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1. Introduction

Many physical phenomena feature thin boundary layers, in which the solution varies much
more rapidly than elsewhere in the domain of interest. A ‘natural’ approach is to adapt a
computational grid to the variations of the solution. In this way one obtains grids with a large
diversity in mesh size, i.e. the grid shows strong stretching.

‘Traditional’ discretization methods (based on Lagrangian interpolation) focus on minimizing
local truncation error, but experience has shown that these methods prefer low grid stretching
rates, e.g. [1, 8, 25, 27]. The problems arise because this approach does not take into account the
properties of the discrete system matrices obtained after discretization. An alternative approach
is to develop discretization schemes which mimic the properties of the system matrix - a general
name for this philosophy is mimetic discretization, e.g. [21].

We have chosen to retain the symmetry properties of the operator, which in our fluid-flow
application is a combination of convection and diffusion. In particular, convection is discretized
such that its discrete version remains skew symmetric. An almost immediate consequence is that
the system matrix remains diffusively stable (hence never can become singular) on any grid. In
formula: Let the system under study be given by

dφ

dt
+ Lφ = 0,

then the evolution of the kinetic energy ||φ||H = φ∗Hφ (where H represents the local mesh size)
is given by

d

dt
||φ||H = −φ∗((HL)∗ + HL)φ.

With skew-symmetric convection, the symmetric part (HL)∗+(HL) of the system matrix comes
only from diffusion, and the above assertion follows.

Another consequence is that the convective discretization does not produce unphysical nu-
merical diffusion, which unavoidably will interfere with the physical diffusion. This strategy has
been applied e.g. in direct numerical simulation of turbulent flow (DNS), where the small-scale
balance between convection and diffusion is quite delicate [28–30]. In the paper the behaviour
of second- and fourth-order symmetry-preserving finite-volume methods is demonstrated on
Shishkin grids and on exponential grids. Also their performance for DNS is shown..

2. Symmetry preservation: the philosophy

As an illustration we consider a convection-diffusion equation in one space dimension (x), with
a constant velocity u, and with arbitrary k = k(x) > 0. In conservation form it reads

∂φ

∂t
+

∂

∂x
(uφ) −

∂

∂x

(

k
∂φ

∂x

)

= 0, (1)
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provided with Dirichlet boundary conditions on the unit interval (for convenience).
It is noted that analytically, ignoring influences from the boundaries, for incompressible∗flow

convection is a skew-symmetric operator, whereas diffusion is symmetric positive definite. A
discretization that mimics these analytical properties is called symmetry preserving [30]. The clue
to its performance follows from Bendixson’s inclusion lemma, which states that all eigenvalues
of a matrix lie in or on the least rectangle with sides parallel to the real and imaginary axes
that contains all eigenvalues of its symmetric and skew-symmetric part, respectively [6, p. 69].
An immediate consequence hereof is the following theorem:

Any symmetry-preserving discretization of the convection-diffusion equation (1) leads
to a positive-real†coefficient matrix. In particular, the latter cannot become singular.

This theorem can partly explain why the use of such symmetry-preserving discretizations has
been found to be very efficient in direct numerical simulation of turbulent flow on structured
[28–30] as well as unstructured grids [5]; see Section 6..

3. Fourth-order space discretization

The convection-diffusion equation (1) will be discretized in a (conservative) finite-volume fashion,
where the control faces are chosen halfway between the grid points (for notation see Fig. 1).
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Figure 1: Fine (hf ) and coarse (hc) control volumes. The volume faces are located halfway the
grid points (i, i ± 1) and (i, i ± 2), respectively.

