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1. Introduction

A Dirichlet problem on a interval for a quasilinear parabolic convection-diffusion equation with a
small parameter ε multiplying the highest derivative is considered. For this problem, a solution
of the classical finite difference scheme on a uniform mesh converges only under the condition
h ≪ ε, where h is the step-size of the space mesh; moreover, the order of convergence in x is
O

(

εN−1
)

, where N + 1 is the number of nodes in the uniform mesh with respect to x.
Methods for the construction of ε-uniformly convergent schemes on special meshes, a priori

adapted in boundary and transient layers (see, e.g., [1]–[5]) are sufficiently well developed. It
is of interest another approach to construct adaptive methods, where finite difference schemes
on a posteriori condensing meshes are applied; see, e.g., [5, 6]. In these monographs, finite
difference schemes were considered on meshes that are refined by some a way in subdomains in
which computed solutions turn out to be unsatisfactory accurate. In a number of methods, the
process of the local mesh refinement is defined by the gradients of solutions to intermediate grid
problems [7]–[9]. However, such schemes for nonlinear equations earlier were not considered.

In the present paper for the boundary value problem, using nonlinear and linearized base
schemes, finite difference schemes on a posteriori adapted meshes are constructed. Subdomains,
where a refinement of solutions is required, are defined by the gradient of the grid solution; the
improvement of the solutions is performed only locally. Under this process, uniform meshes
are used; in the adaptation procedure piecewise uniform meshes are generated that condense
in a neighbourhood of the boundary layer. On the adapted meshes based on the solution
gradient, rather simple finite difference schemes are constructed for which errors of solutions
weakly depend on the parameter ε. The scheme on a posteriori adapted meshes converges
“almost ε-uniformly”, i.e. under the condition N−1 ≪ εν , the value ν can be chosen arbitrary
from the half-open interval (0, 1].

2. Problem formulation. The aim of research

On the set G

G = G
⋃

S, G = D × (0, T ], (2.1)

where D = (0, d), we consider the boundary value problem for the quasilinear singularly per-
turbed parabolic equation

L
(

u(x, t)
)

≡ L2 u(x, t) − f
(

x, t, u(x, t)
)

= 0, (x, t) ∈ G, (2.2)

u(x, t) = ϕ(x, t), (x, t) ∈ S.
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Here

L2 = ε a(x, t)
∂2

∂x2 + b(x, t)
∂

∂x
− c(x, t) − p(x, t)

∂

∂t
, (x, t) ∈ G,

the functions a(x, t), b(x, t), c(x, t), p(x, t), f(x, t, u) and ϕ(x, t) are assumed to be sufficiently
smooth on G, G × R and S respectively, moreover,1

a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, |c(x, t)| ≤ c0, p0 ≤ p(x, t) ≤ p0, (x, t) ∈ G; (2.3)

|f(x, t, u)| ≤ M, c1 ≤ c(x, t)+
∂

∂u
f(x, t, u) ≤ c1, (x, t, u) ∈ G×R; |ϕ(x, t)| ≤ M, x ∈ S;

a0, b0, c1, p0 > 0; the parameter ε takes arbitrary values in the half-open interval (0, 1].
For small values of the parameter ε, a regular boundary layer appears in a neighbourhood

of the set SL
1 = {(x, t) : x = 0, 0 < t ≤ T}. Here SL

1 and SL
2 are the left and right parts of the

lateral boundary; S = SL
⋃

S0, SL = SL
1

⋃

SL
2 , S0 = S0 is the lower part of the boundary.

From estimate (3.4) for the error of the discrete solution in section 3. it follows that the
solution of classical difference scheme (3.2) on uniform mesh (3.3) converges under very restrictive
condition (h ≪ ε) ε−1 = o(N), where N + 1 is the number of nodes in the uniform mesh in x.
If this condition is violated, e.g., for ε−1 = O (N), then, in general, the solution of difference
scheme (3.2), (3.3) for N, N0 → ∞ does not converge to the solution of problem (2.2), (2.1);
N0 + 1 is the number of nodes in the mesh in t.

