr

0 , where S∗
0 = S0 \ S(∗), Sl

0 = {(x, t) :
x ∈ [0, d), t = 0}, Sr

0 = {(x, t) : x ∈ (d,∞), t = 0}. For simplicity, compatibility conditions are

assumed to be fulfilled on the set of “corner” points Sc = S
L
∩ S0 (see, e.g., [6]), which ensure

the necessary smoothness of the solution for each fixed ε.

We are interested in finding an approximation to the solution u(x, t), (x, t)∈G. The deriva-
tive (∂/∂x)u(x, t) is continuous on G

∗
= G \ S (∗); for fixed ε, it is bounded on G

∗
and dis-

continuous on the set S (∗). Let us describe the behaviour of the solution and derivatives more
precisely.

Let S γ = {(x, t) : x = γ(t), (x, t) ∈ G}, x = γ(t), t ≥ 0, be the characteristic of the reduced
equation passing through the point (d, 0). For simplicity, we assume that the characteristic S γ

does not meet the boundary S L. For ε1 → 0, boundary and interior layers with the typical

length scales ε0 and ε
1/2
1 appear in a neighbourhood of the sets S L and Sγ , respectively, where

ε0 = ε0(ε) =






ε
1/2
1 for |ε2| ≤ ε

1/2
1 ,

ε1 ε−1
2 for ε2 > ε

1/2
1 ,

|ε2| for ε2 < −ε
1/2
1 ;

(2.4)

ε1 ≤ ε0 ≤ ε
1/2
1 + |ε2|. The derivative (∂/∂x)u(x, t) in the neighbourhood of the set S L grows

without limit as ε1 → 0 (see the second bound in (3.6) in Section 3). Note that the type of the
boundary layer in the neighbourhood of SL depends on the relation between the parameters ε1

and ε2. The boundary layer is regular for ε
1/2
1 ≪ ε2 ≤ 1, parabolic for |ε2| ≪ ε

1/2
1 , or hyperbolic

for ε2 < 0 and ε
1/2
1 ≪ |ε2| ≪ 1; no boundary layer appears for ε2 < 0 and |ε2| ≈ 1. Unlike

the boundary layer, the interior (parabolic) layer is weak (the first derivative of the interior-
layer function in x is bounded ε-uniformly; see bounds (3.4) in Section 3). In the nearest
neighbourhood of S(∗), we observe a discontinuity-singularity of the first derivative in x (see
(3.4) for small values of ρ).

In the case of problem (2.2), (2.1) with sufficiently smooth initial data, for example, with[
∂

∂x
ϕ(d, 0)

]
= 0, where

[
∂

∂x
ϕ(d, 0)

]
=

∂

∂x
ϕ(d + 0, 0) −

∂

∂x
ϕ(d − 0, 0) is the jump of the

derivative of the function ϕ(x, t), the classical schemes do not converge ε-uniformly in the neigh-
bourhood of the set S L. If the derivative of the initial function is discontinuous, then the rate
of convergence of a finite difference scheme based on standard approximations of the problem
with a scalar parameter ε is not higher than 0.5 (see, e.g., [4]).

Our aim is to construct a difference scheme for problem (2.2), (2.1) that converges ε-uniformly
with an order of convergence close to one.

Note that for a model heat transfer problem in the case of flow past a flat plate with suction
of the boundary layer [1], we have ε1 = Pe−1 and ε2 = Re−1/2 + v0, where Re and Pe are the
Reynolds and Péclet numbers, and v0 ≥ 0 is the intensity of the suction. The temperature of
the flowing fluid is piecewise smooth in some cross-section of the flow, and the first derivative
of the temperature in this cross-section has a discontinuity at some distance from the plate.

∗ Here and below we denote by M, Mi (by m) sufficiently large (small) positive constants that are independent
of ε and the discretization parameters. The notation L(j.k) (M(j.k), Gh(j.k)) means that this operator (constant,
set) is defined in formula (j.k).
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3. A priori bounds on the solution of the boundary value problem

Let us present some bounds on the solution of problem (2.2) and its derivatives. These bounds
are derived using the technique from [2, 7, 8]. The functions f(x, t) and ϕ(x, t) satisfying (2.3)

are assumed to be sufficiently smooth on the sets G and S
L
, S

l
0, S

r
0 , respectively.

