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1 Introduction

In many fields of applied mathematics we often come across initial/boundary value problems
with small positive parameter(s). In particular, systems of singularly perturbed first order
ordinary differential equations occur in chemical reactor theory. Related works are found in
[10],[9]. Parabolic and regular layers are typical for such problems [8],[6]. Matthews et.al [4], [3]
have suggested parameter robust numerical methods for system of singularly perturbed second
order ordinary differential equations with one or two small parameters. Possible approaches to
the construction of such methods and also some special schemes are given in [1],[10],[5], [7]. Here
we present a parameter robust computational method for solving an initial value problem(IVP)
for a system of first order singularly perturbed ordinary differential equations of the form

(Leug)1(z) = eDug 1(x) + a11(x)ue 1 () + ar2(z)ue 2(x)
+-e+ afln(x)ue,n ('T) = fl(x)
Leue(z) = : : : (1.1)
(Letue)n(z) = eDUe n (2) + an1 (T)ue,1(2) + ana(T)ue,2(2)
bt (@) un(2) = fu(2),z € (0,X],X >0
ue ;(0) =,  fori=1(1)n (1.2)
where u; = (ug,1,ue 2, - ug’n)T and u, € C(l)(Q) = [0, X] and D denotes Z-. The functions

aij, fi € cA(Q), i,j = 1,2, ...,n, satisfy the following inequalities

(@) ai(z) > Z? 12 |2 (@)], 1 =1(1)n "
(i) ai@) < 0, i,j=1()n, i#] } veelo.x]  (13)

We introduce the positive number

n
o = min Zalﬂ’ Zagj, Zanj (1.4)
j=1 j=1

and we assume henceforth that the singular perturbation parameter ¢ satisfies 0 < ¢ < 1. With-
out loss of generality we take X = 1. We use the notations Q¢ = (0,1], 2 = (0,1) and Q =

*Department of Mathematics, Bishop Heber college, Tiruchirappalli-620 017, Tamilnadu(INDIA).
fDepartment of Mathematics, Bishop Heber college, Tiruchirappalli-620 017, Tamilnadu(INDIA).



[0, 1]. For a vector u with n components we use the vector norm ||u|| = max; |u;| ,i=1(1)n
and for a continuous function v defined on Q we use the continuous maximum norm

||v|lg = max |v(z)].
e

Further we assume that a vector v > 0 if and only if u; > 0 for i = 1(1)n. Appropriate numerical
methods for generalizations of problems of the form (1.1)-(1.4) were presented in [11]. Extensive
numerical results and detailed proofs for these numerical methods were given in [3].

2 Analytical results

In this section we present some analytical results for the above IVP, which include a maximum
principle, uniform stability result and estimates of the derivatives of the solution. We begin with
a maximum principle.

Lemma 2.1 Consider the IVP (1.1),(1.2). Then u.;(0) > 0,5 = 1,...,n and (Lecuc)i(z) > 0
for all z € Qo,i=1,...,n imply that u.;(z) > 0,i=1,...,n for all z € Q.

Proof : Define a test function s(z) = (s1(z), s2(x),...,sn(2))T by si(z) =1, i=1,...,n.
Then it is clear that s;(z) > 0,Vz € Qand i =1,2,...,n, using (1.3),

(Les)i(z) = esi(z) + Zaij(w)sj(m) = Zaij(a:) > 0, for i =1(1)n
j=1 j=1

Now assume that the lemma, is not true and introduce the quantity

¢ - maX{max (‘“) (x)}
? e S

Since the lemma is not true, there exists z* € Qg such that w.;(z*) < 0 for at least one i
Clearly ¢ > 0 and (u; +&s;)(z) >0 for all i = 1,2,...,n and for all z € Q. Furthermore, there
exists a point zo € Q such that (uek + &sk)(xo) = O for some k. This means that u.j + sy,
attains a minimum at x = zy. Then

0 < (Le(ue+€8))g(zo)

n
= e(uck +E&sk) (@) + Y arj(wo)(ue,j + Esj)(wo)
i=Lik
< 0, since (uek + Esg) (z0) =0if 19 € Q and (ue i + Esk) (m0) < 0ifzp =1

a contradiction. Hence, it can be concluded that wu.;(z) >0, i=1(1)n, for all z € Q. .
Using this maximum principle lemma, a uniform stability bound is obtained in the following
lemma.

Lemma 2.2 If u.(x) is the solution of the IVP (1.1),(1.2) then
lue(2)l] < € max {[[u:(0)]], [|Leuc(z)l]}, VzeQ
where C is a constant independent of x and €.
Proof : Defining barrier functions U*(z) = (¥ (z), U5 (z),... ,\Ifﬂf(m))T by
UF(z) = M £u.(z), fori=1(1)n

where M = C" max {||u:(0)||, ||Leus(z)||}, C'is a constant Then the desired stability bound
follows from Lemma 2.1, applied on ¥+ (z). .
In the next two lemmas we obtain bounds on the derivatives of the solution.