Let us give definitions. Let z(x, t), (x, t) ∈ Gh be the solution of a difference scheme and let
for the function z(x, t) the following estimate is satisfied

|u(x, t) − z(x, t)| ≤ Mλ(ε−νN−1,N−1
0 ), (x, t) ∈ Gh, (2.4)

where λ(ξ1, ξ2) → 0 for ξ1, ξ2 → ∞ uniformly with respect to the parameter ε, ν ≥ 0. By
definition, the solution of this difference scheme converges on the set Gh uniformly with respect
to the parameter ε (or ε-uniformly), if in the estimate (2.4) ν = 0; in that case we also will say
that the scheme converges ε-uniformly. For ν > 0 we will say that the scheme converges with
defect ν. In that case when the value ν can be chosen arbitrary small, moreover, for the solution
of the difference scheme the estimate (2.4) is satisfied, we will say that the scheme converges
almost ε-uniformly with the defect ν (or, briefly, almost ε-uniformly).

The defect of scheme (3.2), (3.3) is equal to one.
Our aim is for the boundary value problem (2.2), (2.1) to construct a difference scheme on

a posteriori adapted meshes whose solution converges almost ε-uniformly.

3. Base scheme for problem (2.2), (2.1)

On the set G we introduce the rectangular mesh

Gh = ω × ω0, (3.1)

where ω and ω0 are arbitrary, in general, nonuniform meshes on the intervals [0, d] and [0, T ]
respectively. Let hi = xi+1 − xi, xi, xi+1 ∈ ω, h = maxi h

i, and hk
t = tk+1 − tk, tk, tk+1 ∈ ω0,

ht = maxk hk
t . Assume that the condition h ≤ M N−1, ht ≤ M N−1

0 is fulfilled, where N + 1
and N0 + 1 are the number of nodes in the meshes ω and ω0 respectively.

Problem (2.2), (2.1) is approximated by the finite difference scheme [10]

Λ (z(x, t)) ≡ Λ2 z(x, t) − f(x, t, z(x, t)) = 0, (x, t) ∈ Gh, (3.2)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

1 Throughout this paper, M, Mi (or m) denote sufficiently large (small) positive constants that do not depend
on ε and on the discretization parameters.
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Here Gh = G∩Gh, Sh = S ∩Gh; Λ2 ≡ ε a(x, t) δxbx + b(x, t) δx − c(x, t)− p(x, t) δt, (x, t) ∈ Gh,
δxbx z(x, t) is the central difference derivative on the nonuniform mesh, δxbx z(x, t) = 2(hi +
hi−1)−1[δx z(x, t)− δx z(x, t)], (x, t) = (xi, t) ∈ Gh; δx z(x, t) and δx z(x, t), δt z(x, t) are the first
(forward and backward) derivatives.

Nonlinear base scheme (3.2), (3.1) is monotone [10] ε-uniformly.
In the case of meshes, uniform in both variables,

Gh = ω × ω0, (3.3)

using the maximum principle, we obtain the estimate

|u(x, t) − z(x, t)| ≤ M
[

(

ε + N−1
)−1

N−1 + N−1
0

]

, (x, t) ∈ Gh. (3.4)

Now we construct the base scheme convergent ε-uniformly (see, e.g., [2, 3]). On the set G

we introduce the mesh
Gh = ω∗ × ω0, (3.5)

where ω0 = ω0(3.3), ω∗ is a piecewise uniform mesh which is constructed as follows. The interval
[0, d] is divided into two parts [0, σ], [σ, d], step-sizes in the intervals [0, σ] and [σ, d] are constant
and equal to h(1) = 2σ N−1 and h(2) = 2(d − σ)N−1 respectively. The parameter σ is defined
by the relation σ = σ(ε, N) = min

[

2−1 d, m−1 ε ln N
]

, where m is an arbitrary number in the
interval (0,m0), m0 = minG[a−1(x, t) b(x, t)].

For solutions of the difference scheme (3.2), (3.5) we obtain the ε-uniform estimate

|u(x, t) − z(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ Gh. (3.6)

Theorem 1 Let for the solution u(x, t) of the problem (2.2), (2.1) the estimates of Theorem
2 be satisfied. Then the base difference scheme (3.2), (3.5) (scheme (3.2), (3.3)) converges ε-
uniformly (under the condition ε−1 = o(N)). For discrete solutions the estimates (3.4), (3.6)
are valid.

