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1. Introduction

The research in aeroelasticity or hydroelasticity focuses on the interaction between moving fluids
and vibrating structures (see, e.g. [3], [3] [6]). Widely used commercial codes, as e.g. NASTRAN,
FLUENT or ANSYS, can solve only special problems of aeroelasticity or hydroelasticity and
are mainly limited to linearized models. By NASTRAN the critical fluid flow velocity can be
determined, but the post-flutter behaviour and other nonlinear phenomena for large amplitudes
of vibration cannot be captured. Since the appearance of any aerodynamic instability is not
admissible in normal flight regimes, the nonlinear postcritical limit states usually had not been
considered. Recently, the modelling of post-flutter behaviour began to be more important.

In this paper we are interested in the interaction of two dimensional incompressible viscous
laminar flow and a flexibly supported airfoil. The numerical simulation of such a problem is very
challenging topic - it consists of discretization and stabilization of the Navier-Stokes equations
for a high Reynolds number, the solution of the nonlinear and linear problems, the solution on
time dependent computational domain, the numerical approximation of the structure model and
the coupling algorithm.

In the paper we focus on the fluid flow approximation. The problem is discretized by the
higher order finite element method(FEM). The Galerkin FEM leads to unphysical solutions if
the grid is not fine enough in regions of strong gradients (e.g. boundary layer). In order to
obtain physically admissible correct solutions it is necessary to apply suitable mesh refinement
combined with a stabilization technique giving stable and accurate schemes. In our paper we
present a special version of the GLS stabilization method for Navier-Stokes equations.

Further, the computation of the aerodynamical force acting on the airfoil requires correct
evaluation of boundary integral of the stress tensor. A straightforward evaluation of the stress
tensor integral may lead to inaccurate results. This obstacle is avoided with the aid of a weak
formulation of the force acting on the profile.

2. Problem description

Mathematical model for the relevant technical application consists of fluid and airfoil models.
First, the fluid flow is described with the aid of the incompressible Navier-Stokes system of
equations written in Arbitrary Lagrangian-Eulerian (ALE) formulation, see, e.g., [7]. The ALE
method combines the use of the classical Lagrangian and Eulerian reference frames (see, e.g.
[4]).The fixed in space Eulerian reference frame is the typical framework used in the analysis of
fluid mechanics problems. One of the disadvantages of the Eulerian system is that it does not
track the path of any element, in particular the moving fluid-structure interface.

The Lagrangian reference frame is usually used in solid mechanics. It sets up the reference
frame by fixing a grid to the material of interest. The material deformation causes also the
grid deformation. On the other hand, the use of Lagrangian reference frame for fluid flow is
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Figure 1: Comparison of Lagrangian and Arbitrary Lagrangian-Eulerian mappings.
In this figure the demonstration of Lagrangian mapping (on the left) and ALE mapping (on the
right) is shown. Although the Lagrangian mapping allows the structure to be deflected, the other
(artificial) boundaries are also deformed , which is unusable in practical computations. ALE
mapping is then the “compromise” between having fixed artificial boundaries and deflected the
structure boundary.

not suitable as the fluid particles travel independent of each other, which causes excessive grid
deformations. In what follows we start by introducing the ALE mapping At. The ALE mapping
is a generalization of the Lagrangian mapping, which follows motion of all particles of the original
domain Ω0, i.e. the Lagrangian mapping is the mapping Lt : Ω0 → Ωt, such that Lt(ξ) ∈ Ωt

is the position of the fluid partical at time t originally located at the position ξ ∈ Ω0. The
comparison of Lagrangian and ALE mappings is shown in Figure 1.

The ALE mapping At maps the reference configuration Ω0 onto the computational domain
at time t Ωt (i.e. the current configuration).

At : Ω0 7→ Ωt,

Y 7→ y(t, Y ) = At(Y ).