We represent the domain G as the sum of overlapping sets

G =
⋃

jG
j
, j = 1, 2, 3, (3.1)

where
G 1 = G 1(m1) = {(x, t) : |x − γ(t)| < m1, t ∈ (0, T ]},

G 2 = G 2(m2) = {(x, t) : x ∈ (0, 0 + m2), t ∈ (0, T ]},

G 3 = G 3(m3) = G \
{
G1(m3)

⋃
G2(m3)

}
, m3 < m1, m2,

G1 and G2 are the vicinities of the interior and the boundary layers, respectively; let G
1
∩ G

2
= ∅.

Using the results obtained in [2, 7, 8], we find the bound
∣∣∣∣

∂k+k0

∂xk∂tk0
u(x, t)

∣∣∣∣ ≤ M, (x, t) ∈ G
3
, k + 2k0 ≤ K; (3.2)

the value of K is determined by the data of the problem.

The function u(x, t), (x, t) ∈ G
1
, can be represented as the sum of functions

u(x, t) = U 1(x, t) + W 1(x, t), (x, t) ∈ G
1
, (3.3)

where U 1(x, t) and W 1(x, t) are the regular and singular components of the solution; namely,
W 1(x, t) is the transient layer.

For the components in representation (3.3), we have the bounds
∣∣∣∣

∂k+k0

∂xk∂tk0
U1(x, t)

∣∣∣∣ ≤ M
[
1 + ε

(i+1−k−k0)/2
1 ρ i+1−k−k0 + ε

(i+1−k)/2
1 ρ i+1−k−2k0

]
, (x, t) ∈ G

1
,

∣∣∣∣
∂k+k0

∂xk∂tk0
W 1(x, t)

∣∣∣∣ ≤ M
[
1 + ε

(1−k−k0)/2
1 ρ 1−k−k0 + ε

(1−k)/2
1 ρ 1−k−2k0

]
, (x, t) ∈ G;

(3.4)∣∣∣∣
∂k+k0

∂ξk∂tk0
Û1(ξ, t)

∣∣∣∣ ≤ M
[
1 + ε

(i+1−k)/2
1 ρ̂ i+1−k−2k0

]
, (ξ, t) ∈ Ĝ

1
,

∣∣∣∣
∂k+k0

∂ξk∂tk0
Ŵ 1(ξ, t)

∣∣∣∣ ≤ M
[
1 + ε

(1−k)/2
1 ρ̂ 1−k−2 k0

]
exp(−m ε

−1/2
1 |ξ| ), (ξ, t) ∈ Ĝ,

k + 2k0 ≤ K, i = 1, 2,

where ξ = x − γ(t), ρ = ρ(x, t; ε1) = ε
−1/2
1

∣∣x − γ(t)
∣∣ + t1/2, ρ̂ = ρ̂(ξ, t; ε1) = ε

−1/2
1

∣∣ξ
∣∣ + t1/2,

and m is an arbitrary number.

We represent the solution of the boundary value problem (2.2), (2.1) on the set G
2

for all
admissible ε as the sum of functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G
2
, (3.5)

where U(x, t) and V (x, t) are the regular and singular components of the solution; namely,
V (x, t) is the boundary layer.

The components in representation (3.5) satisfy the bounds written in compact form
∣∣∣∣

∂k+k0

∂xk∂tk0
U(x, t)

∣∣∣∣ ≤ M,

(3.6)∣∣∣∣
∂k+k0

∂xk∂tk0
V (x, t)

∣∣∣∣ ≤ Mλ−k exp(−m1λ
−1x), (x, t) ∈ G

2
,

k + k0 ≤ K, k0 ≤ K0, K = 3, K0 = 2.
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Here λ=λ(ε1, ε2), λ = λ1≡ ε1(ε1 + m(1)ε2
2)

−1/2 for ε2 ≥ 0, and λ = λ2≡ 2(ε1 + M (1)ε2
2)

1/2 for

ε2 < 0, m(1) = 4−1 min
G

[
a−1(x, t) b2(x, t) c−1(x, t)

]
, M (1) = 4−1 max

G

[
a−1(x, t) b2(x, t) c−1(x, t)

]
,

m1 is an arbitrary number in the interval (0,m0
1), m0

1 = min
G

[
a−1/2(x, t) c1/2(x, t)

]
.