With a second-order flux in xi+1/2 given by

u
φi+1 + φi

2
− k

φi+1 − φi

xi+1 − xi
,

the semi-discrete convection-diffusion equation becomes

hf
dφi

dt
+ 1

2u(φi+1 − φi−1) − k

(

φi+1 − φi

xi+1 − xi
−

φi−1 − φi

xi−1 − xi

)

= 0. (2)

Note that this discretization is symmetry-preserving and conservative, i.e. it conserves both
energy and momentum. In an analytical formulation this combination is not possible [18], but
discrete it can! Though on non-uniform grids this method may look first-order accurate, actually
Manteuffel and White [14] have proven its global discretization error to be second-order accurate
on any (sufficiently fine) grid; see also Hundsdorfer and Verwer [7, p. 271].

To turn this method into a fourth-order method, a similar equation on a two-times-larger
control volume (Fig. 1) is written down

hc
dφi

dt
+ 1

2u(φi+2 − φi−2) − diffusive terms = 0. (3)

The leading term in the discretization error can be removed through a Richardson extrapolation
from (2) and (3). Since the errors in (2) and (3) are of third order, on a uniform grid this would

∗By employing the skew-symmetric, though non-conservative, form of the flow equations the latter assumption
may be dropped [18].

†A matrix is called positive real, when all eigenvalues of its symmetric part are lying in the positive half plane
[32]
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mean to make a combination 8*Eq. (2) - Eq. (3). On a nonuniform grid one would be tempted
to tune the weights to the actual mesh sizes, but we think it important that the skew symmetry
of the convective contribution is maintained. This can only be achieved when the weights are
taken independent of the grid location, and hence equal to the uniform weights. In this way the
discretization of the convective derivative becomes

Hi
dφi

dx
≈ 1

2(−φi+2 + 8φi+1 − 8φi−1 + φi−2), (4)

where
Hi = 8hf − hc = 1

2(−xi+2 + 8xi+1 − 8xi−1 + xi−2).

On a uniform grid, of course, the usual fourth-order method is obtained, but on nonuniform
grids the method differs considerably. In particular, the local truncation error

2Hi
dφ

dx
= −φi+2 + 8φi+1 − 8φi−1 + φi−2 + (h2

++ − 8h2
+ + 8h2

− − h2
−−)φxx + · · ·

(where h++ = xi+2 − xi, h+ = xi+1 − xi, etc.) does not look very promising at first sight. On
irregular grids it might even behave first-order!

The diffusive term undergoes a similar treatment leading to

Hi
d2φi

dx2
≈ 8

(

φi+1 − φi

xi+1 − xi
−

φi−1 − φi

xi−1 − xi

)

−

(

φi+2 − φi

xi+2 − xi
−

φi−2 − φi

xi−2 − xi

)

. (5)

Remark The expressions (4) and (5) can also be derived through a coordinate transformation
x = x(ξ) by writing [8]

dφ

dx
=

dφ

dξ
/
dx

dξ
and

d2φ

dx2
=

d

dξ

(

dφ

dξ
/
dx

dξ

)

/
dx

dξ
.

Choose a uniform grid in ξ with mesh size ∆, then

dφ

dξ
=

−φi+2 + 8φi+1 − 8φi−1 + φi−2

12∆
+ O(∆4),

and a similar expression holds for dx/dξ. Dividing the two expressions leads to (4), and fourth-
order behaviour looks obvious . . .

4. Examples

We first consider the steady version of (1), for u = 1 and k = 0.001, on a so-called Shishkin grid
[2, 15] consisting of two uniform subintervals separated by the point xs ≡ max(0.5, 1 − ak ln N),
where N is the total number of grid points. Each of the two subintervals contains half of the
points. The constant a is chosen such that also at small values of N reasonable resolution of the
boundary layer is achieved: we set a = 3.

Also, some experiments on more smoothly varying exponential grids have been carried out;
these grids possess a constant stretching in x. The stretch factor is chosen such that half of the
grid points are lying on either side of the split point xs of the Shishkin grid.