Lemma 2.3 Let uc(z) be the solution of the IVP (1.1),(1.2) then u.;(z) for i = 1,2,...,n
satisfy

ug_’;) (x)‘ <C (1 + s_ke_am/5> , for i=1(1)n

for 0 <k <2,z €Q and C is a constant independent of = and .

Proof The result is true for £ =0 by Lemma 2.2. We now verify the result for £ = 1. Consider
the equations given by (1.1)

n
(Lgug)i = €’u2’i + Zaijug,j =fi, for 1 = l(l)n
Jj=1

Differentiating the above equations once we obtain

n n
8(u'5,z-)l + Zaiju'g,j =fl - Za;jug,j , for i1 =1(1)n
Jj=1 J=1
This implies that
[(Leut)i(z)| < C, for i =1(1)n (2.6)

From (1.1) it is easy to check that

|ul i(z)| < Ce 1, for i =1(1)n (2.7)

X}

Using the maximum principle for
Vi (z) = C’ (1 + eile’o‘"’“k) + ug (), for i =1(1)n
where C’ is a constant independent of z and € ,one can show that

£,1

|ul ;(z)] < C (1 + e_le_az/‘E) , for i =1(1)n

where C' is a constant independent of z and €. Proceeding on similar lines we can also verify
the result for k£ = 2. .

In order to establish the parameter uniform convergence of the numerical scheme, sharper esti-
mates of the derivatives are required. We consider a decomposition of the solution u. into its
smooth and singular components, as given below:

Us = Vg + We = ((UO)E + 5('”1)5) + we
where (vg). = A~ !f is the solution of the reduced problem and

L.(v1): = —D(v)e, (v1)e(0) = 0
Lewe = 0, w:(0) = u(0) — (v0):(0)

The estimates of the derivatives of these components are as presented in the following lemma,
and the proof is straight.

Lemma 2.4 The smooth and singular components of the solution of the IVP (1.1),(1.2) satisfy

o®(@)| < C (146 Remerle), 0f(@)| < CeFeroat

for all z € Q and 0 < k < 2,where C is a constant independent of z and ¢.



3 The discrete problem

The IVP (1.1),(1.2) is discretised using a fitted mesh method composed of a classical finite
difference operator on a piecewise uniform fitted mesh. The corresponding discrete problem is

(LYU)i(z5) = eD7Uei(z)) + ani(z)Ue,i(25) + ar2(25)Ue,2(x;)
+ -+ + a1 (2§)Uen(z4) = fa(z))
LYU.(z)) = : : : (3.1)
(Lést)n(Ij) = 5D7Us,n($j) + anl(mj)Us,l(-Tj) + an2(xj)Ue,2($j)
+---+ ann(wj)Us,n(xj) = fn(l'])a] = 1(1)N
Ue,i(0) = u.3(0), fori =1(1)n (3.2)
where
DU, (z;) = Uf’i(xij:gji(mj‘l) . j=1()N,i=1(1)n

and the fitted mesh ﬁiv is defined by

3.1 DISCRETE MAXIMUM PRINCIPLE

We now state the discrete maximum principle and the stability result without proof as the proofs
are analogous to the continuous case.

Lemma 3.1 Consider the discrete IVP (3.1)-(3.2). Then U.;(0) > 0, i = 1(1)n and
(LNUL)i(z;) > 0 fori=1(1)n, j = 1(1)N imply that U, ;(z;) >0 fori=1(1)n, j = 0(1)N.

Lemma 3.2 If U.(x;) is any mesh function then
|Ue(z)l] < Cmax {|| U0) ||, || LXUe(z5) |}, 4 =0()N
where C is a constant independent of j and €.

The main theoretical result, a parameter—uniform error estimate, is given in the following
theorem.

Theorem 3.3 The fitted mesh finite difference method (3.1) -(3.2) with the classical finite dif-

ference operator on the piecewise uniform fitted mesh ﬁiv is e-uniform for the IVP (1.1),(1.2).
Moreover the solution u. of the continuous problem and the solution U, of the discrete problem
satisfy the following € - uniform error estimate

sup ||Ug; — ug,iHﬁN <C N7 lin N, i=1(1)n
0<e<1 4

where C is a constant independent of N and ¢.

Proof : Consider a decomposition of U, given by, U =V.+W, where V is the solution
of the problem
LYV.=f,  Vi(0) = v.(0)



and W, is the solution of the problem
LYW, =0,  W.(0) =w.(0)
The error due to the discretisation can be written in the form
Ue — ue = (Ve — ve) + (We — we)

and the errors in the smooth and singular components of the solution can be estimated separately.
The estimate of the error in the smooth component is obtained using the following classical
argument. From the differential and difference equations,

(Lév (Ve—we))i = fi— (Lévvs)i = ((Ls - Lév) ve)i = e(D—D7) Vey @ = 1(1)n

Now
|€ (D — D_) vgji(xj)‘ < Ce(r; —zj—1) max |Ug’i(t)|
t€lxw;j—1,;]
< CeN7!' max (1 + 5_16_‘”/6)
te[z;—1,%5]

