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Abstract

The considered unsteady flow of the viscous incompressible fluid is caused by the sudden

motion of the dihedral angle with the constant velocity in the fluid being at rest. It is assumed,

that the angle moves in the direction of the edge and the flow is layered. This flow simulates

roughly a boundary layer in the neighborhood of the intersection the wing and the fuselage of

an aircraft at enough distances from the leading and the trailing edges of the wing. In the case

of right dihedral angle, the analytic solution of the considered problem is obtained, while in the

case of arbitrary angle the problem for a function of three independent variables is reduced to a

boundary value problem for an ordinary differential equation. The asymptotic behaviour of the

solution of this equation by corresponding boundary conditions is investigated.

1. Introduction

The unsteady flow of the viscous incompressible fluid is considered. This flow is caused
by the sudden motion of the dihedral angle Γ with the constant velocity U . We assume,
that the angle moves in the direction of the edge and only one velocity component of fluid
in this direction is different from zero. Such flows are called by layered ones [1].

The analytic solution of the considered problem was obtained in case of the right
dihedral angle Γ while in case of arbitrary angle we reduced the problem to the self-
similar boundary-value problem. Attention of author to this problem was attracted by
Prof. Neyland in connection with the flow in the neighbourhood of the intersection wing
and fuselage of an aircraft.

In the present work the power geometry methods [2] are used for obtaining self-similar
solutions of boundary-value problems. These methods have simple algorithms. They were
applied successfully both to linear and nonlinear problems in works [3] – [7] and others.

The unsteady layered flow, caused by the sudden motion of an infinite flat plate, was
investigated for the first time by Stokes [8]. Steady boundary layer on the right dihedral
angle was considered first by Loytsjansky (1936-1937) [9].

2. Initial equations

Let us denote cylindrical coordinates by r, θ, z; corresponding velocity components by
vr, vϑ, w; time, pressure, density and kinematic viscosity coefficient by t, p, ρ, ν. With these
notations the equations of unsteady motion of viscous incompressible fluid and equation
of continuity have the form:
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Let the axis Oz be directed along the edge of the dihedral angle Γ having linear angle
α ∈ (0, π/2]. We shall consider layered flow setting vr = vϑ = 0. Then the equations
(2.1) – (2.4) take the form:
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¿From the equations (2.5) and (2.6) it follows that left side of the equation (2.7) is in-
dependent on r and ϑ, but right side is independent on z according to (2.8). Consequently
both sides of equation (2.7) are independent from space variables, but may depend only
from time t. Let

∂p

∂z
= F (t). (2.9)

Usually the function F (t) is given. Let us assume that p → p0 = const both by
z → −∞ and z → +∞. Then since the flow is caused only by the wall motion, we shall
assume that F (t) = 0 and the equation (2.7) is written in the form:
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where s = r/
√

ν.
We connect the frame of reference (r, ϑ, z) with dihedral angle Γ. In that case, the

initial and boundary conditions for the function w(s, ϑ, t) are:

w = 0, as t ≤ 0, (2.11)

w = 0, as t > 0 and ϑ = 0 or ϑ = α, (2.12)

w → U, as ϑ = α/2, s → ∞. (2.13)
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3. The case of arbitrary dihedral angle

The boundary layer inside the dihedral angle Γ is interesting only in a neighbourhood
the edge, where boundary layers on the faces influence each other. Outside this neigh-
bourhood each of this boundary layers is described by well-known Blasius solution.

Let us reduce the equation (2.10) to the one having only two independent variables.
This simple example demonstrates the application of the power geometry methods (v.
Section 5) for the obtaining self-similar solutions.

