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Introduction

In the case of regular boundary value problems, effective numerical methods based on domain
decomposition are well known (see, for example, [1, 2] and the list of references there). Such
methods allows us to reduce the solution of complicated problems with several characteristic
scales to solving simplified problems on simpler subdomains and, in particular, to implement
parallel computations. Errors of standard numerical methods applied to singularly perturbed
problems can many times exceed the solution itself for small values of the singular perturbation
parameter ε. For this type of problems, it is of interest to develop numerical methods whose
errors are independent of the parameter ε and defined only by the number of mesh points (that
is, such methods are said to converge ε-uniformly). When using an iterative method for solving
nonlinear problems and/or domain decomposition schemes, we will require that its accuracy is
defined only by the number of mesh points, moreover, the number of iterations required for
convergence is also independent of ε.

In the case of nonlinear singularly perturbed problems, the attainment of ε-uniform conver-
gence of a numerical methods necessarily requires the use of special meshes whose step-size
in a boundary (interior) layer is exceedingly small (see, e.g., [3]). When such problems are
decomposed, the number of iterations in the corresponding iterative process can be large and
essentially depend on the parameter ε. Therefore, it is important to develop numerical methods
based on domain decomposition techniques that converge ε-uniformly. For singularly perturbed
problems in a composed domain (in particular, with concentrated sources) whose solution has
several singularities such as boundary and interior layers, it is of keen interest to construct such
methods so that each subdomain in the domain decomposition contains no more than a single
singularity, which essentially simplifies the solution of the problem under consideration.

In this paper, we develop monotone linearized schemes based on an overlapping Schwarz
method for a semilinear singularly perturbed elliptic convection-diffusion equation in a composed
domain (vertical strip) in the presence of a concentrated source acting on the interface. We first
study a special (base) scheme comprising a standard finite difference operator on a piecewise-
uniform mesh condensing in the boundary and interior layers, and then an overlapping domain
decomposition scheme constructed on the basis of the former that converge ε-uniformly at the
rates O

(

N−1
1 ln N1 + N−1

2

)

and O
(

N−1
1 ln N1 + N−1

2 + qt
)

, respectively. Here N1 and N2 are
the number of mesh intervals in x1 and the minimal number of mesh intervals in x2 on a unit
interval, q < 1 is the common ratio of a geometric progression, independent of ε, t is the iteration
count. For these nonlinear schemes, we construct monotone linearized schemes of the same ε-
uniform accuracy, in which the unknown function in the nonlinear term is taken at the previous
iteration. We give necessary and sufficient conditions under which the overlapping Schwarz
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method is robust in the sense that its solutions converge ε-uniformly as the number of mesh
points and the iteration count grow.

The linearized schemes are monotone, which admits to construct their upper and lower
solutions. The technique of upper and lower solutions used in the paper makes it possible to
find a posteriori the optimal number of iterations T in the linearized scheme for which the
accuracy of its solution is the same (up to a constant factor) as that for the base scheme, where
T = O

(

ln
(

min [N1, N2]
))

(see also [4] for a reaction-diffusion problem). Thus, the number of
required iterations is independent of ε. With respect to total computational costs, the iterative
method is close to a solution method for linear problems, since the number of iterations is only
weakly depending on the number of mesh points used. The linearized iterative schemes inherit
the ε-uniform rate of convergence of the nonlinear schemes.

The decomposition schemes developed in the paper can be computed sequentially and in
parallel. It is convenient to decompose the base schemes so that the original domain is partitioned
into subdomains each of which involves no more than a single singularity. Note that schemes of
the overlapping domain decomposition Schwarz method were considered earlier by the authors
in [5] for linear problems and in [6, 7, 8] for nonlinear problems.

1. Problem formulation. The aim of research

On the vertical strip composed of two subdomains

D = D ∪ Γ, D = D 1 ∪ D 2,

where

D =
{

x : x1 ∈ (−d0, d
0), x2 ∈ IR

}

, D1 = D ∩ {x1 < 0}, D2 = D ∩ {x1 > 0},

we consider the Dirichlet problem for the semilinear singularly perturbed elliptic convection-
diffusion equation

L (u(x)) ≡ L2u(x) − f(x, u(x)) = 0, x ∈ D(∗), (1.1a)

u(x) = ϕ(x), x ∈ Γ. (1.1b)