4. Grid approximations on locally refined meshes

We describe a formal iterative algorithm for construction of approximate solutions for the bound-
ary value problem (2.2), (2.1). On the set G we introduce the coarse (start) mesh

G1h = ω1 × ω0, (4.1a)

where ω1 and ω0 are uniform meshes, ω0 = ω0(3.3); the step-size ω1 is h1 = dN−1. We denote

by z1(x, t), (x, t) ∈ G1h, where G1h = G1h(4.1) = Gh(3.3), the solution of problem (3.2), (4.1a).
Let the value d1 ∈ ω1 be found in some a way so that for x ≥ d1 the discrete solution z1(x, t),

(x, t) ∈ G1h well approximates the solution of the problem (2.2), (2.1), moreover,

|u(x, t) − z1(x, t)| ≤ M δ, (x, t) ∈ G1h, x ≥ d1, (4.2a)

where δ > 0 is an arbitrary sufficiently small number, the constant M is independent of δ;
d1 ∈ [0, d).

If it turns out that d1 > 0, we refine the solution.
Let for k ≥ 2, the grid set Gk−1,h and the grid function zk−1(x, t) on this set already be

constructed. Further, let the value dk−1 ∈ ωk−1 be found in some a way so that for x ≥ dk−1

the discrete solution zk−1(x, t), (x, t) ∈ Gk−1,h well approximates the solution of the problem
(2.2), (2.1), moreover,

|u(x, t) − zk−1(x, t)| ≤ M δ, (x, t) ∈ Gk−1,h, x ≥ dk−1; (4.2b)
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M(4.2b) = M∗
(4.2b)

(k − 1), where M∗ is independent of k. Here Gk−1,h = ωk−1 × ω0, ωk−1 is a

mesh generating the mesh Gk−1,h; Nk +1 is the number of nodes in the mesh ωk, k ≥ 2; N1 = N .
If it turns out that dk−1 > 0, we define the subdomain

G(k) = G(k) ∪ S(k), G(k) = G(k)(dk−1), G(k) = D(k) × (0, T ], D(k) = (0, dk−1). (4.1c)

On the set G(k) we introduce the mesh

G(k)h = ω(k) × ω0, (4.1d)

where ω(k) is the uniform mesh with the number of nodes N + 1; h(k) is the step-size in the

mesh ω(k). Let z(k)(x, t), (x, t) ∈ G(k)h be the solution of the grid problem

Λ(3.2)

(

z(k)(x, t)
)

= 0, (x, t) ∈ G(k)h,

z(k)(x, t) =

{

zk−1(x, t), (x, t) ∈ S(k)h \ S,

ϕ(x, t), (x, t) ∈ S(k)h

⋂

S.

(4.1e)

Set

Gkh = G(k)h

⋃

{

Gk−1,h \ G(k)

}

, zk(x, t) =

{

z(k)(x, t), (x, t) ∈ G(k)h,

zk−1(x, t), (x, t) ∈ Gk−1,h \ G(k).

If for some value k = K0 it turns out that dK0
= 0, then we set dk = 0 for k ≥ K0. For

k ≥ K0 + 1, we assume that the sets G(k) are empty, and we do not compute the functions

z(k)(x, t). For example, for k ≥ K0 we have zk(x, t) = zK0
(x, t), Gkh = GK0h.

For k = K, where K is a given fixed number, K ≥ 1, we set

G
K
h = GKh ≡ Gh, zK(x, t) = zK(x, t) ≡ z(x, t). (4.1f)

Let the value dK ∈ ωK , dK = dK , be found so that for x ≥ dK the solution zK(x, t)
approximates the solution of the problem (2.2), (2.1); in that case we have

|u(x, t) − zK(x, t)| ≤ M δ, (x, t) ∈ G
K
h , x ≥ dK . (4.2c)

We call the function z(4.1)(x, t), (x, t) ∈ Gh(4.1) the solution of the scheme (3.2), (4.1), and the

functions zk(x, t), (x, t) ∈ Gkh, k = 1, ...,K are called by the components of the solution of the
difference scheme.

The given algorithm (we call it A(4.1) ) allows us to construct the solution of problem (3.2),
(4.1) on the basis of the sequence of the values dk, k = 1, ...,K. The value NK +1 is the number
of nodes in the mesh ωK = ωK , used for the construction of the function zK(x, t). For the value
NK we have the estimate NK ≤ K (N − 1) + 1 ≤ K N .

