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1. Introduction

The flow near the trailing edge of a horizontal heated plate which is aligned under a small angle
of attack φ to the oncoming parallel flow with velocity U∞ in the limit of large Reynolds Re
and large Grashof Gr = gβ∆TL3/ν2 number will be investigated (see figure 1). As usual β
and ν denote the isobaric expansion coefficient and the kinematic viscosity, respectively. The
difference between the plate temperature and the temperature of the oncoming fluid is ∆T and
L is the length of the plate. A measure for the influence of the buoyancy onto the boundary
layer flow along a horizontal plate is the buoyancy parameter K = Gr Re−5/2 as defined in [6].
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Figure 1: Mixed convection flow past a horizontal plate.

The starting point of the analysis are the Navier Stokes equations for an incompressible fluid
using Bousinesq’s approximation to take buoyancy forces into account and the energy equation.

uux + vuy = −px +
1

Re
(uxx + uyy),

uvx + vvy = −py +
1

Re
(vxx + vyy) +

Gr

Re2
ϑ,

uθx + vθy =
1

RePr
(θxx + θyy),

ux + uy,

(1)

subjected to the asymptotic boundary conditions

u = 1, v = φ, θ = 0 (2)

and the boundary conditions at the plate

u(x, 0) = v(x, 0) = 0, θ(x, 0) = 1, − < x < 0. (3)

Additionally to the above mentioned dimensionless parameters the Prandtl number Pr, which
is assumed to be of order one, and the angle of attack φ enter the problem.
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The global structure of the flow field is shown in figure 1. The flow around the plate is a
potential flow with the exception of the boundary layer at the plate and the wake where viscous
effects play a role. Near the trailing edge of the plate the boundary layer interacts (locally)
with the potential flow and sub-layers according to triple deck theory ([1, 2]) will be introduced.
To apply the triple deck analysis it turns out that the buoyancy parameter K and the angle
of attack φ have to be of the order Re−1/4. Thus we define the reduced buoyancy parameter
κ = K Re1/4 and the reduced inclination parameter λ = φK

√
Re. We note that the choice of

the magnitude of φ is not only dictated by the trailing edge analysis, but it is a consequence of
the analysis of the far field (see [8]). As we will see the inclination parameter λ will play no role
in the trailing edge analysis. Only for positive values of λ an outer potential flow field exists
[8]. We remark that in case of symmetric flow conditions (upper side of the plate heated, lower
side cooled) the inter action mechanism would allow K to be larger, namely of order Re−1/8.
After a short review of the interaction of the wake (section 2) with the potential flow (section 3)
the focus of the present paper will be the analysis of the flow near the trailing edge (section 4).
A numerical solution reveals that the interaction pressure is discontinuous at the trailing edge
(section 5). Thus new sub-layers are introduced to resolve the discontinuity (section 6).

In this paper we will use the following notation for the variables in different layers. Con-
sider a sub-layer of the dimensions Re−α/8 in x- and Re−β/8 in y-direction. The corresponding
independent variables are denoted by x(α) = xReα/8 and y(β) = yReβ/8. A dependent variable
defined on that sub-layer, e.g. u, will be denoted by u(α,β) = u(α,β)(x(α), y(β)).

2. Boundary Layer and Wake

The boundary layer and wake are of the thickness Re−1/2. Since we have to expect an inclination
of the wake we introduce the stretched y-coordinate as

y(4) =
(

y − Re−1/4yw

)

Re1/2,

where the center line of the wake is given by y = Re−1/4yw(x). In the boundary layer −1 < x < 0
we set yw(x) = 0. Perturbations of the pressure are expected to be of the order of the buoyancy
parameter. Thus the pressure can be expanded in the form

p(x, y) ∼ Re−1/4p
(α,β)
0 (x(α), y(β)) + ... . (4)

We remark that in the potential flow region we have α = β = 0 and in the wake and boundary
layer (α, β) = (0, 4). Applying the usual scaling for the boundary layer (and wake) we obtain
for the leading order terms the x-momentum and continuity equation.

u
(0,4)
0

∂u
(0,4)
0

∂x(0)
+ v

(0,4)
0

∂u
(0,4)
0

∂y(4)
= κy′wθ(0,4) +

∂2u
(0,4)
0

∂y(0)2
,

∂u
(0,4)
0

∂x(0)
+

∂v
(0,4)
0

∂y(4)
= 0. (5)

