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1. Introduction

Turbulent convection of fluids heated from below and cooled from above, which is known in
literature as Rayleigh–Bénard convection (RBC) [1]–[2], is one of the classical problems in fluid
dynamics. The most interesting examples of this process are convection in atmospheres, in
oceans, on surfaces of stars.

There are three main parameters characterizing fluid motion in RBC: the Rayleigh number
Ra = αgH3∆T/(κν), the Prandtl number Pr = ν/κ and the aspect ratio of the container
Γ = D/H. Here α denotes the thermal expansion coefficient, g the gravitational acceleration,
∆T the temperature difference between the bottom and the top plates, κ the thermal diffusivity,
ν the kinematic viscosity and H the height and D the diameter of the Rayleigh cell. Numerous
scientifical and industrial problems require a better understanding of the physics of Rayleigh–
Bénard convection for the Rayleigh numbers up to 1020 and large aspect ratios.

The diffusion coefficients in the governing Navier–Stokes and the heat equations, which are
inversely proportional to the square root of Ra, are very small. (For example, for 105 ≤ Ra ≤
109, Pr = 0.7 and Γ = 10 the diffusion coefficient in the Navier-Stokes equation varies from
8.36 · 10−5 to 8.36 · 10−7.) Therefore the solutions – both the temperature and the velocity
fields – have very thin boundary layers near the horizontal walls and interior layers which are
recognized as large coherent structures in vizualizations of the flows.

Experimental studies of RBC show that above but close to the onset of convection (Ra ≈
1.7×103) visible flow patterns reflect straight rolls with certain defects induced by the sidewalls
[1]. Further above the onset for Pr ≤ 1 the spiral–defect chaos evolves [3] and for Ra ≈ 6.8×103

hexagon patterns occur [4]. Both types of polygon convection cells – those with rising (l-cells)
and those with descending (g-cells) motion in the center – can coexist with the spirals [5]. When
the Rayleigh number exceeds a value of order 104 the spoke patterns [6] evolve, which tend
to be nearly stationary for lower Ra close to the onset of this type of convection and appear
chaotically when the Rayleigh number exceeds 105. A further increase of Ra tears off unstable
spokes to form more independent large scale flow structures, which are called thermal plumes
and are generated from the horizontal thermal boundary layers and driven by buoyancy. The
thermal plumes play an important role in the moderate-Rayleigh-number regime that begins at
Ra = 105. Close to Ra = 108 the large-scale circulation initiated by thermal plumes develops
[7].

The thermal boundary layers, the borders of coherent interior flow structures and the turbu-
lent background are indicated, respectively, by high, moderate and small values of the temper-
ature gradient norm and, hence, by large, moderate and small values of the thermal dissipation
rate. In contrast to experimental studies of thermal convection, in which only restricted infor-
mation is available, numerical simulations enable to investigate quantitatively the boundary and
interior layers and turbulent background, since they provide all details of the flow fields needed
to calculate the dissipation rates.
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To investigate boundary and interior layers which occur in the moderate-Rayleigh-number
regime of turbulent Rayleigh–Bénard convection in wide cylindrical containers filled with air we
conducted direct numerical (DNS) and Large-Eddy (LES) simulations of RBC for 105 ≤ Ra ≤
108 and Γ = 5 and 10.

2. Governing equations and the numerical method

The governing dimensionless equations for Rayleigh–Bénard problem in Boussinesq approxima-
tion can be written in cylindrical coordinates (z, r, ϕ) as follows

ut + u · ∇u +∇p = Γ−3/2Ra−1/2Pr1/2∆u + Tz, (1)
Tt + u · ∇T = Γ−3/2Ra−1/2Pr−1/2∆T, (2)

∇ · u = 0, (3)

where u is the velocity vector, T the temperature, ut and Tt their time derivatives, p the pressure.
The dimensionless temperature varies between +0.5 at the bottom plate to −0.5 at the top plate.
On the solid walls ∂T/∂r = 0 and the velocity field vanishes according to the impermeability
and no-slip conditions. Note that in cylindrical coordinates operators ∇, (∇·) and ∆ read
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where a = (az, aϕ, ar) is any vector-function in coordinates (z, ϕ, r).
Turbulent Rayleigh–Bénard convection in cylindrical containers of the aspect ratios Γ = 10

and Γ = 5 for Pr = 0.7 was studied numerically by means of DNS for Rayleigh numbers from
105 to 107 and LES utilizing the tensor-diffusivity model [8] together with the top-hat filtering
for Ra = 108. The simulations were performed with the fourth order accurate finite volume
method developed for solving (1) – (3) in cylindrical coordinates on staggered non-equidistant
grids. For the description of the numerical method used in the simulations we refer to [9].

