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1. Introduction and summary

This paper aims to give the reader a summary of current understanding of the streamline-
diffusion finite element method (SDFEM), as applied to linear steady-state convection-diffusion
problems. Towards this end, we begin with a brief description of the nature of convection-
diffusion problems: the structure of their solutions will be examined, with special emphasis on
the main phenomena of exponential and characteristic/parabolic layers. See [34] for a more
leisurely and detailed exposition of this material.

Next, Shishkin meshes will be presented and discussed. These piecewise-uniform meshes are
suited to the numerical solution of convection-diffusion problems with boundary layers. Further
information on them appears in [7, 27, 30, 31, 34].

Finally, we come to the Streamline Diffusion Finite Element Method (SDFEM), which is
also known as the Streamline-Upwinded Petrov-Galerkin method (SUPG). Since its inception
[12] in 1979, this method has been the subject of a huge number of theoretical analyses and
numerical investigations that continue to this day; see the references in [30, 31, 34]. We shall
give a comprehensive survey of the application of the method to convection-diffusion problems,
including discussions of its strengths and weaknesses, and present recent theoretical results.

2. Convection-diffusion problems

Steady-state convection-diffusion problems are boundary value problems of the form

−ε∆u + a · ∇u = f on Ω, u = g on ∂Ω (1)

where Ω is some domain in Rn with boundary ∂Ω; for simplicity we have taken Dirichlet bound-
ary conditions. Here ε is a small positive parameter, so the second-order differential operator is
elliptic — but the smallness of ε means that the ellipticity constant is close to zero, which gives
reduced stability for standard numerical methods.

The term −ε∆u models diffusion while a·∇u models convection. The terminology convection-
diffusion problem is used since the convection coefficient has much greater magnitude than the
diffusion coefficient:

|coefficient of ∇u|
|coefficient of ∆u| =

|a|
ε

≫ 1.

For almost all boundary conditions this is an example of a singularly perturbed problem: the
solution in the case ε = 0 is not equal at all points to the limit of the solution as ε → 0.

Applications of convection-diffusion problems include the linearized Navier-Stokes equations
(the Oseen equations) and the drift-diffusion equation of semiconductor device modelling; Mor-
ton [28] gives further examples.
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We shall consider only problems posed in two-dimensional domains Ω. Writing n for the
outward-pointing unit normal to boundary ∂Ω, we divide it into three parts (see Figure 1):

inflow boundary ∂−Ω = {x ∈ ∂Ω : a · n < 0}
outflow boundary ∂+Ω = {x ∈ ∂Ω : a · n > 0}

tangential/characteristic flow boundary ∂0Ω = {x ∈ ∂Ω : a · n = 0}

∂
− Ω

a

n

∂
0 Ω

∂
0 Ω

Ω

∂
+ Ω

Figure 1: Partition of ∂Ω

Then the solution u of (1) has the following asymptotic structure:

u = reduced solution + layers + negligible terms (2)

Here the “reduced solution” is the solution u0 of the first-order partial differential equation
a · ∇u0 = f on Ω, which is obtained by formally setting ε = 0 in (1), with the boundary data
u0 = g on ∂−Ω. The “layers” are narrow regions where u changes rapidly, so certain derivatives
of u are consequently large there. Along ∂+Ω the solution usually has an exponential boundary
layer — this can be written in terms of exponential functions — and along ∂0Ω the solution
typically has parabolic or characteristic boundary layers, which are so called because (i) they
are often expressed as the solutions of associated parabolic partial differential equations and (ii)
these layers lie along the characteristic traces of the operator a · ∇.

Example 1

−ε∆u(x, y) + ux(x, y) = 1 on Ω := (0, 1) × (0, 1), u(x, y) ≡ 0 on ∂Ω.

The inflow boundary is the side x = 0 of Ω̄. The reduced solution is u0(x, y) = x. One has
u ≈ u0 away from the outflow boundary x = 1 (where there is an exponential layer) and the
characteristic boundaries y = 0 and y = 1 (where there are characteristic layers). See Figure 2.
for a computed solution.