The y−momentum equation reduces to

p
(0,4)
0 = κθ

(0,4)
0 . (6)

We remark that due to the inclination of the wake the hydrostatic pressure gradient has a non
vanishing component tangential to the wake. The inclination of the wake has to be determined
from the potential flow. As mentioned earlier at the plate y′w = 0 holds and thus we have the
to leading order the Blasius solution for the boundary layer flow

u ∼ f ′

B

(

y(4)

√

x(0) + 1

)

, θ ∼ θB

(

y(4)

√

x(0) + 1

)

, −1 < x < 0, (7)

where fB is the Blasius similarity solution and θB is the corresponding similarity solution for
the temperature profile.
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3. Potential flow

Integrating (6) across the wake we obtain

p
(0,0)
0 (x, 0+) − p

(0,0)
0 (x, 0−) = p

(0,4)
0 (x,+∞) − p

(0,0)
0 (x,−∞) = κ

∫

∞

−∞

θ(0,4)(y(4)) dy(4), (8)

that across the wake there is due to the temperature perturbation in wake a hydrostatic pressure
difference. Thus the potential flow has to satisfy the pressure jump condition (8), the condition
the flow has to be tangential to the plate v(x, 0) = 0 for −1 < x < 0 and the asymptotic
boundary condition (2). Using the notation of complex functions we decompose the potential
flow field as follows

u − iv = 1 − iφ

√

z

z + 1
+ Re−1/4κ(u1 − iv1) + ..., (9)

with z = x + iy. The first term corresponds to the potential flow around the plate under an
angle of attack φ. The second part is due hydrostatic pressure difference across the wake. Using
(9) the inclination of the wake is given by

y′w(x) =
λ

κ

√

x

x + 1
+ κv1(x, 0). (10)

For v1 an integral equation can be derived. Its solution is given by

v1(x) =
1

2π

√

x

x + 1

∫

∞

0

γw(ξ)

x − ξ

√

ξ + 1

ξ
dξ, (11)

(see [8]) where γw(x) =
∫

∞

−∞
θ
(0,4)
0 (x, y(4)) dy(4) can be interpreted as a vortex distribution along

the center line of the wake which compensates the hydrostatic pressure difference across the
wake (cf. [7]). We remark that for non-vanishing values of κ the flow in the wake and the
potential flow correction due to buoyancy have to be solved simultaneously. A detailed analysis
and discussion of the solution can be found in [8].

4. Trailing Edge

For the analysis of the flow field near the trailing edge the velocities, pressure and temperature
are decomposed into a symmetric and anti-symmetric part.

ū(x, y) =
u(x, y) + u(x,−y)

2
, ∆u =

u(x, y) − u(x,−y)

Re−1/4κ
. (12)

All other dependent variables are decomposed accordingly. To leading order for the symmetric
part the classical triple deck problem [1, 2] is obtained. Here we recall some properties of the

interaction pressure p̄
(3,5)
1 and the displacement thickness Ā

Ā ∼ as

(

x(3)
)1/3

, x(3) → ∞, (13)

with the constant as = 0.892. In analogy to the velocity profile of the symmetric part in the
main deck the temperature profile of the symmetric part is given as

θ ∼ θB(y(4)) + Re−1/8Ā(x(3))θ′B(y(4)). (14)

In the following we will discuss the interaction problem for the anti-symmetric part of the
solution. We start with the main deck (α, β) = (3, 4), then using the upper deck (3,3)-layer
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we derive the interaction law and finally derive the lower deck (3,5)-layer problem. The anti-
symmetric part of the pressure in the main deck can be expanded in the form

∆p = ∆p
(3,4)
0 + Re−1/8∆p

(3,4)
1 + ..., (15)

In contrast to (classical) triple deck problems the pressure is not constant across the main deck.