Inside the domain (in the plane x1 = 0), the concentrated source of power q(x) acts on the set
Γ∗ = {x1 = 0} × IR, i.e.,

[u(x) ] = 0, l u(x) ≡ ε

[

∂

∂x1
u(x)

]

= −q(x), x ∈ Γ∗. (1.1c)

Here D(∗) = D \ Γ∗,

L2 ≡ ε
∑

s=1,2

as(x)
∂2

∂x2
s

+
∑

s=1,2

bs(x)
∂

∂xs

− c(x), x ∈ D(∗);

[ v(x) ] = lim
x1→+0

v(x) − lim
x1→−0

v(x), x ∈ Γ∗,

where [ v(x) ] is the jump of a function v(x) when passing through the interface Γ∗ from D1 to
D2. The singular perturbation parameter ε takes arbitrary values in the half-open interval (0,1].
The functions as(x), c(x) and f(x, u) are assumed to be sufficiently smooth on Dj and Dj × IR,

j = 1, 2, and so are the functions ϕ(x) and q(x) on Γ and Γ∗, respectively, as(x) = aj
s(x),

c(x) = cj(x), f(x, u) = f j(x, u), x ∈ Dj , j = 1, 2, morevover,

0 < a0 ≤ as(x) ≤ a0, 0 < b0 ≤ bs(x) ≤ b0, s = 1, 2, 0 ≤ c(x) ≤ c0, x ∈ Dj,

|f(x, u)| ≤ M, 0 ≤ c(x) +
∂

∂u
f(x, u) ≤ c1, (x, u) ∈ Dj × IR, j = 1, 2; (1.2)
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|ϕ(x)| ≤ M, x ∈ Γ, |q(x)| ≤ M, x ∈ Γ∗.

As ε → 0, there appears a regular boundary layer in a neighbourhood of the outflow boundary
Γ1 = {x : x1 = d0, x2 ∈ IR} (through which the flow leaves the domain. In a neighbourhood of
the set Γ∗ from the side of the flow incoming to Γ∗, a transient (interior) layer generated by the
concentrated source arises for small ε. The interior layer is strong. Here Γ1 and Γ2 are the left
and right parts of the boundary Γ; Γ = Γ1 ∪ Γ2.

For the boundary value problem (1.1), it is required to construct a nonlinear finite difference
(base) scheme and a linearized scheme of successive approximations and, for such schemes, to
develop overlapping domain decomposition schemes. It is necessary that these schemes converge
ε-uniformly.

2. Finite difference scheme for problem (1.1)

In this section, we construct a monotone (base) finite difference scheme for the boundary value
problem (1.1). On the set D, we introduce an arbitrary rectangular grid as

Dh = ω1 × ω2, (2.1)

where ω1 and ω2 are generally nonuniform meshes on [−d0, d
0] and on the x2-axis, respectively;

the point x1 = 0 belongs to the mesh ω1. We set hi
s = xi+1

s − xi
s, s = 1, 2, xi

1, xi+1
1 ∈ ω1, and

xi
2, xi+1

2 ∈ ω2; let hs = maxi hi
s, h = maxs hs. Assume h ≤ MN−1, where N = mins Ns, N1 and

N2 are the number of mesh intervals in ω1 and the minimal number of mesh intervals in ω2 on
a unit interval. The node x1 = 0 is denoted by xi0

1 .
The equations (1.1a), (1.1b) are approximated by the difference scheme [9]

Λ(z(x)) ≡ Λ2 z(x) − f(x, z(x)) = 0, x ∈ D
(∗)
h , (2.2a)

z(x) = ϕ(x), x ∈ Γh. (2.2b)

Here D
(∗)
h = D(∗) ∩ Dh, Γh = Γ ∩ Dh,

Λ2 ≡
∑

s=1,2

(

εas(x) δxs cxs + bs(x) δxs

)

− c(x), x ∈ D
(∗)
h ,

δxs cxs z(x) is the second (centred) difference derivative on a nonuniform mesh [9], for example,

δ
x1 cx1 z(x) = 2

(

hi
1 + hi−1

1

)−1[
δx1 z(x) − δx1 z(x)

]

, x = (xi
1, x2) ∈ Dh; δxs z(x) and δxs z(x) are

the first (forward and backward) difference derivatives.