Layers away from boundaries — (characteristic) interior layers — are also possible:

Example 2 Consider again the differential equation

−ε∆u(x, y) + ux(x, y) = 1 on Ω := (0, 1) × (0, 1),

with now a jump discontinuity in the boundary data on ∂−Ω. This induces an interior layer in
the solution u. The boundary data along y = 0 and y = 1 have been chosen to agree with u0 so
that no characteristic boundary layers are visible. An exponential layer is still present at ∂+Ω.
See Figure 3 for a computed solution.

When two glaciers meet, an interior layer in the ice is formed naturally by transported
sediment and is called a medial moraine. See Figure 4 for an example taken from [19].
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Figure 2: Solution to Example 1

3. Shishkin meshes

One-dimensional Shishkin meshes are piecewise equidistant meshes: first partition the domain
(an interval) into two subintervals of very unequal length by a “transition point”, then use half
the mesh intervals to subdivide each of these subintervals equidistantly, resulting in a mesh that
contains equal numbers of fine and coarse mesh intervals, with the fine and coarse intervals
meeting only at the transition point. Shishkin meshes on two-dimensional rectangular domains
are tensor products of one-dimensional Shishkin meshes.

Suppose that we wish to solve the problem

−ε∆u + a1ux + a2uy = f on Ω := (0, 1) × (0, 1), with a1 > 0, a2 > 0.

Then the solution u has exponential boundary layers along x = 1 and y = 1; see Section 2.. For
this problem, the rectangular (and triangular — obtained by dividing each rectangle into two
triangles) Shishkin meshes are given in Figure 5. Here the transition points 1 − σx and 1 − σy

that separate the coarse and fine meshes in each coordinate direction are defined using σx =
(k/β1)ε ln N, σy = (k/β2)ε ln N , where βi = min(x,y)∈Ω̄ ai(x, y) and k is a user-chosen parameter;
typically k is approximately equal to the order of convergence expected of the method.

If instead we consider the problem −ε∆u − a1ux = f , with 0 < β1 = min(x,y)∈Ω̄ a1(x, y), on
the unit square Ω, then the solution has an exponential boundary layer at x = 0 and parabolic
boundary layers at y = 0, 1. The appropriate Shishkin mesh with σx = (k/β1)ε ln N, σy =
k
√

ε ln N is shown in Figure 6; once again, half the mesh intervals lie in the coarse mesh in each
coordinate direction.

An approximate Shishkin mesh is constructed in [26] to generate a numerical solution for
a problem on the unit square that has a curved interior layer lying along a quarter-circle; the
symmetric shape of the layer’s location aids in the mesh construction.

Many examples of Shishkin meshes on rectangular domains appear in the literature, but I
can find no published numerical example for a convection-diffusion problem where a Shishkin
mesh is implemented on a domain with curved boundary. (There are such examples for reaction-
diffusion problems; see e.g. [18].) The photograph in Figure 7 illustrates how a Shishkin mesh
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Figure 3: Solution to Example 2; characteristic interior layer

Figure 4: Medial moraines (two rightmost arrows) start where two glaciers meet
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Figure 5: Tensor product Shishkin mesh; layers at x = 1 and y = 1
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σy

1 − σy

σx

Figure 6: Shishkin mesh; layers at x = 0, y = 0 and y = 1

should look at a curved boundary: it is very fine in the direction perpendicular to the boundary
until it reaches a predetermined distance from the boundary, where it can become an arbitrary
coarse mesh.

Figure 7: “Shishkin mesh” at curved boundary

Other layer-adapted meshes are used by some authors. In particular the Bakhvalov mesh
for convection-diffusion problems is graded and does not have the abrupt transition from fine to
coarse that appears in the Shishkin mesh, but it is more troublesome to construct. Linß [21, 22]
gives excellent surveys of layer-adapted meshes for convection-diffusion problems.

4. SDFEM/SUPG

Throughout the rest of the paper we consider the boundary value problem

−ε∆u + a · ∇u + cu = f on Ω ⊂ R2, (3a)

u = 0 on ∂Ω, (3b)
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with 0 < ε ≪ 1. Make the usual finite element assumption that c − diva/2 ≥ c0 > 0 on Ω̄ for
some c0.