The pressure involved in the interaction mechanism is of order Re−1/8, i. e. ∆p
(3,4)
1 . The

y-momentum equation reduces to

∂∆p
(3,4)
0

∂y(4)
= κθ̄

(3,4)
0 ,

∂∆p
(3,4)
1

∂y(4)
= θ̄

(3,4)
1 , (16)

and using (14) we obtain

∆p
(0,4)
0 (x(3), y(4)) =

∫ y(4)

∞

θB(ỹ(4)) dỹ(4) + ∆p
(0,0)
0 (0, 0), (17)

∆p
(0,4)
1 (x(3), y(4)) = Ā(x(3))θB(y(4)) + ∆p

(3,3)
1 (x3, 0). (18)

Since the flow in the upper deck is a potential flow with the velocity field

∆u − i∆v = ∆u
(0,0)
0 (0, 0) + Re−1/8

(

∆u(3,3)(x(3), y(3)) − i∆v(3,3)(x(3), y(3))
)

+ ... (19)

and u
(3,3)
1 (x(3), 0) = −∆p

(3,3)
1 (x(3), 0), v

(3,3)
1 (x(3), 0) = −∆A′(x(3)) holds, the negative pressure

−p
(3,3)
1 (x(3), 0) and the displacement thickness ∆A′(x(3)) can be interpreted as the real and

imaginary part of a complex analytical function ∆Φ1 evaluated on the real axis. We have

∆Φ1(x
(3)) = −∆p(3,3)(x(3), 0) + i∆A′(x(3)) = −

(

∆p(3,5)(x(3)) − Ā(x(3))
)

+ i∆A′(x(3)). (20)

Considering ∆p(3,5)(x(3)) = 0 for x > 0 and using the asymptotic behavior of Ā for x(3) → ∞
we conclude that ∆Φ1(z) ∼ (a+ ib)z1/3 for z → ∞ holds. The constants a and b are determined
by using that ∆A′ → 0 for x(3) → −∞. They turn out to be a = as and b = −

√
3as. Thus the

asymptotic behavior of ∆p1 and ∆A′ is given by

∆p
(3,5)
1 (x(3)) ∼ −2as|x(3)|1/3 for x(3) → −∞, (21)

∆A′(x(3)) ∼ −
√

3as|x(3)|1/3, for x(3) → ∞ (22)

and the interaction law can be written in the form:

∆A′(x(3)) +
√

3ash(x(3))
(

x(3)
)1/3

=

−
[

1

π

∫ 0

−∞

∆p(3,5)(ξ) + 2as|ξ|1/3

x(3) − ξ
dξ − 1

π

∫

∞

−∞

Ā(ξ) − ash(ξ)|ξ|1/3

x(3) − ξ
dξ

]

.

We have written the interaction law in form such that the singular parts are separated and the
integrand in the Hilbert integral decays sufficiently fast to zero for x(3) → ±∞. The equations
for the velocity profile in the lower deck are given by the momentum equation in x-direction

ū
(3,5)
1

∂∆u
(3,5)
0

∂x(3)
+ ∆u

(3,5)
0

∂ū
(3,5)
1

∂x(3)
+ v̄

(3,5)
1

∂∆u
(3,5)
0

∂y(5)
+ ∆v

(3,5)
0

∂ū
(3,5)
1

∂y(5)
= −∂∆p

(3,5)
1

∂x(3)
+

∂2∆u
(3,5)
0

(

∂y(5)
)2 (23)
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and the continuity equation. The boundary conditions are

∆u
(3,5)
0 (x(3), 0) = ∆v

(3,5)
0 (x(3), 0) = 0, x(3) < 0 plate,

∆u
(3,5)
0 (x(3), 0) = ∆p

(3,5)
0 (x(3), 0) = 0, x(3) > 0 wake.

(24)

It remains to specify the asymptotic behavior of the velocity profile for x(3) → −∞ and y(5) → ∞.

Considering the asymptotic behavior of the pressure ∆p
(3,5)
1 and of ū1(3, 5) ∼ y(5) for x(3) →

−∞ we conclude that the asymptotic behavior of the flow field in the lower deck is self-similar.
Using a (scaled) stream function ∆H defined by

∆u(3,5) = ∆H ′(η), with η =
y(5)

|x(3)|1/3
(25)

we obtain the similarity equation for ∆H

3∆H ′′′ − f ′′

B(0)
(

η2∆H ′′ − η∆H ′ + ∆H
)

= 2as (26)

with the boundary conditions ∆H(0) = ∆H ′(0) = 0. The corresponding homogeneous equation
has three linearly independent solutions h1(η) ∼ η ln η for η → ∞, h2(η) = η and h3(η). The
third solution h3 increases exponentially. In order to match the velocity profile with the main
deck solutions h3 has to be eliminated. Thus we have

∆H(η) = − 2as

f ′′

B(0)
+ c1h1(η) + c2η ∼ −2as + c1η ln η + c2η, η → ∞. (27)