We approximate condition (1.1c) on Γ ∗
h = Γ∗ ∩ Dh by the discrete equation

λ z(x) ≡ ε
(

δx1 − δx1

)

z(x) = −q(x), x ∈ Γ ∗
h , x = (xi0

1 , x2). (2.2c)

The base nonlinear scheme (2.2), (2.1) is monotone [9] ε-uniformly.
The solution of the boundary value problem (1.1) is bounded ε-uniformly, however, the

solution of the difference scheme (2.2), (2.1) is not ε-uniformly bounded.

The condition
(

h = O
(

ε
))

N−1 = O
(

ε
)

(2.3)

is sufficient for the solutions of scheme (2.2), (2.1) to be ε-uniformly bounded.
The scheme (2.2), (2.1) converges for fixed values of the parameter ε; in particular, in the

case of uniform meshes we have the error bound

|u(x) − z(x)| ≤ M
[

ε−1N−1
1 + N−1

2

]

, x ∈ D
u

h ,
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where D
u

h is a uniform mesh with respect to both variables x1 and x2.

On the set D, we place a special grid condensing in the layer regions (see, e.g., [3]), on which
scheme (2.2) converges ε-uniformly:

Dh = D
S

h = ω S
1 × ω2, (2.4)

where ω2 is a uniform mesh (with step-size 1/N2), and ω S
1 is a piecewise uniform mesh condensing

in neighbourhoods of the boundary and interior layers. We divide [−d0, d
0] into four intervals

[−d0,−d0+σ1], [−d0+σ1, 0], [0, σ2] , and [σ2, d
0]. The mesh size on these subintervals is constant

and equal to h
(1)
1 = 4σ1N

−1
1 , h

(2)
1 = 4(d0 − σ1)N

−1
1 , h

(3)
1 = 4σ2N

−1
1 , and h

(4)
1 = 4(d0 − σ2)N

−1
1 ,

respectively. The mesh parameters σ1 and σ2 depend on ε, N1: σ1 = min
[

2−1d0, Mε ln N1

]

,
σ2 = min

[

2−1d0, Mε ln N1

]

, where M ≥ m−1, 0 < m < m0, m0 = min
j, Dj

{

a−1
1 (x) b1(x)

}

.

In fact, the solution of the difference scheme (2.2) on the mesh (2.4) is ε-uniformly bounded;
note that condition (2.3) still does not hold for the mesh (2.4).

Using the majorant function technique and a priori estimates [3], we find the ε-uniform error
bound for the numerical solution on the mesh (2.4):

|u(x) − z(x)| ≤ M
[

N−1
1 ln N1 + N−1

2

]

, x ∈ D
S

h . (2.5)

Theorem 1 Let the data of the boundary value problem (1.1) satisfy condition (1.2), and also

as, bs, c ∈ C l+α(Dj), f ∈ C l+α(Dj × IR), ϕ∈ C l+α(Γ), q∈ C l+α(Γ∗), l = 6, α > 0, s, j = 1, 2.
Then, the difference scheme (2.2), (2.4) converges ε-uniformly at the rate O

(

N−1
1 ln N1 +N−1

2

)

;

the numerical solutions satisfy the bound (2.5).

3. Linearized iterative difference scheme

To linearize the nonlinear scheme (2.2), we construct an iterative (two-level) difference scheme in
which the nonlinear term is computed from the unknown function taken at the previous iteration
(see, e.g., [7, 8]).

To solve problem (1.1), we use the difference scheme

Λ(3.1)(z(x, t)) ≡ Λ2
(2.2) z(x, t) − p δt z(x, t) − f(x, ž(x, t))=0, (x, t) ∈ G

(∗)
h ,

(3.1a)
λ z(x, t) = q(x), (x, t) ∈ S ∗

h , z(x, t) = ϕ(x), (x, t) ∈ Sh.

Here
Gh = Gh ∪ Sh, Gh = Dh × ω0, Gh = Dh × ω0,

G
(∗)
h = D

(∗)
h × ω0, S∗

h = Γ∗
h × ω0,

(3.1b)

ω0 is a uniform time-like mesh on the semiaxis t ≥ 0 with the step-size ht = 1, so that the
variable t = 0, 1, ... ∈ ω0 specifies iteration counts; Sh = SL

h ∪ Sh0, and SL
h = Γh × ω0 is the

lateral boundary of Gh; δtz(x, t) = h−1
t [z(x, t) − ž(x, t)], ž(x, t) = z(x, t− ht), (x, t) ∈ Gh; the

coefficient p satisfies the condition

p −
∂

∂u
f(x, u) ≥ p0 > 0, (x, u) ∈ Dj × IR;

the boundary data ϕ(x), x ∈ D, is a sufficiently smooth bounded function satisfying

ϕ(3.1)(x) = ϕ(1.1)(x), x ∈ Γ, l ϕ(3.1)(x) = q(x), x ∈ Γ∗.