The support of the differential polynomial in left hand side of the equation (2.10)

has three different points: Q1 = (−1, 0, 0, 1), Q2 = (0,−2, 0, 1), Q3 = (0,−2,−2, 1) in

the space (q1, q2, q3, q4), where q1, q2, q3, q4 correspond respectively to t, s, ϑ, w. The form

of self-similar solution depends on the vector P = (p1, p2, p3, p4). This vector must be

perpendicular to the vectors Q2
′ = Q2−Q1 = (1,−2, 0, 0), Q3

′ = Q3−Q1 = (1,−2,−2, 0),

Q4 = (0, 0, 0, 1). The last vector associates with nonzero boundary condition (2.13). As

a result, we have p1 − 2p2 = 0, p3 = p4 = 0. Setting p1 = 1, we obtain: P = (1, 1/2, 0, 0);

γ2 = p2/p1 = 1/2, γ3 = p3/p1 = 0, γ4 = p4/p1=0; ζ1 = s/tγ2 = s/t1/2, ζ2 = ϑ/tγ3 =

ϑ/t0 = ϑ, w = tγ4Φ0(ζ1, ζ2) = UΦ(ζ1, ζ2).
Thus,

w = UΦ(ζ1, ζ2), ζ1 = s/
√

t, ζ2 = ϑ. (3.1)

Substituting these expressions into equation (2.10) we obtain:
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The separation of variables
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where λ = π/α in view of the boundary condition (2.12). A particular solution to the
equation (3.5) has the form

Φ2 = sin
πϑ

α
. (3.6)

Let us obtain the asymptotics of the solution to the equation (3.4) with the boundary
conditions:

Φ1(0) = 0, Φ1(∞) = 1. (3.7)

Neglecting by ζ1
2/2 in comparison with 1 as ζ1 ≪ 1, we reduce the equation (3.4) to

the Euler equation:
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The general solution of this equation is

Φ1 = C1ζ1
λ + C2ζ1

−λ (C1, C2 − arbitrary constants).

Assuming C2 = 0 we obtain Φ1 = C1ζ1
λ and

w = C1ζ1
λ(1 + o(1))sinλϑ as ζ1 → 0. (3.9)

We shall see in the next Section that C1 = 2/π if α = π/2.
Let now ζ1 → +∞. Then using the Laurent series we find that
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where λ = π/α.
We shall see further that these asymptotics coinside with ones for the analytical solu-

tion in case of α = π/2, i.e. λ = 2.

4. The case of right dihedral angle

In special case of α = π/2 we consider our problem in Cartesian rectangular coordinate
system (x, y, z). Let us denote corresponding velocity components by u, v, w. Then the
equations of motion and equation of continuity have the form:
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Let us consider layered flow setting u = v = 0. Then system of equations (4.1)–(4.4)
may be written as
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In the Section 2 we saw that
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This equation is classic heat conducting one. We find the self-similar variables with
the help of power geometry (v. Section 5). These well-known variables are
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x
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√
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2
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Change of variables in the equation (4.9) gives
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For this equation we have following boundary conditions:

ϕ = 0 as ξ = 0 and as η = 0, (4.12)

ϕ = 1 as ξ = η → +∞. (4.13)

Separation of variables

ϕ(ξ, η) = ϕ1(ξ)ϕ2(η). (4.14)

lead to equations

ϕ1
′′(ξ) + 2ξϕ1

′(ξ) = 0, (4.15)

ϕ2
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′(η) = 0. (4.16)

The solutions to these equations are expressed by means of Gauss error function:
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By substitution of these solutions into the expression (4.14) we obtain
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and
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where ξ and η are given in the form (4.10).
It is evidently that the boundary conditions (4.12)–(4.13) are satisfied since

erf (+∞) = 1.
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It is not difficult to verify that in the case α = π/2 the formulas (3.9) and (3.11)
coincide with the corresponding asymptotics of the solution (4.18). This comparison
shows that in (3.9) C1 = 2/π as α = π/2. We do not make analogous comparison for
α < π/2 since separation of independent variables is impossible if we make use of oblique
Cartesian coordinates.

5. On the power geometry

Let us give some information about the power geometry which we concern in the
present paper. The details are in monograph [2].