Figure 2 shows a comparison between the individual solutions of second- and fourth-order
traditional methods and symmetry-preserving methods on the (abrupt) Shishkin grid and on
the (smoothly stretched) exponential grid. Both grids contain 28 grid points. It is clearly visible
that on both grids the ‘traditional’ fourth-order method suffers from an almost singular system
matrix (an eigenvalue crosses the imaginary axis close to the origin).
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Figure 2: Discrete solutions for k = 0.001 on an abrupt Shishkin grid (left) and an exponential
grid (right). The ’traditional’ discretization, especially the fourth-order version, has problems
with the stretching of the grid.

Figure 3 shows a systematic grid-refinement study of the second- and fourth-order traditional
and symmetry-preserving methods on both typs of grids (abrupt and exponential). In order not
to be bothered by special boundary conditions, for both approaches the values outside the
domain have been set equal to their exact values. Some observations:
• The much more regular and forgiving character of the symmetry-preserving discretization
is evident. Especially the coarser grids show a large difference in accuracy between the two
discretization approaches. Note that on the abrupt Shishkin grid there is only one grid point
where the symmetry-preserving discretization differs from the ‘traditional’ Lagrangian one. Yet
this small difference is seen to have a strong influence on coarse grids.
• On exponential grids, the symmetry-preserving method seems to be constantly better than
its Lagrangian counterpart. For equal accuracy, the fourth-order version can do with a roughly
three times coarser grid. On Shishkin grids, both approaches show about third-order accuracy.
• Further, on the coarser grids the second-order Lagrangian method outperforms its fourth-order
counterpart. Only on the finer grids the latter becomes more accurate. For the symmetry-
preserving method, the fourth-order variant appears always more accurate than its second-order
version (although this cannot be proven).
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Figure 3: The global error as a function of the mean mesh size. Half of the grid points is
located in the boundary layer of thickness 1 − xs. Four methods are shown: 2L (second-order
Lagrangian), 2SP (second-order symmetry-preserving), 4L (fourth-order Lagrangian) and 4SP
(fourth-order symmetry-preserving).
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5. Application to turbulent flow

To further illustrate the accuracy of the symmetry-preserving discretization, consider a turbulent
channel flow at a Reynolds number of Re=5,600. A large number of numerical results as well
as experimental data is available for comparison. Figure 4 (left) shows a comparison of the
mean velocity profile as obtained from the fourth-order symmetry-preserving simulation [30]
with those of other direct numerical simulations. The grids used by the DNS’s that we compare
with have typically about 1283 grid points, that is 16 times more grid points than our grid has.
Nevertheless, the agreement is excellent.
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Figure 4: Comparison of the mean streamwise velocity u+ (left) and its root-mean-square (right)
as function of the wall normal coordinate y+.

The root-mean-square of the fluctuating streamwise velocity urms near the wall (0 < y+ < 40)
is presented in Fig. 4 (right). The results show that the urms predicted by the fourth-order
simulation fits the experiment data of Kreplin and Eckelmann [11] nicely. This holds for very
coarse grids too, as can be inferred from the results computed with the fourth-order symmetry-
preserving scheme with only 32 grid points in the wall-normal direction. It is interesting to
compare the ratio between ‘our’ 32 or 64 grid points in wall-normal direction and the 128 grid
points used in the reference computations [3, 9, 12]. This ratio (a factor two to four) compares
quite well with the ‘predicted’ possible increase in grid size (a factor of three) as found in the
one-dimensional test case described above.

This flow case has also been used to carry out a grid refinement study to show indeed fourth-
order convergence behaviour. The skin-friction coefficient Cf has been monitored as obtained
from simulations on five different grids, denoted A – E. Their spacings differ only in the direction
normal to the wall, with 128 (A), 96 (B), 64 (C), 56 (D) and 48 (E) points, respectively. The first
(counted from the wall) grid line varies between y+

1 = 0.72 (grid A) and y+
1 = 1.9 (grid E). The

refinement study, as indicated in Fig. 5, clearly shows a fourth-order behaviour on the nonuniform
grid. The straight line in Fig. 5 is approximately given by Cf = 0.00836 − 0.000004(y+

1 )4. The
extrapolated value at the crossing with the vertical axis y+

1 = 0 lies in between the Cf reported
by Kim et al. [9] (0.00818) and Dean’s correlation Cf = 0.073Re−1/4 = 0.00844. Note that
the extrapolation eliminates the (leading term of the) discretization error in the wall-normal
direction, but not the other discretization errors in space and time.