The function z(x, t), (x, t) ∈ Gh, where Gh is generated by the mesh Dh(2.1), is called the solution
of the difference scheme (3.1), (2.1).
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Scheme (3.1), (2.1), linear at each iteration, is monotone. Its solution z(x, t) as t → ∞
converges to the solution z(x) of the base scheme (2.2), (2.1) at a rate of a geometric progression
for fixed values of the parameter ε. Under condition (2.3), the convergence of z(x, t) to z(x) is
indeed ε-uniform:

|z(x) − z(x, t)| ≤ M q t
1 , (x, t) ∈ Gh,

where the common ratio q1 < 1 is independent of ε.
In the case of the piecewise uniform mesh (2.4), the convergence of z(x, t) to z(x) is ε-uniform.

On the mesh (2.4), taking account of the bound (2.5) we obtain the ε-uniform bound

|u(x) − z(x, t)| ≤ M
[

N−1
1 ln N1 + N−1

2 + q t
1

]

, (x, t) ∈ G
S

h . (3.2)

Here G
S

h = Gh

(

D
S

h(2.4)

)

, q1 ≤ p0(c1 + p0)−1, p0 = max
(

p − ∂

∂u
f(x, u)

)

, c1 = min
(

c(x) +
∂

∂u
f(x, u)

)

, (x, u) ∈ Dj × R.

4. Iterative difference scheme of the Schwarz method

4.1. For the base scheme (2.2), we describe an overlapping domain decomposition method
[5, 10]. Let open subdomains Dk, k = 1, . . . ,K cover the domain D :

D =
K
⋃

k=1

Dk.

We denote the minimal overlap of the sets Dk and D[k] =
K
⋃

i=1, i6=k

Di by ∆k , and ∆ denotes

the smallest value of ∆k, k = 1, . . . ,K, i.e.,

min
k, x1, x2

ρ(x1, x2) = ∆, x1 ∈ D
k
, x2 ∈ D

[k]
, x1, x2 6∈

{

Dk ∩ D[k]
}

,

where ρ(x1, x2) is the distance between x1 and x2. Generally, ∆ = ∆(ε).

It is convenient to introduce the uniform “time” mesh ω0 = {tn : tn = nht, n = 1, 2, ...},
ω0 = ω0 ∪ {t=0} with the step-size ht =1, by associating its nodes to the iteration number, and
thus the semi-discrete set G = D×ω0, G = D×ω0 with the boundary S = SL∪S0, SL = Γ×ω0

being the lateral boundary.
Let each set Dk be partitioned into P disjoint (possibly empty) sets:

Dk =
P
⋃

p=1
Dk

p , k = 1, . . . ,K, D
k

i

⋂

D
k

j = ∅, i 6= j.

Assume Gk
p = Dk

p ×ω0, p = 1, ..., P , k = 1, ...,K. On the sets G and G
k

p , we construct the grids

Gh = Dh × ω0, G
k

ph = D
k

ph × ω0, D
k

ph = D
k

p

⋂

Dh (4.1a)

where Dh is the grid (2.1) or (2.4). We suppose that the faces of the sets D
k

p pass through the

nodes of the grid Dh. By z(x, t), (x, t) ∈ Gh, t = 0, 1, 2, . . ., we denote approximations to the
function z(x), x ∈ Dh. For t = 0 we define the function z(x, t) by z(x, 0) = ϕ(x), x ∈ Dh,
where ϕ(x) = ϕ(3.1)(x), x ∈ D.