We shall consider the boundary-value problems for the functions x3, ..., xn of two in-
dependent variables x1, x2. Let X = (x1, ..., xn). The differential monomial a(X) is a
product of the usual monomial c x1

r1x2
r2...xn

rn = c XR and a finite number of partial deri-
vatives ∂lxm/∂xl1

1 ∂xl2
2 , where c = const, R = (r1, ..., rn) ∈ R

n
, m = 3, ..., n, l = l1 + l2. To

each differential monomial a(X) there corresponds the vectorial power exponent Q(a) ∈
R

n
according to the following rules: Q(cXR) = R; Q(∂lxk/∂xl1

1 ∂xl2
2 ) = −l1E1− l2E2 +Ek,

where Ej denotes the j-th unit vector; Q(a1a2) = Q(a1)+Q(a2), a1 and a2 are differential
monomials. The finite sum of differential monomials

f(X) =
∑

ak(X) (5.1)

is called the differential polynomial. In R
n

to the polynomial (5.1), there corresponds
support S(f) = {Q(ak)}, which is the set of all vectorial power exponents of its monomials.
The convex hull Γ(f) of the support S(f) is called the Newton-Bruno polyhedron of the

polynomial (2.1). Its boundary ∂Γ(f) consists of faces Γ
(d)
j where d = dim(Γ

(d)
j ). To each

face Γ
(d)
j there corresponds truncated polynomial f̂

(d)
j (X) =

∑

ak(X) over k : Q(ak) ∈
Γ

(d)
j . Let R

n

∗
denote the space dual to the space R

n
. There exists the scalar product

〈P, Q〉 = p1q1 + . . . + pnqn for P = (p1, . . . , pn) ∈ R
n

∗
and Q = (q1, . . . , qn) ∈ R

n
. For each

face Γ
(d)
j , there exists such a vector P ∈ R

n

∗
, that 〈P, Q1〉 > 〈P, Q2〉 for any Q1 ∈ Γ

(d)
j

and Q2 ∈ Γ \ Γ
(d)
j . In R

n
the hyperplane 〈P, Q〉 = const = 〈P, Q1〉 is supporting to

the polyhedron Γ(f) and the vector P is the exterior normal vector to the face Γ
(d)
j , i.e.

directed outside of Γ(f). For example let us consider the system of three differential
equations

fi(X) = 0, i = 1, 2, 3, (5.2)

where fi(X) are differential polynomials. To each of them there corresponds its support

S(fi), its polyhedron Γ(fi), its set of faces Γ
(d)
ij and truncated equations f̂

(d)
ij (X) = 0 .

The system of the equations

f̂
(di)
iji

(X) = 0, i = 1, 2, 3, (5.3)

is called the truncated system, if a vector P = (p1, ..., p5) ∈ R
5
∗

is the exterior normal

vector to faces Γ
(di)
iji

of the polyhedrons Γ(fi) for i = 1, 2, 3. The corresponding truncated
system (5.3) exists for each vector P 6= 0.

Let for x1 → +∞ the system (5.2) have a solution of the form xm = xγm

1 ϕm(ζ) +
O(x1

γm−ε), m = 3, 4, 5, where

ζ = x2x
−γ2

1 , ε > 0, and γm = pm/p1, m = 2, 3, 4, 5. (5.4)

Then the truncation of the solution

xm = xγm

1 ϕm(ζ), m = 3, 4, 5, (5.5)
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is a solution of the truncated system (5.3) [2,Ch.VI]. The truncated system (5.3) is qua-

sihomogeneous, i.e. three faces Γ
(d1)
1j1

, Γ
(d2)
2j2

, Γ
(d3)
3j3

can be put into one and the same linear

subspace B ⊂ R
5

by means of parallel translations. Let the space B be two-dimensional

subspace with the basis B1, B2 ∈ R
5

and we have for example the boundary conditions

x3 = c3x
n3

2 , x5 = c5x
n5

2 for x2 → ∞, c3, c5 = const (5.6)

for the truncated system (5.3). Then this system has the self-similar solution (5.4), where
the vector P = (p1, ..., p5), is orthogonal to the vectors B1, B2, −n3E2 +E3, −n5E2 +E5.
It is possible to to prove that p1 > 0 if we take an interest in the asymptotics for x1 → ∞.
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