5. Adaptive scheme based on a bound of the solution gradient

5.1. As a preliminary, we give estimates of the solution of the boundary value problem and its
derivatives. We represent the solution of problem (2.2) as the sum of functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G, (5.1)

where U(x, t) and V (x, t) are the regular and singular parts of the solution.

For the functions U(x, t), V (x, t) the following estimates are valid
∣

∣

∣

∣

∂k+k0

∂xk∂tk0

U(x, t)

∣

∣

∣

∣

≤ M
[

1 + ε2−k
]

,

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

V (x, t)

∣

∣

∣

∣

≤ M ε−k exp
(

− mε−1r(x,Γ1)
)

, (5.2)

(x, t) ∈ G, k + 2 k0 ≤ 4, k ≤ 3,
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where m is an arbitrary number in the interval (0,m0), m0 = minG

[

a−1(x, t) b(x, t)
]

; r(x,Γ1) is
the distance from the point x to the left boundary Γ1 of the set D.

Theorem 2 Let the data of the boundary value problem (2.2), (2.1) satisfy the condition (2.3),
the condition a, b, c, p ∈ C6+α(G), f ∈ C6+α(G × R), ϕ ∈ C6+α(S), α > 0, and also the
condition

ϕ(x, t) = 0, (x, t) ∈ S0;
∂k0

∂tk0

ϕ(x, t) = 0,
∂k+k0+ku

∂xk ∂tk0 ∂uku

f(x, t, u) = 0, (x, t) ∈ S∗, u = 0,

where k, k0, ku ≤ 6, S∗ = S
L ⋂

S0. Then the solution of the boundary value problem and its
components in representation (5.1) satisfy the estimates (5.2).

5.2. Let us give the construction of the indicator on the basis of bounds for the solution
gradient.

5.2.1. Let us define the width of the boundary layer in the case of the boundary value problem
(2.2), (2.1). Let the component U(x, t) in representation (5.1) satisfy the estimate

∣

∣

∣

∣

∂

∂x
U(x, t)

∣

∣

∣

∣

≤ M1, (x, t) ∈ G. (5.3a)

Assume that values of the parameter ε are sufficiently small, ε ≤ ε0. We say that σ c
0 =

σ c
0 (M0; D, ε), where M0 is an arbitrary sufficiently large number, M0 > M1, is the width of

the boundary layer in a neighbourhood of the side SL
1 (defined by the gradient of the boundary

layer function), if σ c
0 is the minimum of the value σ, for which the following estimate holds

∣

∣

∣

∣

∂

∂x
V (x, t)

∣

∣

∣

∣

≤ M0, (x, t) ∈ G, r(x,Γ1) ≥ σ. (5.3b)

5.2.2. Let us define the width of the boundary layer in the case of difference scheme (3.2),
(3.1). We denote by zv(x, t), (x, t) ∈ G the solution of the difference problem

Λ(3.2)z(x, t) = L(2.2) v(x, t), (x, t) ∈ Gh, z(x, t) = v(x, t), (x, t) ∈ Sh,

where v(x, t) is an arbitrary sufficiently smooth function, v ∈ C2,1(G)
⋂

C(G). We represent the
solution of problem (3.2), (3.1) as the sum of functions

z(x, t) = zU (x, t) + zV (x, t), (x, t) ∈ Gh, (5.4)

where zU (x, t) and zV (x, t) are grid functions which approximate the components U(x, t) and
V (x, t) in representation (5.1). Let the component zU (x, t) satisfies the estimate

| δx zU (x, t) | ≤ M1, (x, t) ∈ G. (5.5a)

We say that σ0 = σ0(M0) = σ0(M0; D, ε, h), where ε ∈ (0, ε0], M0 and ε0 are sufficiently large
and small constants, M0 > M1, ε0 = ε0(M0), is the width of the discrete boundary layer in a
neighbourhood of the side SL

1

(

defined by the gradient of the singular component zV (5.4)(x, t)
)

,
if σ0 is the minimum of the value σ, for which the estimate holds

|δxzV (x, t)| ≤ M0, (x, t) ∈ G, r(x,Γ1) ≥ σ. (5.5b)