Let Th be a triangulation of Ω. For simplicity here we confine our attention to the case
where Th comprises triangles or rectangles with no hanging nodes, but some of the subsequent
analysis also applies to more general subdivisions of Ω. On this triangulation we use a standard
conforming piecewise polynomial trial space V N ⊂ H1

0 (Ω). (A nonconforming variant of the
SDFEM is analysed in [16].)

Notation. C will denote a generic constant that is independent of ε and of the mesh.
The standard Galerkin FEM for (3) is: find uN ∈ V N such that for all v ∈ V N ,

aGal(u
N , vN ) := ε(∇uN ,∇vN ) + (a · ∇uN , vN ) + (cuN , vN )

= (f, vN ),

where (·, ·) is the L2(Ω) inner product.
How stable is this method? For all vN ∈ V N , since V N ⊂ H1

0 (Ω) we get

aGal(v
N , vN ) = ε(∇vN ,∇vN ) + (a · ∇vN , vN ) + (cvN , vN )

= ε|vN |21 +

(

c − 1

2
diva, (vN )2

)

≥ ε|vN |21 + c0‖vN‖2
0

=: ‖vN‖2
1,ε. (4)

Here | · |1 is the H1(Ω) seminorm and ‖ · ‖0 denotes the L2(Ω) norm.
The stability implied by the coercivity inequality (4) is much weaker than the stability

enjoyed by the same method in the classical case ε = 1 because ‖ · ‖1,ε is a weak norm compared
with the standard H1(Ω) norm ‖ · ‖1. The numerical example of Figure 8 shows this only too
well: the computed solution is plagued by wild oscillations and the true solution cannot be
discerned.
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Figure 8: Galerkin FEM on equidistant mesh, ε = 10−3

The method that we now consider — the SDFEM/SUPG— is designed to deliver improved
stability without compromising accuracy in its computed solutions.
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Definition of SDFEM/SUPG [12] for (3): find uN ∈ V N such that for all v ∈ V N ,

aSD(uN , vN ) := ε(∇uN ,∇vN ) + (a · ∇uN , vN ) + (cuN , vN )

+
∑

T∈Th

δT (ε∆uN + a · ∇uN + cuN ,a · ∇vN )T

= (f, vN ) +
∑

T∈Th

δT (f,a · ∇vN )T ,

where δT ≥ 0 is a user-chosen locally constant parameter (i.e. constant on each mesh element)
and (·, ·)T is the L2(T ) inner product. If δT = 0 for all T then one obtains the unstable Galerkin
method of Figure 8, so we shall certainly set δT > 0 for at least some T ∈ Th.

Terminology: SDFEM stands for “Streamline Diffusion Finite Element Method” — the
method is essentially equivalent to adding a local amount O(δT ) of diffusion to (3) but only in
the convective direction. This direction is also called the “streamline” direction in the case of
a steady-state problem. On the other hand, SUPG is an acronym for “Streamline Upwinding
Petrov-Galerkin method”: Petrov-Galerkin means that the FEM trial space differs from the test
space — one can write the SDFEM/SUPG as a standard Galerkin method with trial space V N

and test space functions vN + a · ∇vN for all vN ∈ V N .

4..1. Stability

Set cT = maxx∈T |c(x)| for each T ∈ Th. Assume that for all those mesh elements T ∈ Th where
δT > 0, the mesh is quasiuniform with local inverse inequality ‖∆vN‖0,T ≤ µinvh

−1
T |vN |1,T for

all T , where hT = diam(T ). Here | · |1,T is the seminorm in H1(T ) and ‖ · ‖0,T is the L2(T )
norm. Choose δT to satisfy

0 ≤ δT ≤ 1

2
min

(

c0

c2
T

,
h2

T

εµ2
inv

)

(5)

for each T ∈ Th.
For each vN ∈ V N , we have

aSD(vN , vN ) ≥ ε|vN |21 + c0‖vN‖2
0 +

∑

T∈Th

δT ‖a · ∇vN‖2
0,T

+
∑

T∈Th

δT (−ε∆vN + cvN ,a · ∇vN )T .

