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Abstract

We consider the two dimensional linear steady state convection diffusion problem

1
ﬁAU(l’, y) +a.Vu(z,y) = f(z,y)

where Re represents the Reynolds number, i.e., 1/Re is a small parameter, and a = (a1, a2). Numer-
ical methods for solving such problems, based on the use of piecewise uniform meshes appropriately
condensed in the layer regions, were shown to be uniformly convergent with respect to the per-
turbation parameter, e.g., in [3], [4]. These methods relied on a priori knowledge of the location
of the layer region. It is of interest to examine whether similarly robust results can be obtained
without this a priori knowledge. To this end, a new adaptive technique is presented, again based
on piecewise uniform meshes, where the location of the cut-off points between the coarse and fine
meshes are moved iteratively. Algorithms for one-dimensional cases were described in [5] and [6].
Numerical experiments indicate that the computed solutions are robust with respect to Re.

1. Formulation of the Algorithms

We will consider problems where an interior layer is induced from the inflow boundary data.
This interior layer will propagate across {29 as shown in figure 1. The basic algorithm produces a
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Figure 1: Graphical representation of the domain 2 showing the location of the layer region.

mesh comprising piecewise-uniform submeshes which are more and more refined within the layer
region. The mesh is uniform in the y-direction and defined by “cut-off points” in the x-direction.
The following algorithm to find the cut-off points along every fixed y value for the problem Pg.:

Pr. - {éAU(%yHa-W(w,y)=f(x,y)= (z,y) € O
| ez, y) = gla,y), (z,y) €T,
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For the algorithm dif f; ; = |u; j — u;—1 ;| and pos represents position. PASS will represent the
number of passes which are set by the user.
Algorithm

o k=0.
e While £ < PASS

— Given z® and y®) solve Pge.
—j=0.
— While j < N
* g = mlax{dz'ffm |1<i<N}.
* w = pos(q;) — 1
* While dif f,, ; > tol
cwi=w— 1.
* End while.
* Ty = a;gf)
* e =pos(q;) +1
* While dif f ; > tol

e =e—+1.
x End while.
Ppp—_—
2,j = Le

* =754+ L
— End while
- L= {7-1,]-};-\7:0 and R = {7'2,1'};'\7:0)-
- ij = 4% (T1,v — T1,1) + 71,1 and Rj _ Y% (To,N —T21) + 721. New cut off

. YN — Yo YN — Yo
points will be given by

7A'17j = ]:j + min{O,mjin{TLj — ij}}

Toj = f{j + \min{O,nljin{f{j — 725} }H-

— Form s in figure 2 by defining

_ Y~ Y
YN — Y0

x1(y) (fi,nv —T11) + 71

Y=o . . .
z(y) = ij — o (2N = 721) + 721

yi(z) =0 and yyu(z) =1
— Use 1 to transform Qs to Q) (figure 2) and Pg. to Pr,.
— k:=k+ 1. Solve P}, on 5.

e End while
The number of mesh-points in a mesh produced by this algorithm depends on the number

of passes used. If it is required to maintain a fixed number of mesh-points, the following can be
added to the algorithm:



e Form QY = QF x OF where QY = {z;; | 1<i,j <N -1}, Q¥ ={y; | 1 <j < N -1},
y; = j/N and

4iy 0<i< N/4
Tij =4 Tij+2(j — N/4)(Tey; — 715)/N, N/4<j<3N/4
0.5 +4(j —3N/4)(1 —75;)/N, 3N/4<j<N.

e Solve Pr. on Q¥ using the transformation £ = z 4+ (1 —y)z* or £ =z —yz* and n = y
where * = x; y — ;1 to transform the grid to an orthogonal grid.

n
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Figure 2: Transformation to a rectangular mesh
We use the following transformations
z —x1(y)
{=—~—""~ (1a)
zu(y) — 1Y)
y — yi(z)
n=—s"~ (1b)
Yu(@) — yi()

from [2] where x;, x,, y; and y, are the four sides in figure 2(a). This transformation will be
used to transform the non rectangular domain Qs to a rectangular domain ), and Pge to Pp,

P

€

A/();gu; +B/g§g:7 +C/8 Ue +D/8u5 +E/8u5 +F/UE — f(fﬂ?), (5777) c Q/;
ut’:‘_ga (§7W)EF2,

where T'y = Q4\ %,

A=+
B' = 2(5:07750 + gyny)
C' =+

D' = §xx + gyy + a1&; + azn,
El — 77505[? + nyy + alé.y + a277y
F'=d(¢&,n)



2.

We will use the transformation ¥ = x — yx*, n = y.