On the set Gh, we introduce the operator

Λ(4.1b) z(x, t) =

{

Λ(2.2) z(x, t), (x, t) ∈ G
(∗)
h ,

λ(2.2) z(x, t) + q(x), (x, t) ∈ S∗
h;

(x, t) ∈ Gh. (4.1b)
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We now determine the sequence of discrete functions z(x, t), (x, t)∈Gh, t = 1, 2, . . . . Before

we find the sequence of auxiliary functions z
k
K (x, t), x ∈ Dh, k = 1, . . . ,K, t = 1, 2, . . . by

solving the boundary value problems

Λ(4.1b)

(

z
k
K
p (x, t)

)

= 0, x ∈ Dk
ph,

z
k
K
p (x, t) = z

k−1

K (x, t), x ∈ Γk
ph \ Γh,

z
k
K
p (x, t) = ϕ(x), x ∈ Γk

ph ∩ Γh,



















, p = 1, . . . , P ; (4.1c)

z
k
K (x, t)=

{

z
k
K
p (x, t), x ∈ D

k

ph, p = 1, . . . , P,

z
k−1

K (x, t), x ∈ Dh \ D
k

}

, x ∈ Dh, k = 1, . . . ,K;

z
k−1

K (x, t) = z(x, t − 1), x ∈ Dh for k = 1;

z(x, 0) = ϕ(x), x ∈ Dh;

z(x, t) = z
K
K (x, t); t = 1, 2, . . . ; (4.1d)

here Γk
ph = D

k

ph \Dk
ph. It is required to find the sequence of functions z(x, t), x∈Dh, t=1, 2, ...,

which are solutions of the iterative scheme (4.1), (2.1) (or (4.1), (2.4)) using P ≥ 1 solvers.

The intermediate problems (4.1c) on the subdomains D
k

ph, p = 1, ..., P , can be solved in parallel
(for P > 1), independently of each other, on P processors [10]. For P = 1 the subproblems on

D
k

h =D
k
∩ Dh are solved sequentially. Scheme (4.1), (2.1) is nonlinear.

For
∆ = ∆(ε) > 0, ε ∈ (0, 1], inf

ε∈(0,1]

[

ε−1 ∆(ε)
]

≥ m1 > 0 (4.2)

z(x, t) on the mesh Gh(3.1)

(

Dh(2.1)

)

, under the additional condition (2.3), converges to the solu-
tion z(x) of scheme (2.2), (2.1) ε-uniformly as t→∞:

|z(x) − z(x, t)| ≤ M qt, (x, t) ∈ Gh, where q ≤ 1 − m, (4.3)

q = q(m1), and q(m1) grows as m1 → 0; in general, q > q1(3.2). Condition (4.2) is a necessary
and, under condition (2.3), a sufficient condition for the ε-uniform convergence (as t → ∞) of
solutions of the iterative scheme (4.1) to the solution of the base scheme (2.2).

In the case of the mesh (2.4), condition (4.2) is necessary and sufficient for the ε-uniform
convergence of z(x, t) to z(x) as t → ∞. Taking into account estimates (4.3) and (2.5), for the
solution of scheme (4.1), (2.4) we find the error bound similar to (3.2)

|u(x) − z(x, t)| ≤ M
[

N−1
1 ln N1 + N−1

2 + qt
2

]

, (x, t) ∈ G
S

h , q2 ≤ 1 − m, (4.4)

where, generally speaking, q2 > q(4.3). For a linear problem, q2 = q(4.3).

Theorem 2 Let the assumptions of Theorem 1 and condition (4.2) be fulfilled. Then the

Schwarz scheme (4.1), (2.4) as N1, N2, t → ∞ converges ε-uniformly at the rate O
(

N−1
1 ln N1 +

N−1
2 + qt

2

)

, q2 ≤ 1 − m; the numerical solutions satisfy the bound (4.4).

4.2. Based on the linearized scheme (3.1), (2.4) it is possible to construct the monotone
linearized scheme of the Schwarz method whose solution z(x, t) converges, as t → ∞, to the
solution z(x) of scheme (2.2), (2.4) from above and/or from below and, besides, it converges ε-
uniformly to the solution of problem (1.1) at the same rate O

(

N−2
1 ln2 N1+N−2

2 +qt
)

, q ≤ 1−m,
as scheme (4.1), (2.4). When solving the subproblem at the intermediate (inner) iteration in
this scheme, we take the unknown function in the nonlinear term at the previous intermediate
iteration.
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To solve problem (1.1), we use the difference scheme (4.1) on the meshes (2.1) or (2.4), where
the operator Λ(4.1b) is now defined by

Λ(4.1b) z(x, t) =

{

Λ(3.1) z(x, t), (x, t) ∈ G
(∗)
h ,

λ(2.2) z(x, t) + q(x), (x, t) ∈ S∗
h;

(x, t) ∈ Gh. (4.5)

For solutions of the linearized scheme of the Schwarz method (4.1), (4.5), (2.4), the conclusion
of Theorem 2 holds.