Using the local inverse inequality and the assumption (5),

∣

∣

∣

∣

∣

∑

T

δT (−ε∆vN + cvN ,a · ∇vN )T

∣

∣

∣

∣

∣

≤
∑

T

ε2δT ‖∆vN‖2
0,T +

∑

T

c2
T δT ‖vN‖2

0,T +
1

2

∑

T

δT ‖a · ∇vN‖2
0,T

≤ ε

2
|vN |21 +

c0

2
‖vN‖2

0 +
1

2

∑

T

δT ‖a · ∇vN‖2
0,T .

Hence the discrete bilinear form is coercive, i.e.

aSD(vN , vN ) ≥ 1

2
|||vN |||2SD (6)
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Figure 9: Galerkin FEM and SDFEM solutions computed on uniform meshes, ε = 10−3

for all vN ∈ V N . Here

|||w|||SD :=
(

ε|w|21 +
∑

T∈Th

δT ‖a · ∇w‖2
0,T + c0‖w‖2

0

)1/2
.

The stronger stability of (6), compared with (4), leads us to hope that the SDFEM will compute
solutions that are less oscillatory than the standard Galerkin method. This is indeed the case,
as Figure 9 demonstrates.

4..2. Convergence results, choice of δT

Now that we have a stability bound in (6), we can deduce a preliminary error bound for the
computed solution. Write uI for the usual FEM interpolant to u from V N . Then

1

2
|||uI − uN |||2SD ≤ aSD(uI − uN , uI − uN ) = aSD(uI − u, uI − uN ).

Estimating the right-hand side term by term [30], one arrives at

|||uI − uN |||SD ≤ Chk
[

∑

T

(ε + δT + δ−1
T h2

T + h2
T )|u|2k+1,T

]1/2
, (7)

where h = maxT hT and | · |k+1,T is a local Sobolev seminorm. Define the local Mesh Peclét
number

(Pe)T :=
hT ‖a‖L∞(T )

2ε
.

The bound (7) and the assumption (5) that was needed earlier for coercivity together lead to
the natural choice

δT =

{

C0hT if (Pe)T > 1,
C1h

2
T /ε if (Pe)T ≤ 1,

(8)

where C0 is user-chosen and locally constant. Then since V N comprises piecewise polynomials
of degree k, one gets

|||u − uN |||SD ≤ C(ε1/2 + h1/2)hk|u|k+1 (9)

where | · |k+1 is the usual seminorm in Hk+1(Ω). While the bound (9) is superficially attractive,
it should be borne in mind that typically |u|k+1 = O(ε−k−1/2), so in fact the right-hand side of
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Figure 10: The same problem solved for two values of δT

(9) may be very large. Nevertheless one can often localize a result such as (9) to regions away
from layers using cut-off functions as in [13, 30].

The same numerical example is solved for two different choices of a globally constant δT in
Figure 10; the value of δT is the left-hand picture is chosen to suit the layer in the foreground,
while that of the second picture suits the layer on the left-hand side of the picture.

In general, no precise general formula for an “optimal” (in some sense) value of the SDFEM
parameter δτ is known; the inequalities seen already seem to be the best general statement that
one can make. There has been much research into this question; see, e.g., [1, 2, 8, 9, 11, 26],
and the surveys in [30, 31].

4..3. Local error bounds away from layers

For the rest of the paper we consider error bounds for the SDFEM that neither explicitly nor
implicitly involve negative powers of ε, unlike (9). First we examine error bounds that hold
true only on regions that are sufficiently far from layers. Such bounds are proved using cut-off
functions. We do not give a precise definition of these regions and functions but instead refer
the reader to [13, 29, 30] for this information.

To begin with, consider L2-type error bounds. Using cut-off functions one can localize (9)
to an error bound away from layers, on a region that we shall write as ∪{T : T ∈ T ′

h} for
some subset T ′

h of Th. Here |u|k+1 is of moderate size so the bound does show that the error is
small. In particular one then obtains the optimal order of convergence O(hk) for the streamline
derivative error

(

∑

T∈T ′

h

‖a · ∇(u − uN )‖2
0,T

)1/2
,

but only O(hk+1/2) — half an order less than optimal — for the L2 error
(

∑

T∈T ′

h

‖u − uN‖2
0,T

)1/2
.