3. Thermal boundary layers and their resolution

In turbulent RBC there are two thermal boundary layers near the horizontal walls. In the vicinity
of these walls the mean temperature profiles T̂ (z) = 〈T 〉t,Sz

, where 〈·〉t,Sz
denotes averaging in

time and over any horizontal plane Sz, change dramatically and stay almost near zero in the
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Figure 1: Averaged in time and in the ϕ- and r-directions temperatures T̂ (z) (left) and its
close-up view (right) for Ra = 105 (——), Ra = 106 (– – –) and Ra = 107 (- - - -) and Γ = 10.
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bulk. The temperature profiles given Fig.1 reflect that the thickness of the thermal boundary
layer, which is defined formally as λ = H/(2Nu), decreases with growth of the Rayleigh number.

Further, in [10] it was proven that the ratio of the area averaged (over the top or the bottom
plates) to the volume averaged thermal dissipation rate

εθ = Γ−3/2Ra−1/2Pr−1/2(∇T )2 (4)

is greater than or equal to the Nusselt number

Nu = Γ1/2Ra1/2Pr1/2 〈uzT 〉t,S − Γ−1

〈
∂T

∂z

〉

t,S

, (5)

which is larger than 1 for all Ra, Pr and Γ. (Here uz is the component of the velocity field in
the vertical direction z.) Since the mean heat flux, which is expressed by the Nusselt number,
increases with the Rayleigh number, this ratio also increases with Ra. The facts that the largest
values of εθ occur generally in the thermal boundary layers near the horizontal walls and that the
thickness of the thermal boundary layers decreases with increasing Rayleigh number require to
develop a proper mesh generation mechanism to control the thermal boundary layers resolution.

In practice, to simulate turbulent Rayleigh–Bénard convection the following mesh generation
technique is used. To resolve all relevant turbulent scales the mean mesh width in the bulk is
chosen of the order of the Kolmogorov scale which can be estimated as follows [11]

h(Ra) ≈ πΓ−1Pr1/2(Nu− 1)−1/4Ra−1/4. (6)

This mean mesh width is turned to account to construct an equidistant mesh. Sometimes a
certain number of additional nodes are implanted near the horizontal walls, where the boundary
layers are expected, as it was done in DNS by Verzicco and Camussi [12]. This manner of
mesh generation is acceptable for considerably low Rayleigh numbers and low aspect ratios Γ
of the Rayleigh cell. For high-Rayleigh-number and high-aspect-ratio cases an adaptive mesh
generation method is required.

4. Adaptive mesh generation for turbulent RBC simulation

Generally, strategies for solution-adapted mesh construction are based either on a priori or
on a posteriori information about the solution. Although the methods of the first type [13],
[14] can produce excellent meshes, for complicated problems such as turbulent Rayleigh-Bénard
convection this a priori information is usually not provided. Among the methods which use
a posteriori information the most effective ones are grid equidistribution methods [15], [16]
and adaptive mesh refinement methods [17], [18]. The former use monitor functions for better
distribution of the nodes and the latter start with very coarse meshes and use error indicators
for their iterative refinement. Since turbulence simulations are impossible on very coarse meshes
at all, the grid equidistribution approach was chosen to construct an effective mesh generation
algorithm which could detect the boundary layers and produce appropriate meshes for their
resolution.

In turbulent Rayleigh–Bénard convection for low Prandtl numbers horizontal thermal bound-
ary layers are thinner than kinetic boundary layers. Therefore the temperature profiles must
determine the distribution of the mesh nodes. Apart from this, the desired meshes must be
structured and stationary, i.e. not variable in time, due to the following reasons. The meshes
used in the DNS of fully turbulent three-dimensional convection are rather large and consist of
107−1011 nodes, since the mean mesh width in the bulk must be of the order of the Kolmogorov
scale. Consequently the three-dimensional Poisson equation which couples the pressure and the
velocity field has also a huge number of unknowns and thus must be solved by one of the fast
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Figure 2: (a) Three steps of adaptive mesh generation, (b) close-up view of (a).