To derive the a priori bounds, we assumed that the data of the boundary value problem
satisfy the condition

a, b, c, p, f ∈ C l1+α, l0+α(G), ϕ ∈ C l0+α(S
L
) ∩ C l1+α(S

l
0) ∩ C l1+α(S

r
0), l0 ≥ 4, l1 ≥ 7, α > 0,

(3.7)
moreover, compatibility conditions [6] are satisfied on the set Sc to guarantee the inclusion

u ∈ C3+α, 2+α(G
∗
). (3.8)

Theorem 3.1 Let the data of the boundary value problem (2.2), (2.1) satisfy conditions (2.3) and
(3.7), and let the solution satisfy condition (3.8). Then the solution u(x, t) and its components in
representations (3.3) and (3.5) satisfy bounds (3.2), (3.4), and (3.5); in (3.2) and (3.4), K = 4.

4. Classical difference scheme

For problem (2.2), (2.1), we consider a classical finite difference scheme and give conditions for
its convergence. On the set G, we define the grid

Gh = ω × ω0, (4.1)

where ω and ω0 are meshes on the set D and on [0, T ], respectively; ω and ω0 are meshes with
arbitrarily distributed mesh points satisfying only the condition h ≤ MN−1, ht ≤ MN−1

0 , where

h = maxi hi, hi = xi+1 − xi, xi, xi+1 ∈ ω, ht = maxj hj
t , hj

t = tj+1 − tj , tj , tj+1 ∈ ω0. Here
N + 1 and N0 + 1 are the minimal number of points on a unit interval in the mesh on D and
the number of points in the mesh ω0, respectively. Also, it is of interest to consider schemes on
the simplest grids

Gh = ω × ω0, (4.2)

which are uniform with respect to both x and t, with the step-sizes h = N−1 and ht = TN−1
0 .

Problem (2.2), (2.1) is approximated by the implicit finite difference scheme [9]

Λz(x, t) ≡
{
ε1a(x, t)δx bx + ε+

2 b(x, t)δx + ε−2 b(x, t)δx − c(x, t) − p(x, t)δt

}
z(x, t) =

= f(x, t), (x, t) ∈ Gh, (4.3)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here δx bx z(x, t) and δx z(x, t), δx z(x, t), δt z(x, t) are the second and the first difference deriva-

tives; δx bx z(x, t) = 2
(
hi + hi−1

)−1
{δx − δx} z(x, t), x = xi; ε+

2 = 2−1(ε2 + |ε2|), ε−2 =
2−1(ε2 − |ε2|).

The maximum principle holds for the difference scheme (4.3), (4.1) [9].
Taking into account the a priori bounds on the solution of problem (2.2), (2.1), we find the

following error estimate for solutions of the difference scheme (4.3), (4.2):

|u(x, t) − z(x, t) | ≤ (4.4)

≤ M






[
(ε

1/2
1 + N−1)−1N−1 + N−1/2 + N

−1/2
0

]
for |ε2| ≤ M0 ε

1/2
1 ,

[
(ε1ε

−1
2 + N−1)−1N−1 + N−1/2 + N

−1/2
0

]
for ε2 > M0ε

1/2
1 ,

[
(|ε2| + N−1)−1N−1 + N−1/2 + N

−1/2
0

]
for ε2 < −M0ε

1/2
1





, (x, t) ∈ Gh,

where M0 is an arbitrary (sufficiently large) constant.
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Thus, the condition (h ≪ ε0)

ε−1
0 = o(N), ε0 = ε0(2.4)(ε), N → ∞ (4.5)

is necessary and sufficient for scheme (4.3), (4.2) to be convergent; scheme (4.3), (4.2) does
not converge ε-uniformly.