Since there are two boundary conditions at η = 0 the constants c1 and c2 are uniquely defined.
For the velocity profile we obtain

∆u0(x
(3), y(5)) ∼ ∆H(η) ∼ c1 ln y(5) − c1

3
ln |x(3)| + c1 + c2, x(3) → −∞, y(5) → ∞. (28)

To supplement the lower deck equation with correct asymptotic boundary condition for y(5) → ∞
we need a condition which is satisfied by all linear combinations of the two admissible funda-
mentals solutions 1 and ln y(5). Such a condition is given by

y(5) ∂
2∆u(3,5)

∂
(

y(5)
)2 +

∂∆u(3,5)

∂y(5)
→ 0, for y(5) → ∞. (29)

The y(5) independent part of the asymptotic behavior of u(3,5) can be interpreted as the asymp-
totic behavior of the negative displacement thickness ∆A. Thus we have

∆A
(

x(3)
)

∼ (c1 + c2) −
c1

3
ln |x(3)|. (30)

Matching the lower deck velocity profile with the main deck velocity profile we obtain

∆u(3,4) ∼ ln Re
c1

f ′′

B(0)
f ′′

B(y(4)) + ∆A(x(3))f ′′

B(y(4)) + ∆u(0,4)(0−, y(4)) + ... . (31)

In the boundary layer the velocity profile close to the trailing edge 0 < −x(0) ≪ 1 is given by

∆u(0,4) =







H ′

(

y(4)

(x(0))
1/3

)

for (y(4))3 ∼ |x(0)|

∆u(0,4)(0−, y(4)) − c1
3f ′′

B(0) ln |x(0)|f ′′

B(y(4)) + ... for (y(4))3 ≫ |x(0)|
, (32)

where matching the ln-terms in of the main deck and lower deck yields the asymptotic behavior
of u(0,4)(0−, y(4)) ∼ c1 ln y(4) for y(4) → 0.
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5. Numerical solution

The lower deck equations with the interaction law for the anti-symmetric part of the flow field are
solved using Veldman’s iteration method [3]. In x(3) a stretched grid has been used xi+1 − xi =
f(xi − xi−1) for 1 < i < N , and x−i = −xi. The minimal step size is xi = 0.001, the factor
f = 1.01 and N = 300. Thus computational domain is (−107, 107). At x−N the similarity
solution for the velocity profile is described. The momentum equation (23) is discretiazed with
backward differences with respect to x. At each node xi an ordinary differential equation is
obtained which is solved using the ODE solver COLPAR [5].

In figure 2 the negative displacement thickness ∆A and the interaction pressure p(3,5) for the
anti-symmetric part of the flow field are shown. The asymptotic behavior for x → −∞ of ∆A

and ∆p
(3,5)
1 is shown on figure 2b on a logaritmic and double logarithmic scale, respectively.
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Figure 2: Negative displacement thickness ∆A and interaction pressure ∆p(3,5) a). Asymptotic
behavior of ∆A, and ∆p(3,5) for x(3) → −∞ b).

It turns out that the interaction pressure p
(3,5)
1 has a jump discontinuity at the trailing x = 0.

In the next section sub-layers will be introduced to resolve this discontinuity.

6. Additional sub-layers

Due to the discontinuity of the difference pressure ∆p
(3,5)
1 in the lower deck at the trailing edge

the difference pressure has a discontinuity in the main deck as well. In the upper deck the
difference pressure ∆p(3,3) is singular at (0, 0). Using the calculus of analytic functions of a
complex variable z(3) = x(3) + iy(3) we can guess the behavior of ∆p(3,3) close to 0:

∆p ∼ ∆p(0,0) + Re−1/8∆p
(3,3)
1 (x(3), y(3)), ∆p

(3,3)
1 ∼ −Ā(0) +

[∆p(3,5)]

π
ℜ i ln z, (33)

where ℜz denotes the real part of a complex number and [∆p(3,5)] = −∆p(3,5)(0−) is the jump
of ∆p(3,5) at the discontinuity at x = 0.