Let z(x, t), (x, t) ∈ Gh be a solution of the discrete Schwarz method, and z(i)(x, t), (x, t) ∈
Gh, i = 1, 2, be solutions of some difference scheme, and let the following inequality be satisfied
for t = 0:

z(1)(x, 0) ≤ z(x, 0) ≤ z(2)(x, 0), x ∈ Dh. (4.6)

If the inequality z(1)(x, t) ≤ z(x, t) ≤ z(2)(x, t), (x, t) ∈ Gh, is true for t > 0, and also

max
x

∣

∣ z(i)(x, t) − z(x, t)
∣

∣ → 0, x ∈ Dh for t → ∞, i = 1, 2,

we call the functions z(1)(x, t) and z(2)(x, t) the lower and upper solutions of the discrete Schwarz
method, respectively.

Since the Schwarz scheme (nonlinear and linearized) is monotone, its solutions z(1)(x, t) and
z(2)(x, t), (x, t) ∈ Gh, satisfying condition (4.6) for t = 0 are the lower and upper solutions. We
use the upper and lower solutions to evaluate a posteriori the number of iterations for which
the accuracy of the linearized scheme is the same (up to a factor) as that for the base scheme
(2.2), (2.4) (see also [4]).

The error in the solution of the linearized Schwarz scheme on the mesh (2.4) can be repre-
sented in the form

z(i)(x, t) − u(x) =
(

z(x) − u(x)
)

+
(

z(i)(x, t) − z(x)
)

, (x, t) ∈ Gh, i = 1, 2,

where z(i)(x, t) is the solution of the linearized Schwarz scheme satisfying the condition

z(1)(x, 0) ≤ z(x) ≤ z(2)(x, 0), x ∈ Dh.

Let T be the number of iterations (in t) in the linearized Schwarz scheme under which the
error in the solution of the base scheme (2.2), (2.4) and the deviation of the solution of the
linearized scheme from the solution of the base scheme are commensurable. We call the function
z(i)(x, T ), x ∈ Dh, the solution (upper for j = 2 and lower for j = 1) of the linearized Schwarz
scheme, consistent with respect to the accuracy (of the base scheme) and with respect to the
number of iterations (of the linearized Schwarz scheme).

For the upper and lower solutions of the linearized Schwarz scheme on the mesh (2.4), we
find the optimal value

T (4.7)

of the number of iterations, that is, the least value of T0 for which such a condition holds:

max
Dh

[

z(2)(x, T0) − z(1)(x, T0)
]

≤ M1

[

N−1
1 ln N1 + N−1

2

]

, x ∈ Dh.

The iterative difference scheme in which the moment of the termination of iterates is determined
using upper and lower solutions will be called consistent.

For the consistent solution of the linearized Schwarz scheme (4.1), (4.5), (4.7), (2.4) we obtain
the bound

|u(x) − z(j)(x, T )| ≤ M2

[

N−2
1 ln2 N1 + N−2

2

]

, x ∈ Dh, j=1, 2,

with T satisfying the upper bound
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T ≤ M3

(

ln q−1
)−1

ln
(

min [N1,N2]
)

,

where q ≤ 1 − m, and the constants M1,M2,M3 are independent of q.

Thus, the number of required iterations is independent of ε. With respect to total computa-
tional costs, the iterative method (4.1), (4.5), (4.7), (2.4) is close to a solution method for linear
problems, since the number of iterations is only weakly depending on the number of mesh points
used. The subproblems on the decomposition subdomains, each of which contains no more than
a single singularity, can be solved both sequentially and in parallel (independently of each other).

Remark 1 If p = 0 in the operator Λ(3.1), the iterates in the linearized scheme for t → ∞, in

general, diverge, for example, under the condition (∂/∂u)f(x, u)>c(x), (x, u)∈D× R.

Remark 2 In a similar way, ε-uniformly convergent consistent iterative schemes based on the

domain decomposition method can be constructed in that case when D is the composed domain

with several concentrated sources.

The authors take this opportunity to express their thanks to P.W. Hemker for discussions
of parameter-uniform domain decomposition methods for singularly perturbed problems.
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