Poisson solvers that work on structured grids only. From the other hand, an accurate approx-
imation of the solution due to the moving in time mesh with large number of nodes could be
over time-consuming.

To simulate turbulent Rayleigh–Bénard convection an algorithm for adaptive mesh con-
struction, which is based on equidistribution of the mean temperature profiles computed in the
vertical z-direction on auxiliary (equidistant) meshes, was developed. The algorithm works in
three steps.

In the first step a rough solution of the system (1) – (3) is found on an auxiliary mesh which
is equidistant in the vertical z-direction. Averaging the temperature in time and also in the ϕ-
and r-directions gives the temperature profile – a one-dimensional function T̂ (z) (see Fig.1). An
equidistant mesh of 110 intervals in the z-direction, which was used in our simulations for the
case Ra = 105, Γ = 10, corresponds to Step 1 in Fig.2.

In the second step for a non-negative monitor function M(z),

M(z) =

√
1 +

(
dT̂ (z)/dz

)2
, (7)

we find the points {zk}, k = 1, ..., Nz, which equidistribute M(z) as follows

∫ zk

zk−1

M(z)dz =
1

Nz

∫ H

0
M(z)dz.

Then the mesh is checked. Each cell must be smaller than the Kolmogorov scale h(Ra) (6)
to resolve all turbulent scales. If the constructed mesh is too coarse, the number of nodes
Nz is increased and the second step is repeated. In our test case this mesh is marked as
”Step 2” in Fig.2 and is fine enough to resolve all relevant turbulent scales, since the mean
mesh width hDNS = maxi(∆zi ri∆ϕi ∆ri)1/3 is smaller than the Kolmogorov scale h(Ra) for
all considered Rayleigh numbers. In particular, for the mesh with 110, 192 and 512 intervals in
the vertical z-, azimuthal ϕ- and radial r-directions, respectively, we get h(105) = 4.37× 10−2,
h(106) = 1.98 × 10−2 and h(107) = 9.20 × 10−3, while hDNS = 6.54 × 10−3. This mesh is
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Figure 3: Hot thermal plumes visualized with 20 isotherms for T ∈ [0, 0.5] in a subdomain of
width 0.25R, DNS for Ra = 105, Pr = 0.7, Γ = 10.

solution-adapted, but has the only one disadvantage: some intervals are more than 40% large
than their neighbours and this irregularity can destabilize the simulations.

In the third step the hyperbolic tangent algorithm by Thompson [19] is used to make the
mesh smoother. This algorithm provides a smooth distribution of the nodes on the interval
[0; 1], using the following incoming data: the number of the nodes and the sizes of the first and
the last subinterval. The final mesh consists of Nz = 110 finite volumes in the z-direction (the
same value was in the auxiliary mesh), is solution-adapted, and its neighbour intervals differs
in size not more than 7%. This resulting mesh for the case Ra = 105, Γ = 10 corresponds to
”Step 3” in Fig.2.

5. Thermal interior layers and their extraction

In turbulent RBC for moderate Rayleigh numbers (105 ≤ Ra ≤ 108) the thermal interior layers,
i.e. plumes, take usually a mushroom-like form (see Fig. 3). In Fig. 4 instantaneous temperature
fields obtained for different Rayleigh numbers are presented in (ϕ, r)-planes located close to the
heated bottom plate. Additionally, snapshots of the temperature field for Ra = 105 in vertical
planes are shown in Fig. 5 to illustrate the complexity of the flow structures which are generated
in turbulent Rayleigh–Bénard convection for moderate Rayleigh numbers.

The temperature fields in the (ϕ, r)-plane located close to the heated bottom or cooled top
plate reflect large scale structures denoted as the roots of the thermal plumes [10]. These roots
become thinner and their number increases with the Rayleigh number. With growing Rayleigh
number the thermal plumes start to cluster and the mean distance between the zones of clustered
plumes increases.