Thus, the function σ0(M0) = σ0(5.5)(M0; D, ε, h) is constructed.
5.3. In order that a formal grid construction (3.2), (4.1) would be constructive, it is required

to give the values K and dk, k = 1, 2, . . . ,K.
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Let K ≥ 1. Define the values dk(4.1). Set

d1 = σ1, (5.6a)

where σ1 = σ0(5.5)(M0;D, ε, h), D = D(2.1), h = h(3.3), M0 is a sufficiently large number. Let
the value dk−1 already be found. Further, we find the value

σk = σ0(k M0; D(k), ε, h(k)), k ≥ 2, (5.6b)

where σ0(5.6)(M ; D, ε, h) = σ0(5.5)(M ; D, ε, h), D(k) = D(k)(4.1c), h(k) = h(k)(4.1). If the
relation σk ≤ m0 σk−1 is valid, then we set

dk = σk; (5.6c)

here m0 is a sufficiently small number. But if for some value k = k0, it turned out that
σk0

> m0 σk0−1, then we set dk = dk0
for k ≥ k0.

The iterative process is stopped at k = K.
The difference scheme (3.2), (4.1), (5.6) is the scheme on adapted meshes that are constructed

on the basis of a bound of the solution gradient.

6. Investigation of scheme (3.2), (4.1), (5.6)

6.1. For the solution of difference scheme (3.2), (3.3) the following estimates are fulfilled

|u(x, t) − z(x, t)| ≤ M
[

(ε + N−1)−1 N−1 + N−1
0

]

, (6.1a)

|u(x, t) − z(x, t)| ≤ M
[

q−r1h−1

+ N−1 + N−1
0

]

, (x, t) ∈ G, (6.1b)

where r1 = r(x,Γ1), q = 1 + a−1
(1) b(1) ε−1 h, a(1) = maxG a(x, t), b(1) = minG b(x, t).

From these estimates it follows that the scheme converges on Gh under the condition ε−1 =
o(N), and also it converges ε-uniformly outside of σ0–neighbourhood of the set SL

1 :

|u(x, t) − z(x, t)| ≤ M
[

N−1/2 + N−1
0

]

, (x, t) ∈ G, for r(x,Γ1) ≥ σ0, (6.2a)

σ0 ≤ M
[

ε ln ε−1 + N−1 ln N
]

, where σ0 = σ0(5.5) (M0; D, ε, h) . (6.2b)

The neighbourhood outside of which the estimate (6.2a) is valid, shrinks as ε → 0, N → ∞.

Theorem 3 Let for the solution of boundary value problem (2.2), (2.1) the estimates of Theo-
rem 2 be fulfilled. Then the solution of the difference scheme (3.2), (3.3) converges on G to the
solution of the boundary value problem under the condition ε−1 = o(N), and also it converges
ε-uniformly (at the rate O

(

N−1/2 + N−1
0

)

) outside of σ0–neighbourhood of the set SL
1 . For the

discrete solution the error estimates (6.1), (6.2) are valid.

6.2. Let us consider the difference scheme (3.2), (4.1), (5.6).
The component z1(x, t) = z(x, t) of the solution of this scheme satisfies the estimates (6.1).

Taking account of the estimate for the function zV (x), we find the estimate for the value σ1, i.e.
the width of the boundary layer:

σ1 ≤ M
[

ε ln ε−1 + N−1 ln N
]

, ε ∈ (0, ε0], h ≤ h0.

For the value h2, i.e. the step-size of the mesh ω(2), we have the estimate

h2 ≤ M N−1
[

ε ln ε−1 + N−1 ln N
]

.
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Taking into account the bound (6.1b), we estimate u(x, t) − z1(x, t) on the boundary of the
set G(2)h, and also u(x, t) − z(2)(x, t) on the set G(2)h itself. For u(x, t) − z2(x, t) we obtain the
estimate

|u(x, t) − z2(x, t)| ≤ M
[

N−1/2 + ε−1N−2 ln N + N−1
0

]

, (x, t) ∈ G2h,

and outside of σ2–neighbourhood of the set SL
1 we have

|u(x, t) − z2(x, t)| ≤ M
[

N−1/2 + N−1
0

]

, (x, t) ∈ G2h, r(x,Γ1) ≥ σ2.