Theorem 4.1 Let the solution of the boundary value problem (2.2), (2.1) and its components
in representations (3.3), (3.5) satisfy the a priori bounds of Theorem 3.1. Then, in the case of
the difference scheme (4.3) on the mesh (4.2), condition (4.5) is necessary and sufficient for its
convergence. The numerical solutions satisfy estimate (4.4).

Remark 1 If the condition |ε2| = O
(
ε
1/2
1

)
holds, the solution of the problem has a parabolic-

layer-type singularity. Using the technique given in [2, 3, 10], it is possible to show that,
under this condition, there are no schemes based on the fitted operator method that converge
ε-uniformly.

5. Special finite difference scheme

To construct an ε-uniformly convergent scheme, we use meshes condensing in a neighbourhood
of the boundary layer.

On the set G, we introduce the grid

Gh = ω∗ × ω0, (5.1a)

where ω0 = ω0(4.2), and ω∗ = ω∗(σ) is a piecewise uniform mesh on D. The mesh sizes of ω∗ are

constant on the intervals [0, σ] and [σ,∞) and are equal to h(1) = 2σ N−1 and h(2) = 2(1−σ)N−1,
respectively. The value σ, σ = σ(ε1, ε2,N), is chosen so as to satisfy the condition

σ =






min [2−1, m−1
1 ε

1/2
1 ln N ] for |ε2| ≤ M0 ε

1/2
1 ,

min [2−1, m−1
2 ε1 ε−1

2 ln N ] for ε2 > M0 ε
1/2
1 ,

min [2−1, m−1
3 |ε2| lnN ] for ε2 < −M0 ε

1/2
1 .

(5.1b)

Here M0 is an arbitrary constant, m1 is an arbitrary number from the interval (0,m0
1), m0

1 =

m0
1

(
M0

)
= min

{
2−1(M0)−1 min

G

[
b−1(x, t) c(x, t)

]
, 2−1/2 min

G

1/2
[
a−1(x, t) c(x, t)

] }
; m2 is an

arbitrary constant from (0,m2
0), m2

0 = min
G

[
a−1(x, t) b(x, t)

]
; m3 is an arbitrary number from

(0,m0
3), m0

3 = m0
3

(
M0

)
= min

{
2−1/2 M0 min

G

1/2
[
a−1(x, t)c(x, t)

]
, 2−1 min

G

[
b−1(x, t)c(x, t)

] }
.

On the grid Gh(5.1) constructed in such a way, the discrete solution approximates the singular

component V (x, t) ε-uniformly with the accuracy O
(
N−1 ln N + N−1

0

)
.

Using the majorant function technique from [2, 3] and taking into account the a priori
bounds on the solution of problem (2.2), (2.1), we obtain the error estimate for the solutions of
scheme (4.3), (5.1):

|u(x, t) − z(x, t) | ≤ M
[
N−1/2 + N

−1/2
0

]
, (x, t) ∈ Gh. (5.2)

The estimate is unimprovable with respect to N and N0 for ε1 = ε2 = 1.
Thus, scheme (4.3), (5.1) converges ε-uniformly.
Provided that [

∂

∂x
ϕ(x, t)

]
= 0, (x, t) ∈ S (∗), (5.3)

we obtain the error estimate
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|u(x, t) − z(x, t) | ≤ MN−1






min [ε
−1/2
1 , ln N ] for |ε2| ≤ M0 ε

1/2
1 ,

min [ε−1
1 ε2, ln N ] for ε2 > M0ε

1/2
1 ,

min [|ε2|
−1, ln N ] for ε2 < −M0ε

1/2
1





+ MN−1+α0

0 , (5.4)

(x, t) ∈ Gh,

where α0 is an arbitrary constant from the interval (0,1). We also have the ε-uniform estimate

|u(x, t) − z(x, t) | ≤ M
[
N−1 ln N + N−1+α0

0

]
, (x, t) ∈ Gh. (5.5)

Theorem 5.1 Let the assumptions of Theorem 4.1 hold. Then the solution of the difference
scheme (4.3), (5.1) converges ε-uniformly. The numerical solutions satisfy estimate (5.2) and,
under condition (5.3), estimates (5.4) and (5.5).

6. Domain decomposition method for problem (2.2), (2.1)

We now construct a scheme based on the domain decomposition method for problem (2.2), (2.1),
where the set G is decomposed into subdomains containing no more than a single singularity.