The convergence of the fluctuating streamwise velocity near the wall (0 < y+ < 20) is
presented in Fig. 5 (right). Here, we have added results obtained on three still coarser grids
(with 32, 24 and 16 points in the wall-normal direction, respectively), since the results on the
grids A–E fall almost on top of each other. The coarsest grid, with only 16 points to cover the
channel width is coarser than most of the grids used to perform a large-eddy simulation (LES)
of this turbulent flow. Nevertheless, in the near wall region, the 64×16×32 solution is not that
far off the solution on finer grids.

5



0.00830

0.00835

0.00840

0 5 10 15 20

E

D

C

BA

Grid A: 64x128x32

B:  64x96x32

C:  64x64x32

D:  64x56x32

E:  64x48x32

Cf

y+
1( )4

0

1

2

3

0 5 10 15 20

64x96x32  (B)

64x64x32  (C)

64x128x32 (A)

64x56x32  (D)

64x48x32  (E)

64x32x32

64x24x32

64x16x32

u

y

rms

+

Figure 5: Left: Convergence of the skin-friction coefficient upon grid refinement, displayed as
a function of the fourth power of the cell size next to the wall. Right: The root-mean-square
velocity fluctuations normalized by the wall shear velocity as a function of the wall coordinate
y+ on various grids for y+ ≤ 20.

6. DISCUSSION

To obtain some feeling about what is going on, let’s have a look at the global error between the
discrete solution φh and the analytical solution φexact. It is given by

‖ φh − φexact|| = L−1τ,

where L is the discrete coefficient matrix and τ the local truncation error. The global error is the
product of the local truncation error and the inverse of the coefficient matrix. Obviously, when
the coefficient matrix becomes singular it destroys the accuracy of the discrete solution. This
is what happens with the traditional Lagrangian discretization methods which concentrate on
minimizing τ . By using a symmetry-preserving discretization, the coefficient matrix can never
become singular. Moreover, its convective part does not contribute to numerical damping. In
the turbulent-flow examples this property is believed to be crucial.

The properties of the coefficient matrix have inspired many authors to design generalizations
of second-order central discretization methods for non-uniform grids. Early discussions on self-
adjoint (diffusive) equations can be found already in the work of Tikhonov and Samarskii [24]
in the 1960’s; see also [20]. Several other studies on nonuniform grids can be mentioned, e.g.
[1, 8, 25]. Piacsek and Williams [18] explicitly advocated the use of a skew-symmetric analytic
formulation in case of convective equations. Later, Verstappen and Veldman [28–30] showed that
the same discretization can be obtained from the conservative divergence form of the equations.
Closely related are the mimetic discretizations as developed by Steinberg and co-workers; see
e.g. [21]. Another related criterion is the summation-by-parts property introduced by Strand
[22], which achieves similar properties of the discretization.

Also, lower-order upwind discretizatios have been studied on nonuniform grids. On Shishkin
grids, Miller et al. [15] and Roos [19] have analysed their convergence properties; for a recent
overview we refer to [13]. However, Golub et al. [4] have warned that upwind discretization
may produce some negative diffusion on expanding and contracting grids (the coefficient matrix
need not be positive real, which may give problems to some iterative methods). By invoking
the summation-by-parts property [16] or by using a symmetry-preserving discretization [26],
the latter objection can be removed. Also, k-uniform convergence on Shishkin grids can be
established [26].

Discussions of higher-order algorithms on Shishkin grids are rather rare in the literature,
and seem to be restricted to Hermite discretization of reaction-diffusion equations, i.e. without
convection [23, 31]. It would be interesting to analyse the current convective discretization in a
similar way.
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