By the differentiating of ALE mapping At with respect to time, the domain velocity wg is

computed in the reference coordinates w̃g(t, Y ) = ∂y
∂t

(t, Y ) and transformed to spatial coordi-
nates y as wg(t, y). The time derivative with respect to the original configuration is then called

ALE derivative, it is denoted as DAf
Dt

and can be computed as

DAf

Dt
=
∂f

∂t
+ (wg · ∇)f. (1)

With the aid of the ALE derivative DAf
Dt

the Navier-Stokes system of equations can be rewritten
as

DAtu

Dt
− ν△u +

(
(u −wg) · ∇

)
u + ∇p = 0, in Ωt × (0, T ), (2)

∇ · u = 0, in Ωt × (0, T ),

where by Ωt we denote the computational domain occupied by fluid at time t, u denotes the
velocity vector, p - denotes the kinematic pressure (i.e. the dynamic pressure divided by the air
density) and by wg the domain velocity vector is denoted. On the boundary ∂Ω we prescribe
suitable boundary conditions. First, the boundary ∂Ω is decomposed into three distinct parts,
i.e. ∂Ω = ΓWt ∪ ΓD ∪ ΓO. On ΓD and ΓWt the Dirichlet boundary is prescribed, i.e.

a) u = uD on ΓD, b) u = wg on ΓWt. (3)
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The latter part of boundary denoted by the symbol ΓWt is the only moving part of the boundary.
The boundary ΓO represents the outlet, where the do-nothing boundary condition is prescribed

[
−(p− pref)n + ν

∂u

∂n

]∣∣∣∣
ΓO

= 0, (4)

The weak formulation of the equation (2) then can be introduced: Find a velocity vector u ∈(
H1(Ωt)

)2
with Dirichlet boundary conditions (3) satisfied and a pressure p ∈ L2(Ωt), such that

for all test functions v ∈ X ⊂
(
H1(Ωt)

)2
(being zero on Dirichlet part of boundary) and for all

pressure test functions q ∈ Y = L2(Ωt) the following equation is holds

(DAu

Dt
,v

)
+ ν((u,v)) + c(u;u,v) −

(
(wg · ∇)u,v

)
(5)

−
(
p,∇ · v

)
+

(
∇ · u, q

)
+

∫

ΓO

1

2
(u · n)+u · vdS = 0

where

c(b;u,v) =

∫

Ωt

(
1

2
(b · ∇)u · v −

1

2
(b · ∇)v · u

)
dx,

((u,v)) =

∫

Ωt

(∇u) · (∇v)dx, (6)

and by
(
·, ·

)
the scalar product on L2(Ωt) or

(
L2(Ωt)

)2
is denoted.

α

h β

Figure 2: Airfoil pitching, plunging and rotation of the flap

2..1. STRUCTURE MODEL

A typical section airfoil (semichord b) in subsonic air flow is considered as shown in Figure 2. A
trailing edge flap is hinged at cβ b after the midchord. By h, α and β the plunging of the elastic
axis, pitching of the airfoil and rotation of the flap is denoted, respectively (see Figure 3). The
system motion generates unsteady aerodynamic lift L = L(t), aerodynamic moment M = M(t)
and hinge moment Mβ = Mβ(t). By kh, kα and kβ the spring constant of wing bending, wing
torsional stiffness and flap hinge moment are denoted, respectively. The mass matrix is defined
by the mass m and the moment of inertia Iα of the entire airfoil around the elastic axis. The
flap moment of inertia around the hinge is denoted by Iβ. The equations of motion for a flexibly
supported rigid airfoil, read

M ü + Bu̇ + Ku + fNL(u) = f , (7)
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where

M =




m Sα Sβ

Sα Iα (cβ − e)bSβ + Iα
Sβ (cβ − e)bSβ + Iα Iβ


 , K =




kh 0 0
0 kα 0
0 0 kβ


 ,

D =




dh 0 0
0 dα 0
0 0 dβ


 ,

and u = (h, α, β)T , f = (−L,M,Mβ)T . By fNL the nonlinear terms are denoted.

bb

eb

c b x b

x bα

ββ

elastic axis

c. g. of flap

elastic axis of flap

c. g. of airfoil section

Figure 3: Typical airfoil section with three degrees of freedom.
By b the semichord of the airfoil is denoted, e b denotes the location of the elastic axis of the
wing after midchord, xα b the location of the center of gravity after the elastic axis, cβ b denotes
the location of the flap hinge after the midchord and xβ b the location of the center of gravity
of the flap.