6.1. First, we present a continual domain decomposition method. We represent the set G
as the sum of overlapping subsets

G =
⋃

k
G

(k)
, k = 1, 2, 3, (6.1)

where G
(k)

= G(k) ∪ S(k), G(k) = D(k) × (0, T ], k = 1, 2, 3, D(i) =
(
diL, diR

)
, i = 1, 2, and

D(3) = (d3L, ∞); the set G
(2)

contains the set Sγ together with its m(2)-neighbourhood, and also

Sγ has no common points with the m2-neighbourhood of the set G
(1)

∪ G
(3)

. By δ, we denote
the minimal overlap of the subdomains from (6.1); generally, δ may depend on the parameter ε.

Let us describe the modified Schwarz method for problem (2.2), (2.1) (see, e.g., [5]). Let ω0

be a uniform mesh on [0,T] with step-size τ ; ω0 = ω0(4.2). By G(t1), we denote the strip

G(t1) = G ∩ { t1 < t ≤ t1 + τ }, t1, t1 + τ ∈ ω0.

Assume G(t1) = G(t1) ∪ S(t1), and let the function v(x, t) = v(x, t; t1) be defined on S(t1). We
denote the extension of the function v(x, t) onto the whole set G(t1) by v(x, t; t1). The function
v(x, t; t1) is assumed to satisfy the Lipschitz condition with respect to t. We subdivide the strip

G(t1) into the sections G
(k)

(t1) = G(k)(t1)∪S(k)(t1), where G(k)(t1) = G(k) ∩G(t1), k = 1, 2, 3.

Suppose that the function u(x, t), (x, t) ∈ G, for tn ∈ ω0, t ≤ tn < T , n = 0, 1, . . ., N0 − 1,
has already been constructed. We find the function u(x, t) for t ≤ tn+1, constructing u(x, t) on

the strip G(tn) in the following way. We first find the functions u(k)(x, t) on the sets G
(k)

(tn)
by solving the boundary value problems

L(6.2)(u
(k)(x, t)) = 0, (x, t) ∈ G(k)(tn),

u(k)(x, t) =

{
u(x, t; tn), k = 1,

u(k−1)(x, t), k ≥ 2

}
, (x, t) ∈ S(k)(tn)





for (x, t) ∈ G

(k)
(tn), (6.2a)

k = 1, 2, 3; tn ∈ ω0, n ≤ N0 − 1.

Here L(6.2)(u(x, t)) ≡ L(2.2)u(x, t) − f(x, t), (x, t) ∈ G. We find the functions u(k)(x, t) on

G
(k)

(tn); further, we extend these functions for each k onto the whole strip G(tn) as follows:

u(k)(x, t) =






u(k)(x, t), (x, t) ∈ G
(k)

(tn),

u(x, t; tn), k = 1,

u(k−1)(x, t), k ≥ 2

}
, (x, t) ∈ G(tn) \ G

(k)
(tn)





for (x, t)∈ G(tn), (6.2b)

k = 1, 2, 3, tn ∈ ω0.
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Finding the function u(k)(x, t), (x, t) ∈ G(tn) for k = 3, we define the function u(x, t) on the
whole strip G(tn) so that

u(x, t) = u(3)(x, t), (x, t) ∈ G(tn), tn ∈ ω0. (6.2c)

Thus, the function u(x, t) has been constructed on the domain G for t ∈ [0, tn+1].

In the relations (6.2a) and (6.2b), u(x, t; tn) = v(x, t; tn), (x, t) ∈ G(tn). The function
v(x, t; tn) is determined by

v(x, t; tn) =






ϕ(x, t), (x, t) ∈ S(tn), tn = t0 = 0,

ϕ(x, t), (x, t) ∈ S(tn) ∩ S, t ≥ tn,

u(x, t), (x, t) ∈ S(tn) \ S, t = tn

}
, tn > 0, (x, t) ∈ S(tn),

(6.2d)

n = 0, 1, . . . ,N0 − 1.