The hot (cold) plumes, which are generated in the lower hot (upper cold) thermal boundary
layer and driven by buoyancy, enter the upper cold (lower hot) thermal boundary layer. Due to
the wall effect in the upper cold (lower hot) thermal boundary layer the hot (cold) fluid moves
predominantly from the centres of the hot (cold) plume caps towards their borders and pushes
away the cold (hot) fluid, which is channelized to form the roots of cold (hot) plumes. In the
bulk region but still close to the top (bottom) boundary layer the fluid moves mainly through
the roots towards the stems of the cold (hot) plumes. The stems of the plumes are generated at
the intersections of the roots. In the bulk the fluid moves generally through the stems towards
the caps of the plumes. The cold and hot plumes look similar, but they settle upside down.

Although the thermal plumes are visible in experiments and can be detected intuitively on
the snapshots of the temperature fields produced in numerical simulations, methods for thermal
plumes extraction and analysis of coherent flow patterns are required. The straightforward way
to extract thermal interior layers – is to use the thermal dissipation rates εθ (4), large values of
which indicate the thermal boundary layers and the borders of the thermal plumes. To separate
visually hot and cold thermal plumes one can also use the function

C(T, εθ) = Tεθ,

which is positive or negative, respectively, in warm (T > 0) or cold (T < 0) parts of the fluid
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Figure 4: Snapshots of the temperature for z = H/(2Nu), Γ = 10 (a, b, c), Γ = 5 (d, e, f) and
Ra = 105 (a, d), Ra = 106 (b, e), Ra = 107 (c, f). Colour scale spreads from white (negative
values) to black (positive values).

and takes on large absolute values in the thermal boundary layers and on the borders of the
thermal plumes.

Mean characteristics for εθ and C(T, εθ) can be obtained by multiplication of the energy
equation (2) with any function η and further time and volume averaging. Taking η = T we get
the mean thermal dissipation rate

< εθ >t,V = Γ1/2Ra−1/2Pr−1/2Nu,

where < · >t,V denotes time and volume averaging and Nu is the Nusselt number (5), while
η = T 2 gives < C(T, εθ) >t,V = 0.

6. Volume of the thermal boundary and interior layers ans their contribution to
heat transport

Since the boundary and interior layers in contrast to the turbulent background are indicated by
large values of the thermal dissipation rate, analysing the spatial distribution of εθ one can in-
vestigate volume characteristics of these large coherent structures and the turbulent background
and study separately their contributions to the volume averaged thermal dissipation rate.

In [10] two functions, τ(ξ) and σ(ξ), were introduced and evaluated from the DNS data to
investigate quantitatively the role of the turbulent background. The function τ(ξ) describes the
percentage of the fluid volume, for which the thermal dissipation rate does not exceed ξ× 100%
of its maximum value εθ,max = maxV εθ,

τ(ξ) = 〈ϑ(ξεθ,max − εθ)〉V , (8)
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Figure 5: Snapshots of the temperature for Ra = 105, Γ = 10 in vertical cross-sections. Colour
scale speads from white (zero) to black (large absolute values).
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Figure 6: Portion of the domain, where εθ(x) ≤ ξεθ,max (left) and contribution to the volume
averaged thermal dissipation rate from the parts of the domain, where εθ(x) ≤ ξεθ,max (right),
evaluated in the DNS for Ra = 105 (——), Ra = 106 (– – –) and Ra = 107 (- - - -) and Γ = 10.

and σ(ξ) describes the contribution to the volume-averaged thermal dissipation rate from those
parts of the domain, where εθ does not exceed ξ × 100% of its maximum,

σ(ξ) =
〈εθϑ(ξεθ,max − εθ)〉V

〈εθ〉V
. (9)

Here ϑ(x) is the Heaviside function, ϑ(x) = 1, if x ≥ 0 and ϑ(x) = 0 otherwise.
In Fig. 6 (a) and (b), respectively, the functions τ(ξ) and σ(ξ) are plotted for Ra = 105, 106

and 107 and Γ = 10. Taking into account the fact that for any fixed value of ξ the values of
τ(ξ) and σ(ξ) obtained for a certain Rayleigh number are always higher than the corresponding
values for a lower Rayleigh number, we conclude that both, the portion of the whole domain,
which corresponds to relatively small values of the thermal dissipation rate, and the contribution
to the volume-averaged thermal dissipation rate from these parts of the domain, increase with
the Ra. In another words, the contribution of the turbulent background in both cases increases
with growth of the Rayleigh number and the contribution of the thermal layers decreases with
Ra. This supports the conjecture by Grossmann and Lohse [20] about the dominating role of
the turbulent background in RBC with large Rayleigh numbers.
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