Numerical Experiments: Test Problem

Consider the problem

%Au(az,y) +a.Vu(z,y) = f(z,y), ,(z,y) €Q

where 2 = (—1,1) x (0,1), Re is the Reynolds number, a = (a1, az)

and

3

1

ay(@,y) =7 - 4(1 + exp((—4z + 4y — 2)Re/32))

1

3
as(z,y) = 1 + 4(1 + exp((—4x + 4y — 2)Re/32))

The function f(z,y) is chosen such that

3

1

uemact _ - _

4 4(1 4 exp((—4z + 4y — 2)Re/32))

is the exact solution and the boundary conditions are calculated using the exact solution. This
test problem was also used as an example by Bahdir [1]. The problem will be solved using the

tolerance tol = 0.05N L.

(a) Initial N =3

Figure 3:
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Grid Structure for (2) with Re = 160.
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Table 1: Maximum pointwise errors for the numerical solution of (2).

Number of intervals NV
32 64 128
Tterations 2 3 2 3 2 3

Re

100 0.13D-01 0.13D-01 | 0.71D-02 0.77D-02 | 0.40D-02 0.43D-02
120 0.14D-01 0.15D-01 | 0.79D-02 0.84D-02 | 0.44D-02 0.47D-02
140 0.16D-01 0.17D-01 | 0.86D-02 0.90D-02 | 0.47D-02 0.50D-02
160 0.17D-01  0.17D-01 | 0.91D-02 0.96D-02 | 0.50D-02 0.52D-02
180 0.18D-01 0.19D-01 | 0.96D-02 0.10D-01 | 0.52D-02 0.55D-02
200 0.19D-01 0.20D-01 | 0.10D-01  0.18D-01 | 0.54D-02 0.57D-02
220 0.21D-01 0.21D-01 | 0.11D-01  0.11D-01 | 0.57D-02 0.59D-02
240 0.21D-01 0.22D-01 | 0.11D-01  0.12D-01 | 0.58D-02 0.60D-02
260 0.23D-01 0.23D-01 | 0.12D-01  0.12D-01 | 0.60D-02 0.62D-02
280 0.23D-01 0.23D-01 | 0.12D-01  0.12D-01 | 0.62D-02 0.63D-02
300 0.24D-01 0.24D-01 | 0.12D-01  0.12D-01 | 0.63D-02 0.64D-02
320 0.25D-01 0.25D-01 | 0.13D-01  0.13D-01 | 0.65D-02 0.65D-02
340 0.25D-01 0.26D-01 | 0.13D-01  0.13D-01 | 0.66D-02 0.66D-02
360 0.27D-01 0.27D-01 | 0.13D-01  0.13D-01 | 0.67D-02 0.67D-02
380 0.27D-01 0.27D-01 | 0.14D-01  0.13D-01 | 0.68D-02 0.68D-02
400 0.27D-01 0.28D-01 | 0.14D-01  0.14D-01 | 0.69D-02 0.69D-02
420 0.28D-01 0.28D-01 | 0.14D-01  0.14D-01 | 0.69D-02 0.69D-02
440 0.28D-01 0.28D-01 | 0.14D-01  0.14D-01 | 0.70D-02 0.69D-02

| EN [ 0.28D-01 0.28D-01 | 0.14D-01 0.014D-01 | 0.70D-02 0.69D-02 ||

max

Table 2: Convergence rates for the numerical solution of (2).

Number of intervals N
32
Tterations 2 3 2 3
Re
100 0.81 0.74 | 0.85 0.85
120 0.83 0.83 | 0.86 0.84
140 0.87 0.90 | 0.88 0.85
160 0.90 0.88 | 0.88 0.88
180 0.94 0.92 | 0.89 0.90
200 0.88 0.89 | 0.93 0.92
220 0.96 0.92 092 0.91
240 0.92 0.93 ] 094 094
260 0.97 0.96 | 0.95 0.92
280 0.95 0.95 | 0.96 0.94
300 0.98 0.99 | 0.97 0.95
320 0.98 0.98 | 0.98 0.97
340 0.97 1.01 | 0.99 0.95
360 1.03 1.01 | 0.99 0.97
380 0.97 1.02 | 1.00 0.97
400 0.94 1.04 | 1.03 0.98
420 0.99 1.03 | 1.01 0.99
440 0.98 1.04 | 1.01 0.99
| RN, [098 1.04]1.01 0.99 |

max
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Figure 6: Nodal errors for the numerical solution of (2) for different Re values with N = 64.

3. Conclusion

The adaptive method resolves the internal layer well for large values of Re and is computationally
efficient since one needs at most two iterations to fully resolve the interior layer.
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