3. Time discretization

First, let start with the equidistant discretization of the time interval [0, T ] with the time step
∆t, i.e. tk = k · ∆t for k = 0, 1, 2, . . . . Let un, pn denote the approximation of velocity vector
u and pressure p evaluated at the time level tn, i.e. un ≈ u(tn) and pn ≈ p(tn). The ALE
derivative of the velocity vector u then is approximated as

DAtf

Dt
≈

3un+1 − 4ûn + ûn−1

2∆t
, (8)

where the velocity un+1 denotes the approximate velocity at time tn+1 and the velocities ûn, ûn−1

are the velocities at previous time steps tn and tn−1 transformed from domains Ωtn ,Ωtn−1
on the

current computational domain Ωtn+1
, i.e., ûn ≡ un ◦ Atn ◦ A−1

tn+1
, ûn−1 ≡ un−1 ◦ Atn−1

◦ A−1
tn+1

.

4. Space discretization

The approximate solution of the time discretized problem (5), (8) will be sought in the space
of the triangular conforming piecewise polynomial elements. For the sake of clarity, we restrict
ourselves on the time moment t = tn+1 and we denote the computational domain Ω = Ωtn+1

.
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Furthermore, we will use a triangulation τ∆ of the domain Ωt and on every element K ∈ τ∆
the local element spaces PK and QK for velocity components and pressure are defined. The
construction of the base functions is based on the local element polynomial degree. In order to
guarantee continuity of the base functions, the minimum rule has to be applied, see, e.g., [8].

The space X∆ of fluid velocity vectors is then introduced

X∆ = H2
∆, H∆ = {v ∈ C(Ω); v|K ∈ PK ⊂ Pk(K) for each K ∈ τ∆},

and the pressure space Y∆ defined as

Y∆ = {v ∈ C(Ω); v|K ∈ QK ⊂ Pk(K) for each K ∈ τ∆}.

Moreover, we define the space of test functions being zero on the Dirichlet part of boundary

X∆,0 = {v ∈ X∆ : v|ΓD∪ΓWtn+1
= 0}.

The standard Galerkin approximation of the weak formulation (5) may suffer from two
sources of instabilities. One instability is caused by a possible incompatibility of pressure and
velocity pairs. It can be overcome either by the use of the finite element velocity/pressure pair,
that satisfy the Babuška-Breezi condition, or by the use of pressure stabilizing terms. Further,
the dominating convection requires to introduce some stabilization of the finite element scheme,
as, e.g. upwinding or streamline-diffusion method. In order to overcome both difficulties, the
Galerkin Least Squares method can be applied, see, e.g. ([5]). First, we start with definition of
standard Galerkin terms, SUPG/GLS stabilizing term and grad-div stabilizing terms, for details
see [5], [9].

The Galerkin terms are defined as

a(u∗;U∆, V∆) =
3

2∆t
(u,v)Ω + ν(∇u,∇v)Ω + c(u∗;u,v)

−
((

wn+1
g · ∇

)
u,v

)
Ω
− (p,∇ · v)Ω + (∇ · u, q)Ω , (9)

f(u,v) =
1

2∆t
(4ûn − ûn−1,v)Ω −

∫

ΓO

pref(v · n) dS.

Next, we define the SUPG/GLS stabilizing terms

L(u∗;U∆, V∆) =
∑

K∈T∆

δK

( 3

2∆t
u − ν△u + ((u∗ − wg) · ∇)u + ∇p, ψ(u∗, q)

)
K
,

F(V∆) =
∑

K∈T∆

δK

( 1

2∆t
(4ûn − ûn−1), ψ(u∗, q)

)
K
, (10)

where ψ(u∗, q) ≡ ((u∗ − wg) · ∇)v +∇q. The grad-div stabilizing terms P(U∆, V∆) are defined
as

P(U∆, V∆) =
∑

K∈T∆

τK(∇ · u,∇ · v)K , (11)

The stabilized discret problem:Find U∆ = (u, p) ∈ H∆ × Y∆ such that u satisfies approxi-

mately the Dirichlet boundary conditions (3) and the equation

a(u;U∆, V∆) + L(u;U∆, V∆) + P(U∆, V∆) = f(V∆) + F(V∆), (12)

holds for all V∆ = (v, q) ∈ X∆,0 × Y∆.
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Figure 4: The velocity distribution around the airfoil NACA 0012 for the angle of attack varying in time

The choice of the parameters δK and τK depends on the chosen pair of local elements PK/QK .
Here, we distinguish between the Taylor-Hood family of finite element pairs and all the other
finite element pairs.