In order to resolve the discontinuity in the main deck we introduce the (4,4)-sub layer in the
main deck. Using the expansion for the anti symmetric part

∆u ∼ lnRe
c1

f ′′

B(0)
f ′′

B(y(4))+∆u
(3,4)
0 (0, y(4))+Re−1/8 lnRe

[∆p]

8π
x(4)f ′′

B(y(4))+

+Re−1/8∆u
(4,4)
1 (x(4), y(4)) + ...,

(34)
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∆v ∼ −Re−1/8 ln Re
[∆p]

8π
f ′

B(y(4)) + Re−1/8v
(4,4)
1 (x(4), y(4)) + ... (35)

∆p ∼ ∆p
(0,0)
0 (0, 0) + Re−1/8∆p

(4,4)
1 (x(4), y(4)) + ... (36)

we obtain the following equations for the leading order terms.

f ′

B

∂∆u
(4,4)
1

∂x(4)
+ ∆v

(4,4)
1 f ′′

B = −∂∆p
(4,4)
1

∂x(4)
(37)

f ′

B

∂∆v
(4,4)
1

∂x(4)
= −∂∆p

(4,4)
1

∂y(4)
+ θ̄

(0,4)
1 (38)

∂∆u
(4,4)
1

∂x(4)
+

∂∆v
(4,4)
1

∂y(4)
= 0 (39)

The flow in the (4,4)-sub-layer is inviscid but in contrast to the main deck the y-momentum

equation is not degenerated. Eliminating ∆u
(4,4)
1 and ∆v

(4,4)
1 an elliptic equation for ∆p

(4,4)
1 can

be derived

f ′

B

[

∂2∆p
(4,4)
1

∂
(

x(4)
)2 +

∂2∆p
(4,4)
1

∂
(

y(4)
)2 − ∂θ̄

(0,4)
1

∂y(4)

]

+ 2f ′′

B

[

θ̄
(0,4)
1 − ∂∆p

(4,4)
1

∂y(4)

]

= 0. (40)

The boundary and matching conditions can expressed as

∆p
(4,4)
1 ∼ − [∆p(3,5)]

π
arctan

y(4)

x(4)
+ Ā(0)

(

θ0(y
(4)) − 1

)

, (41)

for y(4) = 0 or r(4) =
√

(x(4))2 + (y(4))2 → ∞. For the numerical solution we decompose the
solution of the linear elliptic partial differential equation (40) into a particular solution and a
solution of the homogenous problem:

∆p
(4,4)
1 ∼ − [∆p(3,5)]

π
∆p

(4,4)
h (y(4), x(4)) + Ā(0)

(

θ0(y
(4)) − 1

)

, (42)

with ∆p
(4,4)
h ∼ arctan y(4)/x(4) for (x(4))2 + (y(4))2 → ∞ and ∆p

(4,4)
h (x(4), 0) = π for x < 0 and

∆ph(x(4), 0) = 0 for x > 0.

−0.4
−0.2

 0
 0.2

 0.4  0
 0.1

 0.2
 0.3

 0.4
 0.5

 0

 1

 2

 3

x(4)

y(4)

ph

Figure 3: Local behavior of the interaction pressure ∆p
(4,4)
1 near the trailing edge. The solution

ph of the homogenous problem , cf. (42), is shown
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The local behavior near the singularity can be discussed by transforming the equation (40)

to polar coordinates r(4), ϕ. Expanding ∆p
(4,4)
h ∼ ∆ph,0(ϕ) + O(r(4)) for r(4) ≪ 1 we obtain

sin ϕ∆p′′h,0 − 2 cos ϕ∆ph,0 = 0, ∆ph,0(0) = 0, ∆ph,0(π) = π, (43)

with the solution

∆ph,0 = ϕ − 1

2
sin 2ϕ. (44)

A numerical solution for ph is shown in figure 3. The correct asymptotic behavior for r(4) → 0
and r(4) → ∞ could be verified.

We note that a similar analysis can be performed in the (5,5) sub-layer of the lower deck.
In this layer the pressure is continuous with the exception of the point (0, 0). We believe that
a complete resolution of the singular behavior of the pressure can only be obtained on the
(6,6)-scale where the flow is described by the full Navier-Stokes equations.

7. Conclusions

A complete asymptotic analysis of the mixed convection flow around a finite horizontal plate
under a small angle of attack in the limit of large Reynolds number and small buoyancy effects
has been performed. Near the trailing edge a the flow is described by a triple deck problem.
On triple deck scales the pressure turned out to be discontinuous at the trailing edge thus sub-
layers in the main and lower deck have been introduced. Although on triple deck scales there is
a pressure jump a trailing edge on the scales of the potential flow (leading order) the pressure
is continuous at the trailing edge satisfying the Kutta condition.
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