For the value σ2, we have the estimate

σ2 ≤ M N−1 ln N.

By a similar way we find the estimates

|u(x, t) − z(x, t)| ≤ M
[

N−1/2 + ε−1N−K lnK−1 N + N−1
0

]

, (x, t) ∈ Gh;

|u(x, t) − z(x, t)| ≤ M
[

N−1/2 + N−1
0

]

, (x, t) ∈ Gh, r(x,Γ1) ≥ σK ;

σK ≤

{

M [ε ln ε−1 + N−1 ln N ], K = 1,

MN−K+1 lnK−1 N, K ≥ 2

}

; (6.3)

where z(x, t) = z(4.1)(x, t), G = Gh(4.1).
The function z(x, t) for N, N0 → ∞ converges (to the solution of boundary value problem

(2.2), (2.1)) ε-uniformly outside of σK–neighbourhood of the set SL
1 , and also on the set G for

sufficiently small (but not too small) values of the parameter ε, namely, under the condition

ε ≥ ε0(N), ε−1
0 (N) = o(NK ln−K+1 N). (6.4)

Thus, difference scheme (3.2), (4.1), (5.6), i.e. the scheme on adapted meshes, converges
almost ε-uniformly. In order to provide the convergence defect of the function z(x, t) not higher
than the value ν(2.4), it is required to choose the value K satisfying the condition

K > K(ν), K(ν) = ν −1. (6.5)

Theorem 4 Let hypothesis of Theorem 2 be fulfilled. Then the function z(x, t), (x, t) ∈ G, i.e.
the solution of the difference scheme (3.2), (4.1), (5.6) converges on G to the solution of the
boundary value problem (2.2), (2.1) under the condition (6.4), and also it converges ε-uniformly
(at the rate O

(

N−1/2 + N−1
0

)

) outside of σK–neighbourhood of the set SL
1 ; the solution of the

difference scheme (3.2), (4.1), (5.6), (6.5) converges to the solution of the boundary value problem
almost ε-uniformly with the defect ν. For the discrete solutions the estimates (6.3) are valid.

7. Linearized scheme on adapted meshes

7.1. On mesh (3.1) we consider the linearized (see [10]) difference scheme

Λ(5.1) (z(x, t)) ≡ Λ2
(3.2)z(x, t) − f (x, t, ž(x, t)) = 0, (x, t) ∈ Gh,

z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (7.1)

Here ž(x, t) = z(x, t − ht), (x, t) ∈ Gh, t > 0.
The difference scheme (7.1), (3.1) is monotone under the condition

fu(x, t, u) ≤ c(x, t), (x, t, u) ∈ G × R. (7.2)
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For simplicity, we assume that the condition (7.2) is satisfied.
Taking into account estimates of the solution to problem (2.2), (2.1) for the linearized differ-

ence scheme (7.1) on the special mesh (3.5), we obtain the estimate (similar to estimate (3.6))

|u(x, t) − z(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ Gh. (7.3)

Theorem 5 Let hypothesis of Theorem 2 and condition (7.2) be fulfilled. Then the solution
of the linearized difference scheme (7.1), (3.5) converges to the solution of the boundary value
problem (2.2), (2.1) ε-uniformly; for the discrete solutions the estimate (7.3) holds.

7.2. To the boundary value problem (2.2), (2.1) corresponds difference scheme (7.1), (4.1),
(5.6), i.e. the linearized difference scheme on a posteriori adapted meshes.

For solutions of the difference scheme (7.1), (4.1), (5.6), statements about convergence hold
that are similar to those for the scheme (3.2), (4.1), (5.6).

Theorem 6 Let hypothesis of Theorem 5 be satisfied. Then the function z(x, t), (x, t) ∈ Gh,
i.e. the solution of the difference scheme (7.1), (4.1), (5.6) converges on G to the solution of the
boundary value problem (2.2), (2.1) under the condition (6.4), and also it converges ε-uniformly
(at the rate O

(

N−1/2 + N−1
0

)

) outside of σK–neighbourhood of the set SL
1 ; the solution of the

difference scheme (7.1), (4.1), (5.6), (6.5) converges to the solution of the boundary value problem
almost ε-uniformly with the defect ν. For the discrete solutions the estimates (6.3) are valid.
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