For piecewise linears (abusing the notation we indicate this by writing V N = P1) this L2

bound is best possible [37]. For piecewise bilinears (V N = Q1) on rectangular uniform meshes
one obtains [35] the optimal estimate ‖u − uN‖0 = O(h2), but for V N = Qk with k > 1, the
suboptimal bound ‖u − uN‖0 = O(hk+1/2) seems to be best possible [36].

Local L∞ error bounds at points x that lie away from layers are derived for V N = P1 in
[13, 29]:

|(u − uN )(x)| ≤ Ch11/8 ln(1/h).
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Numerical results show that a pointwise bound of O(h3/2) is best possible for piecewise linears
[37], but when convection is (nearly) parallel to a rectangular mesh, Zhou and Rannacher [38]
get almost O(h2) away from layers.

4..4. Characteristic interior layers, shock-capturing

Recall that characteristic layers, which lie parallel to the convective direction a of (3), may be
boundary or interior layers. We discuss interior layers here; characteristic boundary layers will
be examined in Section 5..

The numerical results of Figure 10 illustrate the unfortunate fact that varying δT does
not enable one to compute interior layers accurately. This is unsurprising, since the SDFEM
essentially works by artificially increasing diffusion in the convective direction, while what is
needed to stabilize the computed solution in interior layers is extra diffusion in the crosswind
direction that is perpendicular to convection.

In [13, 29] crosswind diffusion was artificially increased by adding to the bilinear form
aSD(uN , vN ) a term

δc(a
⊥ · ∇uN ,a⊥ · ∇vN ),

where a⊥ is a unit vector perpendicular to a and

δc =

{

0 if ε ≥ h
3/2
T ,

h
3/2
T − ε if ε < h

3/2
T .

This modification, whose precise definition is motivated by a theoretical analysis, increases the
stability of the basic SDFEM — oscillations in interior layers are reduced — but the layers are
smeared.

More recently other authors have found it more fruitful to add crosswind diffusion in a
nonlinear way, even though the boundary-value problem (3) is linear. This technique is generally
called shock-capturing. The representative works [6, 33] and [25] (which proves existence of a
discrete solution to the nonlinear numerical method and provides a good general discussion of
shock-capturing) have the following basic idea in common: add to aSD(uN , vN ) the term

asc(u
N , vN ) :=

∑

T∈T h

(τT Dsc∇uN ,∇vN )

where Dsc is a symmetric positive semi-definite matrix function of moderate size, and the user-
chosen “limiter function” τT ≥ 0 restricts shock-capturing to subregions where the residual
LuN − f is large. See also [3, 4] for existence of a discrete solution and a weak form of the
discrete maximum principle that is suitable for nonlinear numerical methods of this type.

For shock-capturing methods in general, reasonable numerical results are attained but lo-
cal uniqueness of the discrete solution is not proved and the difference between the computed
solution and the true solution is not analysed adequately in the literature.

4..5. Quasioptimality

In classical finite element analyses, one is able to show that the computed solution is quasiopti-
mal; for our convection-diffusion problem this would mean that in some norm ‖ · ‖ one has

‖u − uN‖ ≤ C inf
vN∈V N

‖u − vN‖,

10



where we recall that a constant C is independent of ε and of the mesh. Only two results of this
type are known, and both are recent:

Sangalli [32] considers a 1-dimensional problem with constant coefficients in the differential
operator and takes V N = P1 on an equidistant mesh. He shows that one gets quasioptimality
measured in an interpolated norm that is roughly similar to the norm ||| · |||SD. The analysis
required to prove this result is very sophisticated.

Chen and Xu [5] examine a 1-dimensional problem with variable coefficients and take V N =
P1 on an arbitrary mesh. An unusual and critical feature of their analysis is that they take δT

to be a piecewise quadratic bubble (instead of the usual piecewise constant):

for T = (xi−1, xi), take δT (x) = δ̃T (x − xi−1)(xi − x)

with δ′T a user-chosen constant. By elementary arguments one then obtains quasioptimality in
the standard L∞(Ω) norm.

It is not straightforward to extend either of these results to the 2-dimensional case.