In the case of the local element pair PK , QK being of the Taylor-Hood family Pm+1/Pm the
following choice of parameters is used

τK = τ∗, δK = δ∗h2,

where τ∗ > 0 and δ∗ > 0 are fixed constants (e.g., we usually set τ∗ = δ∗ = 1). The local
element size h depends on the local element, local stream velocity vector and the local element
degree deg PK of the velocity approximation.

In the case when the local element pair PK/QK does not belong to the Taylor-Hood family
Pm+1(K)/Pm(K) , the following choice of parameters is used

τK = ν ·

(
1 +Reloc +

h2

ν · ∆t

)
, δK =

h2

τK
,

where the local Reynolds number is defined as Reloc = h‖u‖K

2ν
.

5. Numerical solution

In order to find the solution of the nonlinear problem (12) coupled with (7), the strong coupling
algorithm will be used on every time level tn+1

• First, using the extrapolation of aerodynamical forces the system of ODE (7) is used, and
the approximate computational domain Ω ≈ Ωtn+1

is determined.

• Next, the problem (12) is solved on the domain Ω ≈ Ωtn+1
using Oseen linearization.

• Using the approximate velocity un+1 and pressure pn+1 the aerodynamical forces are up-
dated. We continue with the first step until the convergence is obtained.

The system of ODEs (7) on time interval [tk, tk+1] is solved by fourth order Runge-Kutta
method, where the approximate values αk and hk are used instead of the exact ones α(tk) and
h(tk). The values of αk and hk determines the transformation of domain Ωk ≡ Ωtk . In order to
proceed from time level tk to the time level tk+1 the approximate value of the aerodynamical
lift force L̃ ≈ L(tk+1) and the approximate value of the aerodynamical torsional moment M̃ ≈
M(tk+1) are employed.
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The solution of the nonlinear problem (12) is performed by Oseen linearizations, i.e. we

start from approximation U
(0)
∆ = (u(0), p(0)), and for i = 0, . . . ,Nn − 1 we solve the problem find

U
(i+1)
∆ = (u(i+1), p(i+1))

a(u(i), U∆
(i+1), V∆) + L(U∆

(i), U∆
(i+1), V∆) + P(U∆

(i+1), V∆) = f(V∆) + F(V∆),

then set the solution of the nonlinear problem U∆ = U
(Nn)
∆ . In practical computation it is

enough to compute 3-10 iterations.

5..1. Numerical results

The numerical simulation of flow over NACA 0012 airfoil, whose vibrations is either given
analytically or obtain by the solution of the system of ODEs (7), are presented in Figures 5-
7. In the first case, the numerical approximations of the airfoil surface values of the pressure
coefficient

cp =
p− p0
1
2ρU

2

was compared with the experimental data from [1]. The time dependence of the rotational
angle of the airfoil was prescribed as the periodical function with the frequency 30 Hz and the
amplitude 3 degrees, the far field velocity is U∞ = 136 m s−1 and the length of airfoil chord is
L = 0.1322 m (see Figure 5).

Furthermore, the simulation of the coupled model (5) and (7) in the case of 2 degrees of
freedom is presented in the case of the flexibly supported airfoil NACA 0012 in Figures 6-7. The
solution was performed for far field velocities U∞ = 5m s−1, U∞ = 26m s−1 and the choice of
parameter’s values from report [2] was used.

References
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Figure 5: Dependence of α on time t for vibrating airfoil with frequency 30 Hz and amplitude 3 degrees (on
the left). On the right the comparison of the time averaged coefficient cp along the profile NACA 0012 with the
experimental data.
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Figure 6: The damped vibrations in h and α of flexibly supported airfoil NACA 0012 for far field velocity
U∞ = 5m s−1.
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Figure 7: The damped vibrations in h and α of flexibly supported airfoil NACA 0012 for far field velocity
U∞ = 26m s−1.
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