Problem (6.2), (6.1) is the continual modified Schwarz method that corresponds to problem
(2.2), (2.1). Note that the method does not iterate in the strict sense. The boundary value
problems are solved only once at those points of G that do not belong to the intersection of the

subdomains G
(k)

, and they are solved twice only on the intersection of these subdomains.
Under the condition

δ = δ(6.1)(ε) > 0, inf
ε

[
ε−1
0 δ(6.1)(ε)

]
> 0, (6.3)

equivalent to the condition δ = δ(6.1)(ε) ≥ m(6.3)ε0, where ε0 = ε0(2.4)(ε), the function u(6.2)(x, t),
i.e., the solution of problem (6.2), (6.1), converges ε-uniformly as N0 → ∞:

|u(x, t) − u(6.2)(x, t) | ≤ MN−1
0 , (x, t) ∈ G.

If condition (6.3) is violated, then the function u(6.2)(x, t) does not converge ε-uniformly.
The following theorem similar to that given in [5, 11] is valid.

Theorem 6.1 Condition (6.3) is necessary and sufficient for the ε-uniform convergence (as
N0→∞) of the solution u(6.2)(x, t) of problem (6.2), (6.1) to the solution of problem (2.2), (2.1).

6.2. On the set G
(2)

(tn), the function u(2)(x, t), i.e., the solution of the subproblem in (6.2a)
L(6.2)

(
u(2)(x, t)

)
= 0, (x, t) ∈ G(2)(tn),

u(2)(x, t) = u(1)(x, t), (x, t) ∈ S(2)(tn),
(6.4a)

can be represented as the sum of functions

u(2)(x, t) = u
(2)
1 (x, t) + u

(2)
2 (x, t), (x, t) ∈ G

(2)
(tn), (6.4b)

where u
(2)
1 (x, t) and u

(2)
2 (x, t) are the regular and singular (its main term) components of the

solution of problem (6.4a). Here

u
(2)
2 (x, t) = 2−1

[
∂

∂x
ϕ(d, 0)

] {
(x − γ(t)) v

(
2−1 ε

−1/2
1 (x − γ(t))ϑ−1/2(t)

)
+

+2π−1/2 ε
1/2
1 ϑ1/2(t) exp

(
− 4−1ε−1

1 (x − γ(t))2 ϑ−1(t)
)}

exp
(
− α(t)

)
, (x, t)∈ G

(2)
, (6.5)

where

v(ξ) = erf(ξ) = 2π−1/2

∫ ξ

0
exp(−α2) dα, ξ ∈ IR,

ϑ(t) =

∫ t

0
a(γ(t1), t1) p−1(γ(t1), t1) dt1, α(t) =

∫ t

0
c(γ(t1), t1) p−1(γ(t1), t1) dt1.

The function u
(2)
1 (x, t) is the solution of the problem

7



L(6.4)

(
u

(2)
1 (x, t)

)
= 0, (x, t) ∈ G(2)(tn),

u
(2)
1 (x, t) = u(1)(x, t) − u

(2)
2 (x, t), (x, t) ∈ S(2)(tn),

(6.4c)

where
L(6.4)

(
u

(2)
1 (x, t)

)
≡ L(2.2)u

(2)
1 (x, t) − f (2)(x, t), (x, t) ∈ G(2)(tn),

f (2)(x, t) ≡ f(x, t) − L(2.2)u
(2)
2 (x, t), (x, t) ∈ G

(2)
\ S(∗).

The domain decomposition method (6.2), (6.4), (6.1), in which the solution u(2)(x, t) of sub-

problem (6.4a) is found via the function u
(2)
1 (x, t) from representation (6.4b), i.e., the solution

of subproblem (6.4c), is the domain decomposition method with the additive splitting of the

interior-layer-type singularity (its main term) in the solution on the subdomain G
(2)

(or, in
short, the domain decomposition method with the additive splitting of the singularity).

The discretization of problem (6.2), (6.4), (6.1), similar to that made in [5, 11], leads to a
difference scheme of the decomposition method with the additive splitting of the singularity that
converges ε-uniformly (as N,N0→ ∞) at the rate O

(
N−1 ln N + N−1+α0

0

)
, where α0 = α0(5.4),

i.e., with the order of convergence close to one.
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