5. SDFEM and Shishkin meshes for boundary layers

To obtain accurate solutions inside layers, we now apply the SDFEM on Shishkin meshes.

5..1. Exponential layers

First suppose that in (3) one has a = (a1, a2) with a1 > 0, a2 > 0, and Ω is the unit square.
Then the solution u will have exponential layers along x = 1 and y = 1.

Using N mesh intervals in each coordinate direction, we construct the Shishkin mesh of
Figure 5. Where the mesh is coarse — that is, on (0, 1−σx)× (0, 1−σy) — choose the standard
δT of (8), and otherwise set δT = 0 as numerical experiments [23] show that no stabilization is
needed on the fine mesh.

We summarize the main convergence results known for this numerical method. In [24],
pointwise convergence results for piecewise linears (V N = P1) are given; these are the best
theoretical results available but they are probably not sharp so we do not describe them here.
In [23] numerical results for linears and bilinears are given. They show that bilinears (V N = Q1)
are more accurate in the layer regions. In [35], it is proved that for bilinears one gets

|||uN − uI |||SD + ‖uN − u‖L2 ≤ CεN−3/2 + CN−2 ln2 N, (10)

where uI is the the nodal interpolant. When ε ≤ N−1/2 one gets the bound CN−2 ln2 N here,
which can be shown to be optimal. But for V N = Qk with k > 1, this optimality is lost: the
best result attainable seems to be

|||uN − INu|||SD + ‖uN − u‖L2 ≤ CN−(k+1/2),

where now INu denotes Lin’s vertices-edges-regions approximant [20], which generalizes the
nodal interpolant that was used in the Q1 result (10).

5..2. Characteristic boundary layers

Consider the problem

−ε∆u − a1ux = f on Ω = (0, 1)2, u = 0 on ∂Ω, (11)
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with a1 > 0 on Ω̄. The solution u typically has an exponential boundary layer at x = 0 and
characteristic boundary layers at y = 0, 1.

A question that has puzzled researchers for many years is: what is the best choice for the
SDFEM parameter δ inside characteristic boundary layers? Numerical and theoretical results
[17] show that if one takes δT = δ for all T when solving the above problem, then for piece-
wise linears and bilinears the SDFEM is at best O(δ) pointwise accurate inside characteristic
boundary (and interior) layers, even on Shishkin meshes. This is disappointing since a standard
SDFEM analysis like that leading to (9) motivates the choice δ = O(N−1) inside the parabolic
layer (here the mesh has N intervals in each coordinate direction) — so the best we can then
hope for is first-order pointwise convergence despite the combination of a good numerical method
with a good mesh.

Use the Shishkin mesh of Figure 6, which we reproduce in Figure 11 together with subregions
Ωij corresponding to the different mesh subdomains.

Ω22

Ω12

Ω22

Ω21

Ω11

Ω21

σy

1 − σy

σx

Figure 11: Regions in Shiskin mesh with one exponential and two parabolic layers

The first successful analysis of the SDFEM using piecewise bilinears on such a mesh appears
in the recent papers [9, 10]: writing δij for the value of δT used on the region Ωij in Figure 11,
choose

(away from layers) δ11 = C min{N−1, ε−1N−2},
(exponential outflow layer) δ12 = CεN−2,

(corner layers) δ22 = Cε3/4N−2,

(characteristic boundary layers) δ21 = Cε−1/4N−2.

Then with uI the piecewise bilinear nodal interpolant, we have [9, 10]

‖uI − uN‖SD ≤ CN−2 ln2 N ; (12)

this order of convergence is optimal up to the ln N factor.
The bound (12) is proved under the assumption that the solution u of (11) can be decomposed

into a sum of the form (2) where the constituent terms are known to have certain plausible
properties. This assumption is justified in [15, 14], where it is shown that it suffices to have
sufficient smoothness of a1 and f together with the corner compatibility conditions f(0, 0) =
f(1, 0) = f(1, 1) = f(0, 1) = 0.

5..3. Conclusions

Our current understanding of the SDFEM can be briefly summarized as follows:
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• its behaviour and analysis are fairly well understood in boundary layers (both exponential
and characteristic);

• but interior layers are still not completely tamed.
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