< CN, i=1(1)n,j =1(1)N

Therefore
|| LY (Ve = ve) ()] <C N7, j=11)N

As V, and v, agree at the initial point, by the discrete stability result
[1(Ve = we) ()] < O N7, j=0()N

In estimating the error in the singular component of the solution, the arguments depend on
€
whether c =~ oro=—In N .
2 «o

1

Case 1 : o = — In this case the mesh is uniform and e < C In N. Again a classical

argument suffices to show that
|| 2 (We —we) (5)|| <C N~'in N, j=11)N (38)

Case 2 : 0 = — In N In this case the mesh is piecewise uniform with the mesh spacing
e

22 in the subinterval [0, 0] and # in the interval [o,1]. Also e™¢ = e N = N=1 | For

z; lying in the interval (0, 0] the argument is classical. We have

le(D =D )wei(z;)| < Ce(zj—zj1) max |wé’7i(t)‘ , i=1(1)n

te[w;—1,%4]

Since the mesh width is QT” and the second derivative of w; ;(z;) is bounded by Ce™2, we obtain

2
le(D = D™ )w.(z)| < e WG Ce? < CN-! g
< CNl'inN
Hence
| LY (W —we) (zj)|| <C N 'inN,  z;€(0,0] (3.9)



On the other hand, for z; € [0, 1] the argument is non—classical. We have

(LY We —we))i(zy) = e(D—=D7)wei(zy),  i=11)n
But e (D — D7) wei(z)| < e [|[Dwei(z))| + | D7 wei(zj)|], i = 1(1)n
and |D w“(wj)| < max |w€Z t)‘, i=1(1)n
t€[zj—1,2;]
Therefore le (D — D) wei(zj)| < 2¢  max |wl ()]
te[zj—1,z;] " 7
< 2C e <€’le’°‘wﬂ'*1/5>
< Cefaavj,l/s
Since z; € [0, 1] [5]
le(D-D )w.(z;)] < CNY, i=11)n
and so
I LY (We —we) () || < CNTH zj € [0, 1] (3.10)
Combining (3.9) and (3.10)
| LY (W, —w.) (z;) || < C N~'inN, zj € (0,1] (3.11)

As the continuous and discrete solutions coincide at = 0, applying discrete stability result to
the mesh function W, — w, leads to the required estimate of the error in the singular component
of the solution

| (We —we) (z;) | C N~'inN, j=0(1)N .

4 Numerical examples

In this section two examples are considered. All computations are performed in Fortran 77 with
double precision in Linux using a Pentium PC.

Example 4.1 Consider the IVP ,

eu'1(z) + (2 + 2)ur(z) —ua(z) = 1+7,
eu'o(z) — (1 + 2)ur(z) + (2 + z)ue(z) = z, =z € (0,1]
u1(0) =1, uy(0) =0.5

This IVP is solved using the fitted mesh method presented in Section 3. In Table 1 we present
the two mesh differences, the order of convergence and the error constant, which are calculated
using the algorithm presented on page 166 of [2]. In Figures 1 and 2 the solution is displayed
for particular values of € and N.
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Table 1: Two mesh differences DY for Ezample 4.1 for a = 1.0 on Shishkin mesh.

Number of mesh points N
€ 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
22 0.175-1 | 0.104-1 | 0.569-2 | 0.299-2 | 0.153-2 | 0.776-3 | 0.391-3 | 0.196-3 | 0.982-4
26 0.897-2 | 0.706-2 | 0.572-2 | 0.372-2 | 0.242-2 | 0.145-2 | 0.853-3 | 0.485-3 | 0.271-3
2710 1 0.875-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.143-2 | 0.841-3 | 0.478-3 | 0.267-3
2714 1 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
2718 1 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
2722 | 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
2-26 | 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
2730 | 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
273% | 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
2738 | 0.873-2 | 0.692-2 | 0.561-2 | 0.366-2 | 0.237-2 | 0.142-2 | 0.840-3 | 0.477-3 | 0.267-3
DN 0.175-1 | 0.104-1 | 0.607-2 | 0.391-2 | 0.255-2 | 0.153-2 | 0.893-3 | 0.509-3 | 0.297-3
p 0.74640 | 0.783+0 | 0.63240 | 0.6134-0 | 0.740+0 | 0.777+0 | 0.8104-0 | 0.7734-0
C'é\_f613 0.18140 | 0.165+0 | 0.14740 | 0.14540 | 0.145+0 | 0.132+0 | 0.1184-0 | 0.10340 | 0.926-1
The order of convergence = 0.613
The error constant = 0.181
Example 4.2 Consider the IVP ,
eu'1(x) + 2ui(z) — (1 + (x/2))us(z) = 1,
eu's(x) —ur(z) + (2 + 2z)us(z) = z+2, =€ (0,1]

’u,1(0) =1 ; UQ(O) =15

This IVP is also solved using the fitted mesh method presented in Section 3. In Table 2 we
present the numerical results and in Figures 3 and 4 we exhibit the solution of this IVP.
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